RLIP76: a versatile transporter and an emerging target for cancer therapy

Biochem Pharmacol. 2010 Jun 15;79(12):1699-705. doi: 10.1016/j.bcp.2010.01.016. Epub 2010 Jan 25.

Abstract

In the last few years, extensive research has been made to elucidate the functional significance of RLIP76. The resulting novel breakthroughs have helped us understand its transport and signaling functions. RLIP76 is a ubiquitously expressed, key stress-defensive, anti-apoptotic, multi-functional protein that transports glutathione-conjugates of electrophilic compounds, thus controlling the intracellular concentration of pro-apoptotic oxidized lipid byproducts and other xenobiotics such as chemotherapeutic agents. These properties place RLIP76 at a very important position in the hierarchy of the stress defense mechanism adopted by the cell. Selective over-expression of RLIP76 in malignant cells of diverse origin is one of the possible mechanisms by which these cells overcome chemotherapy and radiation induced oxidative damage. RLIP76 has also been shown to be an effective transporter of many conventional chemotherapeutic drugs. Such transport, if inhibited, can lead to increased cellular accumulation of drugs which in turn translates to enhanced drug sensitivity. Recent studies have shown that inhibition and/or depletion of RLIP76 by antibodies, siRNA, or antisense can lead to drastic and sustained regression of lung, kidney, melanoma, colon, and prostate cancer xenografts with no observed recurrence of tumors. All these findings converge on the fact that such inhibition/depletion of RLIP76 can be used clinically to terminate cancer growth and progression. In the present review, we will discuss the role of RLIP76 as a multi-drug transporter, its involvement in cancer, and the prospects of using RLIP76 inhibition as an emerging treatment for cancer.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / administration & dosage*
  • Drug Delivery Systems*
  • GTPase-Activating Proteins / metabolism*
  • Mice
  • Neoplasms / drug therapy*
  • Neoplasms / metabolism
  • Signal Transduction

Substances

  • Antineoplastic Agents
  • GTPase-Activating Proteins
  • Ralbp1 protein, mouse