CXCL5 induces tumor angiogenesis via enhancing the expression of FOXD1 mediated by the AKT/NF-κB pathway in colorectal cancer

Cell Death Dis. 2019 Feb 21;10(3):178. doi: 10.1038/s41419-019-1431-6.

Abstract

The mechanisms underlying the role of CXCL5 in tumor angiogenesis have not been fully defined. Here, we examined the effect of CXCL5 on tumor angiogenesis in colorectal cancer (CRC). Immunohistochemistry was used to monitor the expression of CXCL5 and CD31 in CRC patients' tissues. HUVEC cell lines stably transfected with shCXCR2 and shFOXD1 lentivirus plasmids were used in an in vitro study. Based on some molecular biological experiments in vitro and in vivo, we found that CXCL5 was upregulated in tumor tissues and that its level positively correlated with the expression of CD31. Next, we used recombinant human CXCL5 (rhCXCL5) to stimulate HUVECs and found that their tube formation ability, proliferation, and migration were enhanced by the activation of the AKT/NF-κB/FOXD1/VEGF-A pathway in a CXCR2-dependent manner. However, silencing of CXCR2 and FOXD1 or inhibition of the AKT and NF-κB pathways could attenuate the tube formation ability, proliferation, and migration of rhCXCL5-stimulated HUVECs in vitro. rhCXCL5 can promote angiogenesis in vivo in Matrigel plugs, and the overexpression of CXCL5 can also increase microvessel density in vivo in a subcutaneous xenotransplanted tumor model in nude mice. Taken together, our findings support CXCL5 as an angiogenic factor that can promote cell metastasis through tumor angiogenesis in CRC. Furthermore, we propose that FOXD1 is a novel regulator of VEGF-A. These observations open new avenues for therapeutic application of CXCL5 in tumor anti-angiogenesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Movement / drug effects
  • Cell Proliferation / drug effects
  • Chemokine CXCL5 / genetics
  • Chemokine CXCL5 / metabolism*
  • Colorectal Neoplasms / blood supply
  • Colorectal Neoplasms / genetics
  • Colorectal Neoplasms / metabolism*
  • Forkhead Transcription Factors / genetics
  • Forkhead Transcription Factors / metabolism*
  • Human Umbilical Vein Endothelial Cells
  • Humans
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • NF-kappa B / genetics
  • NF-kappa B / metabolism*
  • Neovascularization, Pathologic / metabolism*
  • Oligonucleotide Array Sequence Analysis
  • Platelet Endothelial Cell Adhesion Molecule-1 / metabolism
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism*
  • RNA, Small Interfering / metabolism
  • Receptors, Interleukin-8B / genetics
  • Receptors, Interleukin-8B / metabolism
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Signal Transduction / genetics
  • Transplantation, Heterologous
  • Up-Regulation
  • Vascular Endothelial Growth Factor A / genetics
  • Vascular Endothelial Growth Factor A / metabolism

Substances

  • CXCL5 protein, human
  • CXCR2 protein, human
  • Chemokine CXCL5
  • FOXD1 protein, human
  • Forkhead Transcription Factors
  • NF-kappa B
  • Platelet Endothelial Cell Adhesion Molecule-1
  • RNA, Small Interfering
  • Receptors, Interleukin-8B
  • Recombinant Proteins
  • Vascular Endothelial Growth Factor A
  • Proto-Oncogene Proteins c-akt