Skip to main content
Log in

RET/PTC rearrangement in thyroid tumors

  • Review
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Rearrangement of the RET gene, also known as RET/PTC rearrangement, is the most common genetic alteration identified to date in thyroid papillary carcinomas. The prevalence of RET/PTC in papillary carcinomas shows significant geographic variation and is approx 35% in North America. RET/PTC is more common in tumors in children and young adults, and in papillary carcinomas associated with radiation exposure. There are at least 10 different types of RET/PTC, all resulting from the fusion of the tyrosine kinase domain of RET to the 5′ portion of different genes. RET/PTC1 and RET/PTC3 are the most common types, accounting for >90% of all rearrangements. There is some evidence that different types of RET/PTC may be associated with distinct biologic properties of papillary carcinomas. RET/PTC1 tends to be more common in tumors with typical papillary growth and microcarcinomas and to have a more benign clinical course, whereas RET/PTC3 in some populations shows a strong correlation with the solid variant of papillary carcinoma and more aggressive tumor behavior. RET/PTC has recently been found in hyalinizing trabecular adenomas of the thyroid gland, providing molecular evidence in favor of this tumor to be a variant of papillary carcinoma. The occurrence of RET/PTC in Hashimoto thyroiditis and thyroid follicular adenomas and hyperplastic nodules reported in several studies has not been confirmed in other observations and remains controversial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 42:581–588, 1985.

    Article  PubMed  CAS  Google Scholar 

  2. Takahashi M. Structure and expression of the ret transforming gene. IARC Sci Publ 189–197, 1988.

  3. Airaksinen MS, Titievsky A, Saarma M. GDNF family neurotrophic factor signaling: four masters, one servant? Mol Cell Neurosci 13:313–325, 1999.

    Article  PubMed  CAS  Google Scholar 

  4. Schuchardt A, D’Agati V, Larsson-Blomberg L, et al. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367:380–383, 1994.

    Article  PubMed  CAS  Google Scholar 

  5. Smith DP, Eng C, Ponder BA. Mutations of the RET proto-oncogene in the multiple endocrine neoplasia type 2 syndromes and Hirschsprung disease. J Cell Sci Suppl 18:43–49, 1994.

    PubMed  CAS  Google Scholar 

  6. Grieco M, Santoro M, Berlingieri MT, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60:557–563, 1990.

    Article  PubMed  CAS  Google Scholar 

  7. Santoro M, Dathan NA, Berlingieri MT, et al. Molecular characterization of RET/PTC3: a novel rearranged version of the RET protooncogene in a human thyroid papillary carcinoma. Oncogene 9:509–516, 1994.

    PubMed  CAS  Google Scholar 

  8. Bongarzone I, Butti MG, Coronelli S, et al. Frequent activation of ret protooncogene by fusion with a new activating gene in papillary thyroid carcinomas. Cancer Res 54:2979–2985, 1994.

    PubMed  CAS  Google Scholar 

  9. Pierotti MA, Santoro M, Jenkins RB, et al. Characterization of an inversion on the long arm of chromosome 10 juxtaposing D10S170 and RET and creating the oncogenic sequence RET/PTC. Proc Natl Acad Sci USA 89:1616–1620, 1992.

    Article  PubMed  CAS  Google Scholar 

  10. Minoletti F, Butti MG, Coronelli S, et al. The two genes generating RET/PTC3 are localized in chromosomal band 10q11.2. Genes Chromosomes Cancer 11:51–57, 1994.

    Article  PubMed  CAS  Google Scholar 

  11. Bongarzone I, Monzini N, Borrello MG, et al. Molecular characterization of a thyroid tumor-specific transforming sequence formed by the fusion of ret tyrosine kinase and the regulatory subunit RI alpha of cyclic AMP-dependent protein kinase A. Mol Cell Biol 13:358–366, 1993.

    PubMed  CAS  Google Scholar 

  12. Klugbauer S, Demidchik EP, Lengfelder E, et al. Detection of a novel type of RET rearrangement (PTC5) in thyroid carcinomas after Chernobyl and analysis of the involved RET-fused gene RFG5. Cancer Res 58:198–203, 1998.

    PubMed  CAS  Google Scholar 

  13. Klugbauer S, Rabes HM. The transcription coactivator HTIF1 and a related protein are fused to the RET receptor tyrosine kinase in childhood papillary thyroid carcinomas. Oncogene 18:4388–4393, 1999.

    Article  PubMed  CAS  Google Scholar 

  14. Nakata T, Kitamura Y, Shimizu K, et al. Fusion of a novel gene, ELKS, to RET due to translocation t(10;12)(q11;p13) in a papillary thyroid carcinoma. Genes Chromosomes Cancer 25:97–103, 1999.

