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Genetic diseases with cancer predisposition phenotypes 
provide insights into essential roles of the involved 

genes and their products in the maintenance of genome 
stability, as genome instability is one of the hallmarks of 
cancer.[1] Ataxia‑telangiectasia (A‑T), a rare autosomal 
recessive disorder, is such an example. A‑T is caused by 
mutations in the ataxia‑telangiectasia mutated (ATM) gene, 
located on human chromosome 11q22.3.[2] Depending on 
the extent of the mutation, the resultant loss of ATM pro‑
tein expression or function can lead to pleiotropic clinical 
phenotypes, including a characteristic lack of coordination 
in limbs due to progressive neurodegeneration, predisposi‑
tion to hematological malignancies (typically leukemia and 
lymphoma), immunodeficiency, as well as hypersensitivity 
to ionizing irradiation.[3] The classical presentation of A‑T 
is the result of two truncation mutations in ATM, subse‑
quently leading to a loss of function in the ATM protein, 
with a less severe form of A‑T that is usually associated 
with missense mutations or leaky splice sites within the 
ATM gene. This is typically attributed to defects on both 
alleles resulting in compound heterozygosity for a trun‑
cating mutation. The resulting translated ATM protein is 
not stable and, therefore, not functional. This type of loss 
of function is the main contributor to the radiosensitive 
phenotype in the patients.

Encoded by ATM, the ATM protein is a serine/
threonine kinase, and one of six members of the phos‑
phatidylinositol‑3 kinase related kinases (PIKKs). This 
protein family, which includes molecular hub proteins 
ATM and RAD‑3 related (ATR), DNA protein kinase 
catalytic subunit (DNA‑PKcs), mammalian target of ra‑
pamycin (mTOR), transformation/transcription domain‑as‑
sociated protein (TRRAP), and serine/threonine‑protein 
kinase SMG1 (SMG‑1), shares four conserved domains.[4] 
These domains are unique to the PIKK family and include 
the FRAP‑ATM‑TRRAP (FAT) domain, the kinase do‑
main (KD), the PIKK regulatory domain (PRD), and the 
FAT‑C‑terminal (FATC) domain.[5] ATM itself is a 350 kDa 
protein with 3056 amino acids. The enzymatic activity 
of ATM is stimulated in response to DNA damage, and 
the activation processes include a dimer to monomer dis‑
sociation and recruitment to the damage site.[6] Several 
autophosphorylation events happen after DNA damage that 
might be essential for the dissociation process.[6,7] The re‑
cruitment of ATM is partially dependent on the assembly of 
the MRN complex, comprising Mre11, DNA repair protein 
RAD50 (Rad50), and nibrin (NBS1), at the lesion.[8‑11] In 
this process, an interacting protein ATM interacting pro‑
tein (ATMIN) is involved in the presence of changes in the 
chromatin structure.[12] Activation of ATM is also dependent 
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on mediator of DNA‑damage checkpoint 1 (MDC1), which 
is recruited to the DNA damage site along with its interaction 
of gamma histone 2AX (γ‑H2AX).[13‑15] Other components 
of ATM activation pathways involve apoptosis, caspase 
activation inhibitor (AVEN), forkhead box O3 (FOXO3), 
K (lysine) acetyltransferase 8 (KAT8), high mobility group 
nucleosome binding domain 1 (HMGN1), ring finger protein 
8, E3 ubiquitin protein ligase (RNF8), and checkpoint with 
forkhead and ring finger domains (CHFR).[16‑20] Activated 
ATM then sends signals to downstream targets to initiate 
an optimal DNA damage response (DDR).[21] Elements 
involved in turning off the activated ATM when the opti‑
mal response is completed include wild‑type p53‑induced 
phosphatase 1 (WIP1), a type 2C protein phosphatase.[22] In 
addition to the protein–protein interaction and posttransla‑
tional modification involved in ATM activation during the 
DDR, ATM expression itself can be negatively regulated by 
micro‑RNA (MiR)‑421, MiR‑18a, and 106a.[23‑25]

