Immune response during tumor therapy with antibody-superantigen fusion proteins

Int J Cancer. 1996 Sep 27;68(1):109-13. doi: 10.1002/(SICI)1097-0215(19960927)68:1<109::AID-IJC19>3.0.CO;2-6.

Abstract

To engineer superantigens (SAg) to express tumor reactivity, we genetically fused the Fab-part of the tumor-reactive MAb C215 and the bacterial SAg staphylococcal enterotoxin A (SEA). Treatment of mice carrying established lung micrometastases of the C215-transfected syngeneic B16 melanoma with 3-4 daily injections of C215Fab-SEA resulted in strong antitumor effects, while only moderate effects were seen when treatment was given every 4th day (intermittent treatment). High serum levels of IL-2, TNF-alpha, IFN-gamma and strong induction of CTLs (cytotoxic T lymphocytes) were noted after priming with the fusion protein. T cells responded well to 3 daily injections of C215Fab-SEA and then gradually entered a hyporesponsive state, characterized by a reduced ability to produce IL-2, TNF-alpha and IFN-gamma and failure to mediate cytotoxicity in vitro. Intermittent treatment was characterized by increased levels of IL-10, concomitant with accentuated loss of IL-2, TNF-alpha and IFN-gamma production. A 10-fold increase in SEA-reactive TCR V(beta)3+ CD4+ cells was observed in the spleen, while a loss of TCR V(beta)3+ CD8+ and V(beta)11+ CD8+ cells was noted. This is in striking contrast to injections of native SEA which induced a marked deletion of TCR V(beta)3+ CD4+ T cells, but not of CD8+ cells. Recovery of the TH1 cytokine profile occurred within 1-2 weeks, while restoration of cytotoxicity required several months and correlated with recovery of TCR V(beta)3+ CD8+ and TCR V(beta)11+ CD8+ T cells. These results show that the temporal relationship of SAg stimulations dictates the cytokine profile. Moreover, different mechanisms appear to regulate hyporesponsiveness in CD4+ and CD8+ T cells.

MeSH terms

  • Animals
  • Antibodies, Monoclonal / genetics
  • Antigens, Neoplasm / immunology
  • Enterotoxins / immunology*
  • Enterotoxins / therapeutic use
  • Female
  • Humans
  • Immunoglobulin Fab Fragments / immunology
  • Immunoglobulin Fab Fragments / therapeutic use
  • Immunotherapy*
  • Lymphocyte Activation
  • Lymphoma, B-Cell
  • Melanoma, Experimental
  • Mice
  • Mice, Inbred C57BL
  • Neoplasms, Experimental / immunology
  • Neoplasms, Experimental / therapy*
  • Recombinant Fusion Proteins / immunology*
  • Superantigens / immunology*
  • Superantigens / therapeutic use
  • T-Lymphocytes / immunology
  • T-Lymphocytes, Cytotoxic / immunology
  • Transfection
  • Tumor Cells, Cultured

Substances

  • Antibodies, Monoclonal
  • Antigens, Neoplasm
  • Enterotoxins
  • Immunoglobulin Fab Fragments
  • Recombinant Fusion Proteins
  • Superantigens
  • enterotoxin A, Staphylococcal