    Article  PubMed  CAS  Google Scholar 

  15. Klugbauer S, Jauch A, Lengfelder E, et al. A novel type of RET rearrangement (PTC8) in childhood papillary thyroid carcinomas and characterization of the involved gene (RFG8). Cancer Res 60:7028–7032, 2000.

    PubMed  CAS  Google Scholar 

  16. Salassidis K, Bruch J, Zitzelsberger H, et al. Translocation t(10;14)(q11.2:q22.1) fusing the kinetin to the RET gene creates a novel rearranged form (PTC8) of the RET protooncogene in radiation-induced childhood papillary thyroid carcinoma. Cancer Res 60:2786–2789, 2000.

    PubMed  CAS  Google Scholar 

  17. Corvi R, Berger N, Balczon R, et al. RET/PCM-1: a novel fusion gene in papillary thyroid carcinoma. Oncogene 19:4236–4242, 2000.

    Article  PubMed  CAS  Google Scholar 

  18. Tong Q, Xing S, Jhiang SM. Leucine zipper-mediated dimerization is essential for the PTC1 oncogenic activity. J Biol Chem 272:9043–9047, 1997.

    Article  PubMed  CAS  Google Scholar 

  19. Jhiang SM. The RET proto-oncogene in human cancers. Oncogene 19:5590–5597, 2000.

    Article  PubMed  CAS  Google Scholar 

  20. Salvatore D, Barone MV, Salvatore G, et al. Tyrosines 1015 and 1062 are in vivo autophosphorylation sites in ret and ret-derived oncoproteins. J Clin Endocrinol Metab 85:3898–3907, 2000.

    Article  PubMed  CAS  Google Scholar 

  21. Pierotti MA, Bongarzone I, Borello MG, et al. Cytogenetics and molecular genetics of carcinomas arising from thyroid epithelial follicular cells. Genes Chromosomes Cancer 16:1–14, 1996.

    Article  PubMed  CAS  Google Scholar 

  22. Monaco C, Visconti R, Barone MV, et al. The RFG oligomerization domain mediates kinase activation and re-localization of the RET/PTC3 oncoprotein to the plasma membrane. Oncogene 20:599–608, 2001.

    Article  PubMed  CAS  Google Scholar 

  23. Jhiang SM, Sagartz JE, Tong Q, et al. Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology 137:375–378, 1996.

    Article  PubMed  CAS  Google Scholar 

  24. Santoro M, Chiappetta G, Cerrato A, et al. Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene 12:1821–1826, 1996.

    PubMed  CAS  Google Scholar 

  25. Powell DJ Jr., Russell J, Nibu K, et al. The RET/PTC3 oncogene: metastatic solid-type papillary carcinomas in murine thyroids. Cancer Res 58:5523–5528, 1998.

    PubMed  CAS  Google Scholar 

  26. Santoro M, Melillo RM, Grieco M, et al. The TRK and RET tyrosine kinase oncogenes cooperate with ras in the neoplastic transformation of a rat thyroid epithelial cell line. Cell Growth Differ 4:77–84, 1993.

    PubMed  CAS  Google Scholar 

  27. Fischer AH, Bond JA, Taysavang P, et al. Papillary thyroid carcinoma oncogene (RET/PTC) alters the nuclear envelope and chromatin structure. Am J Pathol 153:1443–1450, 1998.

    PubMed  CAS  Google Scholar 

  28. Jenkins RB, Hay ID, Herath JF, et al. Frequent occurrence of cytogenetic abnormalities in sporadic nonmedullary thyroid carcinoma. Cancer 66:1213–1220, 1990.

    Article  PubMed  CAS  Google Scholar 

  29. Sozzi G, Bongarzone I, Miozzo M, et al. Cytogenetic and molecular genetic characterization of papillary thyroid carcinomas. Genes Chromosomes Cancer 5:212–218, 1992.

    Article  PubMed  CAS  Google Scholar 

  30. Santoro M, Carlomagno F, Hay ID, et al. Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest 89:1517–1522, 1992.

    Article  PubMed  CAS  Google Scholar 

  31. Cinti R, Yin L, Ilc K, et al. RET rearrangements in papillary thyroid carcinomas and adenomas detected by interphase FISH. Cytogenet Cell Genet 88:56–61, 2000.

    Article  PubMed  CAS  Google Scholar 

  32. Corvi R, Lesueur F, Martinez-Alfaro M, et al. RET rearrangements in familial papillary thyroid carcinomas. Cancer Lett 170:191–198, 2001.