Mouse models demonstrating ATM deficiencies have 
yielded useful information on the far‑reaching activity of the 
kinase and its role in disease progression. Genetic knock‑out 
of ATM recapitulates most of the clinical phenotypes except 
the neurological dysfunction.[26,27] However, knock‑in mod‑
els with ATM point mutations on critical sites of ATM auto‑
phosphorylation failed to yield the expected phenotypes,[28] 
suggesting mutations of known autophosphorylation sites do 
not have direct effects on the activation. Rather, this indicates 
that autophosphorylation events are a consequence of acti‑
vation due to recruitment to damaged sites. Recent studies 
have shown an embryonic lethality conveyed by expression 
of a kinase‑dead ATM.[29,30] The observation that total protein 
deletion alone is not as detrimental as kinase inactivity is 
indicative of an underlying compensatory mechanism that 
is not engaged when ATM is present but inactive.

In addition to the well‑characterized DDR, ATM activa‑
tion can be observed in response to stresses like hypoxia and 
hyperthermia.[31,32] Evidence on the cytoplasmic fraction of 
ATM[33‑36] indicates a role of ATM in response to oxidative 
stress.[3] In addition, ATM appears to be required for destruc‑
tion of abnormal mitochondria, supporting a role of ATM 
in autophagy.[37] The scope of the ATM‑mediated signaling 
pathways, far from being limited to a response to DNA dam‑
age, affects pathways in many facets of cellular function from 
gene expression to development. In this review, we discuss 
the function of ATM in cell cycle checkpoints, mitosis, and a 
potential role of hyperactivated ATM in promoting metastasis.

ATM and DNA damage induced cell cycle 
checkpoints

DDR pathways are complex and overlapping, mount‑
ing a multi‑tiered response to DNA lesions in an effort to 
maintain genomic integrity.[38] The activity of the DDR 

can engage pathways that dictate the life or death of a cell, 
convey either sensitivity or resistance to cancer therapeu‑
tics, or be a driver in tumor progression and metastasis. 
Cell cycle checkpoints, one of the well‑documented DDR 
mechanisms, exist at each phase of the cell cycle to provide 
an opportunity for the cell to inspect and monitor the repair 
of DNA lesions.[39] The versatility of the kinase activity 
of ATM allows for the protein to affect numerous down‑
stream targets and signaling cascades.[40] In this manner, the 
ATM‑driven DDR acts as a de facto regulator of cell cycle 
checkpoints [Figure 1].

In the event of DNA damage, entering S‑phase will be 
slowed down with an accumulation of G1 phase cells, in 
order to prevent replication of damaged DNA. Direct targets 
of ATM in activating the G1/S checkpoint include tumor 
protein 53 (p53), E3 ubiquitin‑protein ligase COP1 (COP1), 
checkpoint kinase 2 (Chk2), p53 E3 ubiquitin protein 
ligase homolog 2 (MDM2), Mdm4 p53 binding protein 
homolog (MDMX), and Rad9.[41] For example, ATM 
phosphorylation of the tumor suppressor, p53,[42,43] as well 
as its counterpart, MDM2,[44,45] are required for activation 
of p53 in the presence of DNA damage. The p53–MDM2 
complex is essential in inhibiting the activity of p53, 
and in the absence of the regulation provided to MDM2, 
p21Cip1 is transcriptionally upregulated by p53. Further, 
ATM‑mediated COP1 and MDMX phosphorylation results 
in polyubiquitination and proteasomal degradation of the 
proteins.[46,47] These series of events result in an inhibition 
of cyclin dependent kinases (CDKs) 4, 6, and 2, and a stall 
in the G1/S transition.[48]

The intra‑S‑phase checkpoint, which directly represents 
the inhibition of DNA synthesis when S‑phase cells are 
experiencing DNA damage, is mediated by ATM through 
regulating a number of downstream targets, including breast 