    Article  PubMed  CAS  Google Scholar 

  33. Jhiang SM, Smanik PA, Mazzaferri EL. Development of a single-step duplex RT-PCR detecting different forms of ret activation, and identification of the third form of in vivo ret activation in human papillary thyroid carcinoma. Cancer Lett 78:69–76, 1994.

    Article  PubMed  CAS  Google Scholar 

  34. Nikiforov YE, Rowland JM, Bove KE, et al. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res 57:1690–1694, 1997.

    PubMed  CAS  Google Scholar 

  35. Tallini G, Ghossein RA, Emanuel J, et al. Detection of thyroglobulin, thyroid peroxidase, and RET/PTC1 mRNA transcripts in the peripheral blood of patients with thyroid disease. J Clin Oncol 16:1158–1166, 1998.

    PubMed  CAS  Google Scholar 

  36. Fabien N, Paulin C, Santoro M, et al. Detection of RET oncogene activation in human papillary thyroid carcinomas by in situ hybridisation. Br J Cancer 66:1094–1098, 1992.

    PubMed  CAS  Google Scholar 

  37. Lam AK, Montone KT, Nolan KA, et al. Ret oncogene activation in papillary thyroid carcinoma: prevalence and implication on the histological parameters. Hum Pathol 29:565–568, 1998.

    Article  PubMed  CAS  Google Scholar 

  38. Cheung CC, Ezzat S, Freeman JL, et al. Immunohistochemical diagnosis of papillary thyroid carcinoma. Mod Pathol 14:338–342, 2001.

    Article  PubMed  CAS  Google Scholar 

  39. Tallini G, Santoro M, Helie M, et al. RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin Cancer Res 4:287–294, 1998.

    PubMed  CAS  Google Scholar 

  40. Santoro M, Sabino N, Ishizaka Y, et al. Involvement of RET oncogene in human tumours: specificity of RET activation to thyroid tumours. Br J Cancer 68:460–464, 1993.

    PubMed  CAS  Google Scholar 

  41. Ishizaka Y, Kobayashi S, Ushijima T, et al. Detection of retTPC/PTC transcripts in thyroid adenomas and adenomatous goiter by an RT-PCR method. Oncogene 6:1667–1672, 1991.

    PubMed  CAS  Google Scholar 

  42. Bounacer A, Wicker R, Caillou B, et al. High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene 15:1263–1273, 1997.

    Article  PubMed  CAS  Google Scholar 

  43. Wirtschafter A, Schmidt R, Rosen D, et al. Expression of the RET/PTC fusion gene as a marker for papillary carcinoma in Hashimoto’s thyroiditis. Laryngoscope 107:95–100, 1997.

    Article  PubMed  CAS  Google Scholar 

  44. Sheils OM, O’Eary JJ, Uhlmann V, et al. ret/PTC-1 activation in Hashimoto thyroiditis. Int J Surg Pathol 8:185–189, 2000.

    Article  PubMed  CAS  Google Scholar 

  45. Elisei R, Romei C, Vorontsova T, et al. RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab 86:3211–3216, 2001.

    Article  PubMed  CAS  Google Scholar 

  46. Jhiang SM, Caruso DR, Gilmore E, et al. Detection of the PTC/retTPC oncogene in human thyroid cancers. Oncogene 7:1331–1337, 1992.

    PubMed  CAS  Google Scholar 

  47. Nikiforova MN, Caudill CM, Biddinger BW, et al. Prevalence of RET/PTC rearrangements in Hashimoto’s thyroiditis and papillary thyroid carcinomas. Int J Surg Pathol 10:15–22, 2002.

    PubMed  CAS  Google Scholar 

  48. Sugg SL, Ezzat S, Zheng L, et al. Oncogene profile of papillary thyroid carcinoma. Surgery 125:46–52, 1999.

    PubMed  CAS  Google Scholar 

  49. Bongarzone I, Fugazzola L, Vigneri P, et al. Age-related activation of the tyrosine kinase receptor protooncogenes RET and NTRK1 in papillary thyroid carcinoma. J Clin Endocrinol Metab 81:2006–2009, 1996.

    Article  PubMed  CAS  Google Scholar 

  50. Bongarzone I, Vigneri P, Mariani L, et al. RET/NTRK1 rearrangements in thyroid gland tumors of the papillary carcinoma family: correlation with clinicopathological features. Clin Cancer Res 4:223–228, 1998.

    PubMed  CAS  Google Scholar 

  51. Zou M, Shi Y, Farid NR. Low rate of ret protooncogene activation (PTC/retTPC) in papillary thyroid carcinomas from Saudi Arabia. Cancer 73:176–180, 1994.

    Article  PubMed  CAS  Google Scholar 

  52. Chua EL, Wu WM, Tran KT, et al. Prevalence and distribution of ret/ptc 1, 2, and 3 in papillary thyroid carcinoma in New Caledonia and Australia. J Clin Endocrinol Metab 85:2733–2739, 2000.

    Article  PubMed  CAS  Google Scholar 

  53. Wajjwalku W, Nakamura S, Hasegawa Y, et al. Low frequency of rearrangements of the ret and trk proto-oncogenes in Japanese thyroid papillary carcinomas. Jpn J Cancer Res 83:671–675, 1992.

    PubMed  CAS  Google Scholar 

  54. Motomura T, Nikiforov YE, Namba H, et al. RET rearrangements in Japanese pediatric and adult papillary thyroid cancers. Thyroid 8:485–489, 1998.

    Article  PubMed  CAS  Google Scholar 

  55. Learoyd DL, Messina M, Zedenius J, et al. RET/PTC and RET tyrosine kinase expression in adult papillary thyroid carcinomas. J Clin Endocrinol Metab 83:3631–3635, 1998.

    Article  PubMed  CAS  Google Scholar 

  56. Klugbauer S, Demidchik EP, Lengfelder E, et al. Molecular analysis of new subtypes of ELE/RET rearrangements, their reciprocal transcripts and breakpoints in papillary thyroid carcinomas of children after Chernobyl. Oncogene 16:671–675, 1998.

    Article  PubMed  CAS  Google Scholar 

  57. Rabes HM. Gene rearrangements in radiation-induced thyroid carcinogenesis. Med Pediatr Oncol 36:574–582, 2001.

    Article  PubMed  CAS  Google Scholar 

  58. Sugg SL, Ezzat S, Rosen IB, et al. Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. J Clin Endocrinol Metab 83:4116–4122, 1998.

    Article  PubMed  CAS  Google Scholar 

  59. Fenton CL, Lukes Y, Nicholson D, et al. The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J Clin Endocrinol Metab 85:1170–1175, 2000.

    Article  PubMed  CAS  Google Scholar 

  60. Rabes HM, Demidchik EP, Sidorow JD, et al. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-Chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin Cancer Res 6:1093–1103, 2000.

    PubMed  CAS  Google Scholar 

  61. Soares P, Fonseca E, Wynford-Thomas D, et al. Sporadic ret-rearranged papillary carcinoma of the thyroid: a subset of slow growing, less aggressive thyroid neoplasms? J Pathol 185:71–78, 1998.

    Article  PubMed  CAS  Google Scholar 

  62. Fugazzola L, Pilotti S, Pinchera A, et al. Oncogenic rearrangements of the RET protooncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident. Cancer Res 55:5617–5620, 1995.

    PubMed  CAS  Google Scholar 

  63. Klugbauer S, Lengfelder E, Demidchik EP, et al. High prevalence of RET rearrangement in thyroid tumors of children from Belarus after the Chernobyl reactor accident. Oncogene 11:2459–2467, 1995.

    PubMed  CAS  Google Scholar 

  64. Smida J, Salassidis K, Hieber L, et al. Distinct frequency of ret rearrangements in papillary thyroid carcinomas of children and adults from Belarus. Int J Cancer 80:32–38, 1999.

    Article  PubMed  CAS  Google Scholar 

  65. Ito T, Seyama T, Iwamoto KS, et al. In vitro irradiation is able to cause RET oncogene rearrangement. Cancer Res 53:2940–2943, 1993.

    PubMed  CAS  Google Scholar 

  66. Mizuno T, Kyoizumi S, Suzuki T, et al. Continued expression of a tissue specific activated oncogene in the early steps of radiation-induced human thyroid carcinogenesis. Oncogene 15:1455–1460, 1997.

    Article  PubMed  CAS  Google Scholar 

  67. Mizuno T, Iwamoto KS, Kyoizumi S, et al. Preferential induction of RET/PTC1 rearrangement by X-ray irradiation. Oncogene 19:438–443, 2000.

    Article  PubMed  CAS  Google Scholar 

  68. Nikiforova MN, Stringer JR, Blough R, et al. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290:138–141, 2000.

    Article  PubMed  CAS  Google Scholar 

  69. Viglietto G, Chiappetta G, Martinez-Tello FJ, et al. RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene 11:1207–1210, 1995.

    PubMed  CAS  Google Scholar 

  70. Cheung CC, Ezzat S, Ramyar L, et al. Molecular basis of hurthle cell papillary thyroid carcinoma. J Clin Endocrinol Metab 85:878–882, 2000.