Figure 1: ATM‑mediated phosphorylation of downstream targets 
is required for activation of the DNA damage induced cell cycle 
checkpoints.
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cancer 1, early onset (BRCA1), NBS1, structural mainte‑
nance of chromosomes 1 (SMC1), and Fanconi anemia 
complementation group D2 (FANCD2).[49] However, it is 
still less clear how these post‑translational modification 
events control inhibition of the replicon initiation and 
elongation processes after DNA damage. As a contrast, 
ATM‑mediated Chk2 phosphorylation/activation results in 
phosphorylation of the phosphatase cell division cycle (Cdc) 
25A, which inhibits loading of Cdc45 onto the replication or‑
igins required for replication initiation.[50] Another potential 
target for ATM in regulating the intra‑S‑phase checkpoint is 
the Cdc7–DBF4‑type zinc finger containing protein (DBF4) 
complex, which is required for replicon initiation.[51] DBF4 
is shown to be a substrate of ATM in the proteomic study,[40] 
although the detailed mechanism remains unclear.

Cell cycle entry into mitosis from the G2 phase must be 
critically monitored to ensure that chromosome segregation 
is not initiated before DNA damage lesions are appropriately 
repaired. Using flow cytometry–based cell cycle analysis, 
two molecularly distinct G2/M checkpoints can be observed, 
one ATM dependent and the other ATM independent.[52] The 
ATM‑dependent G2/M checkpoint happens immediately 
after DNA damage and represents a response of irradiated 
G2 cells. The ATM‑independent G2 accumulation represents 
a response of cells when they are in S‑phase or even G1 
phase at the time of DNA damage. An S‑phase checkpoint 
defect might result in cells accumulated in G2 for a pro‑
longed period. The prolonged G2 accumulation represents 
an engagement of a DNA replication checkpoint. This 
abnormal G2 accumulation has been observed in cell lines 
with deficient ATM, NBS1, and Brca1. Substrates of ATM 
in regulating the early G2/M checkpoint include Brca1,[53,54] 
Chk2,[55,56] deoxycytidine kinase (dCK),[57] Rad17,[58,59] and 
phosphatase inhibitor 2 (I‑2).[60] For example, ATM‑me‑
diated Chk2 activation results in inhibition of the Cdc25 
family members and activation of the G2/M checkpoint.[61] 
ATM also regulates protein phosphatase 1 (PP1) activity by 
phosphorylating inhibitor 2 (I‑2), an inhibitory subunit of 
the PP1 complex. This phosphorylation leads to dissociation 
of the PP1 complex and activation of PP1, which in turn af‑
fects the balance of histone H3 serine 10 phosphorylation, 
resulting in immediate G2 arrest.[60] Recent data from our 
lab also showed that dCK is a downstream target of ATM in 
the G2/M checkpoint pathway. Phosphorylated and activated 
dCK interacts with cyclin dependent kinase 1 (CDK1), and 
an enhanced interaction results in inhibition of CDK1.[57]

ATM in mitosis

Key to the successful completion of the cell cycle is 
the segregation of chromosomes during the metaphase/
anaphase transition within mitosis. Improper segregation 
of chromosomes leads to aneuploidy, frequently observed 

in cancer.[1] The major driver of proper segregation occurs 
during metaphase when the mitotic spindles project from 
centrioles at the polar ends of a cell ready to divide to con‑
nect to the chromosomes aligned at the metaphase plate. 
The regulator of the transition from metaphase to anaphase 
as well as chromosomal segregation is the spindle assembly 
checkpoint (SAC).[62] The SAC involves a conserved network 
of mitotic arrest deficient (Mad) and budding uninhibited 
by benzimidazoles homolog (Bub) proteins, and acts as a 
surveillance system to monitor kinetochore–microtubule 
interactions during chromosome alignment on the mitotic 
spindle.[63,64]

While the activity of ATM in the DDR is, and has been, 
the focus of a majority of studies to date, the role ATM in the 
proper execution of mitosis is emerging. For example, ATM 
deficiency in human, mouse, and cellular models correlate 
with aneuploidy due to dysregulation within the metaphase/
anaphase transition.[65‑68] Furthermore, a measurable and 
marked increase in ATM kinase activity during mitosis 
has been observed in the absence of DNA damage.[69] The 
manifestation of these mitotic timing defects may be more 
prevalent in the presence of ionizing radiation, as the hyper‑
sensitivity to radiotherapy observed in ATM‑deficient cells 
may be indicative of the compounding effect of an ineffective 
DDR coupled with a suboptimal mitotic checkpoint. Thus, a 
regulatory role of ATM in mitosis that is outside that of the 
classical DNA damage response merits closer examination.

Mitotic activation of ATM is mediated by Aurora 
B–mediated phosphorylation, specifically at serine 1403 
[Figure 2].[69] We have also observed interactions of ATM 
and Aurora B in mitosis (unpublished data), although it is 
less clear whether this interaction promotes phosphoryla‑
tion or vice versa. The mechanism of ATM activation in 
mitosis is clearly distinct from ATM activation in the DDR. 
For example, when ATM is activated in response to dou‑
ble‑stranded breaks (DSB), Aurora B is inhibited indirectly 
by the kinase (through ATM‑mediated PP1 activation); but 
in mitosis, Aurora B is activated during mitotic progression 
and ATM becomes its target.[60,69] This allows for differential 
functioning of ATM in the regulation of mitotic progression, 
and also provides a possible molecular switch between the 
DDR and the proper execution of mitosis.

Active ATM participates in the mitotic process by tar‑
geting a critical component of the SAC, a serine/threonine 
kinase, Bub1. Phosphorylation of Bub1 at serine 314 by 
ATM serves as an activator of Bub1 in mitosis.[70] Bub1 
activation results in the phosphorylation of Cdc20, which 
allows the mitotic checkpoint complex (MCC) to inhibit ana‑
phase promoting complex or cyclosome (APC/C), thereby 
regulating mitotic progression into anaphase.[71] Dysregu‑
lation of this checkpoint could either result in premature 
entry into anaphase or in merotelic attachment in which 
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the kinetochores are attached but at least one is attached to 
the microtubules from both spindle poles.[72] In either case, 
the resultant segregation in anaphase is unequal and likely 
to result in aneuploidy.

A comprehensive picture of ATM‑mediated SAC regu‑
latory network is emerging. Downstream targets are likely 
to include more mitotic checkpoint proteins in addition to 
Bub1. For instance, of the constituent proteins in the SAC, 
recent studies in our lab have shown that mitotic arrest de‑
ficient 1 (Mad1) can be phosphorylated by ATM at Ser 214 
in mitosis (manuscript under revision). This phosphorylation 
promotes the complex of Mad1 with Mad2 at an improperly 
attached kinetochore. This is a key regulatory step as Mad2, 
along with Cdc20, Mad3 [MAD3/BUB1‑related protein ki‑
nase (BubR1)], and Bub3 form MCC.[73] This complex binds 
to the APC/C, inactivating it and halting the cell cycle until all 
the kinetochore attachments to chromosomes are complete. 
The role of ATM in the formation and regulation of this com‑
plex becomes critical when examining how the Mad proteins 
exist in a balance to modulate the flow of Cdc20 through the 
pathway.

ATM hyperactivation and tumor metastasis

DDR mechanisms are considered as an antitumor 
barrier during early tumorigenesis.[74‑76] However, there is 
growing evidence that DDR elements might play a role in 

tumor progression, such as invasion and metastasis. For ex‑
ample, NBS1 is over‑expressed in advanced head and neck 
squamous cell carcinoma (HNSCC), and in vitro and in vivo 
evidence revealed that over‑expressing NBS1 up‑regulated 
Snail, a transcriptional repressor associated with tumor 
invasion and metastasis, and its downstream target, matrix 
metalloproteinase‑2, in HNSCC.[77]