    Article  PubMed  CAS  Google Scholar 

  71. Cetta F, Olschwang S, Petracci M, et al. Genetic alterations in thyroid carcinoma associated with familial adenomatous polyposis: clinical implications and suggestions for early detection. World J Surg 22:1231–1236, 1998.

    Article  PubMed  CAS  Google Scholar 

  72. Soravia C, Sugg SL, Berk T, et al. Familial adenomatous polyposis-associated thyroid cancer: a clinical, pathological, and molecular genetics study. Am J Pathol 154:127–135, 1999.

    PubMed  CAS  Google Scholar 

  73. Thomas GA, Bunnell H, Cook HA, et al. High prevalence of RET/PTC rearrangements in Ukrainian and Belarussian post-Chernobyl thyroid papillary carcinomas: a strong correlation between RET/PTC3 and the solid-follicular variant. J Clin Endocrinol Metab 84:4232–4238, 1999.

    Article  PubMed  CAS  Google Scholar 

  74. Nikiforov YE, Erickson LA, Nikiforova MN, et al. Solid variant of papillary thyroid carcinoma: incidence, clinical-pathologic characteristics, molecular analysis, and biologic behavior. Am J Surg Pathol 25:1478–1484, 2001.

    Article  PubMed  CAS  Google Scholar 

  75. Mayr B, Brabant G, Goretzki P, et al. ret/PTC-1, -2, and -3 oncogene rearrangements in human thyroid carcinomas: implications for metastatic potential? J Clin Endocrinol Metab 82:1306, 1307, 1997.

    Article  PubMed  CAS  Google Scholar 

  76. Nikiforov YE, Bove KE, Rowland JM, et al. RET/PTC1 and RET/PTC3 rearrangements are associated with different biological behavior of papillary thyroid carcinoma. Mod Pathol 13:73A, 2000 (abstract).

    Google Scholar 

  77. Cetta F, Gori M, Montalto G, et al. Different significance of ret/PTC(1) and ret/PTC(3) rearrangements in thyroid carcinogenesis: lesson from two subgroups of patients with papillary thyroid carcinomas showing the highest incidence of ret/PTC activation. J Clin Endocrinol Metab 86:1429, 2001.

    Article  PubMed  CAS  Google Scholar 

  78. Sagartz JE, Jhiang SM, Tong Q, et al. Thyroid-stimulating hormone promotes growth of thyroid carcinomas in transgenic mice with targeted expression of the ret/PTC1 oncogene. Lab Invest 76:307–318, 1997.

    PubMed  CAS  Google Scholar 

  79. Carney JA, Ryan J, Goellner JR. Hyalinizing trabecular adenoma of the thyroid gland. Am J Surg Pathol 11:583–591, 1987.

    Article  PubMed  CAS  Google Scholar 

  80. Bronner MP, LiVolsi VA, Jennings TA. PLAT: paraganglioma-like adenomas of the thyroid. Surg Pathol 1:383–389, 1988.

    Google Scholar 

  81. Rosai J, Carcangiu ML, DeLellis RA. Tumors of the thyroid. Washington, DC: AFIP, 1992.

    Google Scholar 

  82. Papotti M, Volante M, Giuliano A, et al. RET/PTC activation in hyalinizing trabecular tumors of the thyroid. Am J Surg Pathol 24:1615–1621, 2000.

    Article  PubMed  CAS  Google Scholar 

  83. Cheung CC, Boerner SL, MacMillan CM, et al. Hyalinizing trabecular tumor of the thyroid: a variant of papillary carcinoma proved by molecular genetics. Am J Surg Pathol 24:1622–1626, 2000.

    Article  PubMed  CAS  Google Scholar 

  84. Walker RP, Paloyan E. The relationship between Hashimoto’s thyroiditis, thyroid neoplasia, and primary hyperparathyroidism. Otolaryngol Clin North Am 23:291–302, 1990.

    PubMed  CAS  Google Scholar 

  85. Crile G, Jr. Struma lymphomatosa and carcinoma of the thyroid. Surg Gynecol Obstet 147:350–352, 1978.

    PubMed  Google Scholar 

  86. Holm LE, Blomgren H, Lowhagen T. Cancer risks in patients with chronic lymphocytic thyroiditis. N Engl J Med 312:601–604, 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri E. Nikiforov MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikiforov, Y.E. RET/PTC rearrangement in thyroid tumors. Endocr Pathol 13, 3–16 (2002). https://doi.org/10.1385/EP:13:1:03

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/EP:13:1:03

Key Words

Navigation