Key to tumor progression is the epithelial–mesenchy‑
mal transition (EMT), an early step of tumor metastasis.[78] 
One of the more notable characteristics of EMT is the loss 
of expression of E‑cadherin, a surface protein that is respon‑
sible for cell‑to‑cell adhesion.[79] This expression is regulated 
by Snail, which when active, binds to the E‑boxes of E‑cad‑
herin, inhibiting expression at the plasma membrane.[80] 
Our recent data found that surprisingly, ATM may directly 
contribute to EMT through activation of the ATM–Snail 
pathway. ATM is found to be hyperactive in late stage breast 
cancer and this hyperactivity correlates with Snail expres‑
sion. Indeed, ATM can stabilize Snail via phosphorylation 
at serine 100.[81] This phosphorylation allows for binding 
of heat shock protein (HSP) 90 to Snail, stabilizing it, and 
allowing Snail to down‑regulate E‑cadherin expression. 
Implication of the ATM–Snail interaction in the promo‑
tion of tumor formation can be seen with the expression of 
constitutively active Snail expression resulting in increased 
invasion [Figure 3].[81] With maintenance of genomic stabil‑
ity playing such an integral role in the survival of a cell, it 
is conceivable that an optimal DDR (such as activation of 
the ATM–Snail pathway) promotes survival during tumor 
progression. This is supported by our recent data showing 
that hyperactivation of ATM phosphorylation of Snail de‑
creases sensitivity to radiation treatment.[82]

Figure 2: The schematic model of ATM activation in mitosis and its 
role in the spindle checkpoint.

Figure 3: Potential roles of ATM hyperactivation in tumor progression 
and metastasis.
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It is still unclear regarding the mechanisms driving 
persistent activation of ATM at late stages of tumor pro‑
gression. It is likely that tumor microenvironment might 
play a significant role in the process. Chronic hypoxia, 
for example, is one of the conditions in advanced tumors 
in favor of activating ATM.[31] Additionally, a recent study 
found that inflammation within the tumor microenviron‑
ment contributes to a persistent DDR, as measured by ATM 
S1981 phosphorylation not only within the tumor, but also 
within non‑malignant tissue in the environment adjacent 
to the malignancy.[83] As EMT is regulated by multiple 
transcription repressors of E‑cadherin, it is likely that the 
other components of EMT such as the Snail/Slug family, 
Twist, zinc finger E‑box binding homeobox 1 (ZEB1), Smad 
interacting protein 1 (SIP1), and E12/E47 are components 
of the ATM pathway.

Conclusion

ATM is a central controller of genomic stability, which 
requires the coordination of a number of different overlap‑
ping processes. The cell cycle’s tight monitoring of DNA 
replication fidelity and recruitment of repair proteins in the 
presence of DNA lesions are the key barriers in tumorigen‑
esis. Within mitosis, proper chromosomal segregation is 
paramount in successful cell division. The DDR pathways 
that are elicited as a result of ATM activation serve as tu‑
mor suppressive responses allowing for DNA repair before 
perpetuating the error through the cycle and onto the newly 
divided cells. Within mitosis, ATM activation promotes 
initiation of the SAC, allowing for the metaphase–anaphase 
transition to be monitored. Perpetuated activity of ATM, 
however, can be detrimental in the context of tumor progres‑
sion. The increased activity of ATM can convey protection 
against DNA damage via overactivation of the DDR. In par‑
ticular, ATM promotes metastasis through the stabilization 
of Snail and the subsequent loss of E‑cadherin expression. 
The seemingly far‑reaching activity of ATM underscores 
the need to examine its increasingly complex role in tumor 
suppression on the one hand and its tumor promotion on 
the other. A fundamental understanding of the mechanism 
by which ATM activity can exert its effect on such variety 
of pathways is needed. The broad reach of ATM’s activ‑
ity suggests that there may be a number of physiological 
manifestations that can be attributed to functions of ATM 
that are yet to be described. ATM appears to play a role in a 
number of integral intracellular pathways, and can exercise 
its activity on many downstream targets. As new functions 
of ATM emerge, the greatest benefit of thorough examina‑
tion of the role of ATM in the maintenance of genetic and 
chromosomal stability is the insight gained into the proximal 
contributors of the various pathways, thereby identifying 
novel drug targets and biomarkers for screening.
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