Skip to main content

Advertisement

Log in

Identification of ARL4C as a Peritoneal Dissemination-Associated Gene and Its Clinical Significance in Gastric Cancer

  • Gastrointestinal Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

In gastric cancer (GC), peritoneal dissemination (PD) occurs frequently and is incurable. In this study, we aimed to identify PD-associated genes in GC.

Methods

We identified a PD-associated gene using three GC datasets: highly disseminated peritoneal GC cell lines, the Singapore dataset and The Cancer Genome Atlas (TCGA) dataset. We assessed the clinicopathological significance of the gene expression using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and performed immunohistochemical analysis for the gene in our patient cohort. We also performed survival analyses of the gene in our patient cohort, the Singapore dataset and the GSE62254 datasets. Moreover, gene set enrichment analysis (GSEA) was performed using the Singapore and TCGA datasets. Finally, in vitro experiments such as invasion/migration assays, immunofluorescence staining of actin filaments, epidermal growth factor (EGF) treatment analysis, and gene expression analysis were conducted using three gene-knockdown GC cell lines (AGS, 58As9, MKN45).

Results

ADP-ribosylation factor-like 4c (ARL4C) was identified as a PD-associated gene, and immunohistochemical analysis showed that ARL4C was overexpressed in GC cells. High ARL4C expression was associated with the depth of invasion (p < 0.01) and PD (p < 0.05) and was a poor prognostic factor (p < 0.05) in our patient cohort, the Singapore dataset and the GSE62254 dataset. ARL4C expression positively correlated with the epithelial–mesenchymal transition (EMT) gene set in GSEA. Moreover, ARL4C knockdown reduced invasion/migration capacity, SLUG expression, and the formation of lamellipodia or filopodia in AGS and 58As9 cells. Finally, EGF treatment increased ARL4C expression in MKN45 cells.

Conclusions

ARL4C was associated with PD and was a poor prognostic factor in GC, possibly through promoting invasive capacity by activation of both EMT and motility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Thomassen I, van Gestel YR, van Ramshorst B, et al. Peritoneal carcinomatosis of gastric origin: a population-based study on incidence, survival and risk factor. Int J Cancer. 2014;134:622–8.

    Article  CAS  PubMed  Google Scholar 

  3. Bando E, Yonemura Y, Takeshita Y, et al. Intraoperative lavage for cytological examination in 1297 patients with gastric carcinoma. Am J Surg. 1999;178:256–62.

    Article  CAS  PubMed  Google Scholar 

  4. Nie RC, Chen S, Yuan SQ, et al. Significant role of palliative gastrectomy in selective gastric cancer patients with peritoneal dissemination: a propensity score matching analysis. Ann Surg Oncol. 2016;23(12):3956–63.

    Article  PubMed  Google Scholar 

  5. Bernards N, Greemers GJ, Nieuwenhuijzen GA, et al. No improvement in median survival for patients with metastatic gastric cancer despite increased use of chemotherapy. Ann Oncol. 2013;24:3056–60.

    Article  CAS  PubMed  Google Scholar 

  6. Yang XJ, Huang CQ, Suo T, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy improves survival of patients with peritoneal carcinomatosis from gastric cancer: final results of a phase III randomized clinical trial. Ann Surg Oncol. 2011;18:1575–81.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tomczak K, Czerwinska P, Wiznerowicz M. The cancer genome atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn). 2015;19;68–77.

    Google Scholar 

  8. Dhanasekaran SM, Balbin OA, Chen G, et al. Transcriptome meta-analysis of lung cancer reveals recurrent aberrations in NRG1 and Hippo pathway genes. Nat Commun. 2014;5:5893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Collisson EA, Campbell JD, Brooks AN, et al. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.

    Article  CAS  Google Scholar 

  10. Mir SE, Hamer PCDW, Krawczyk PM, et al. In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell. 2010;18;244–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kurashige J, Hasegawa T, Niida A, et al. Integrated molecular profiling of human gastric cancer identifies DDR2 as a potential regulator of peritoneal dissemination. Sci Rep. 2016;6:22371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yanagihara K, Takigahira M, Tanaka H, et al. Development and biological analysis of peritoneal metastasis mouse models for human scirrhous stomach cancer. Cancer Sci. 2005;96:323–32.

    Article  CAS  PubMed  Google Scholar 

  13. Yanagihara K, Takigahira M, Takeshita F, et al. A photon counting technique for quantitatively evaluating progression of peritoneal tumor dissemination. Cancer Res. 2006;66:7532–9.

    Article  CAS  PubMed  Google Scholar 

  14. Fujii S, Matsumoto S, Nojima S, et al. Arl4c expression in colorectal and lung cancers promotes tumorigenesis and may represent a novel therapeutic target. Oncogene. 2014;34:4834–44.

    Article  PubMed  Google Scholar 

  15. Mizuno H, Kitada K, Nakai K, et al. PrognoScan: a new dataset for meta-analysis of the prognostic value of genes. BMC Med Genomics. 2009;2:18.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kolch W, Halasz M, Granovskaya M, et al. The dynamic control of signal transduction networks in cancer cells. Nat Rev Cancer. 2015;15:515–27.

    Article  CAS  PubMed  Google Scholar 

  17. Fidler IJ. The pathegenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3:453–8.

    Article  CAS  PubMed  Google Scholar 

  18. Miyake S, Kitajima Y, Nakamura J, et al. HIF-1α is a crucial factor in the development of peritoneal dissemination via natural metastatic routes in scirrhous gastric cancer. Int J Oncol. 2013;43:1431–40.

    Article  CAS  PubMed  Google Scholar 

  19. Machesky, LM. Lamellipodia and filopodia in metastasis and invasion. FEBS Lett. 2008;582.14:2102–111.

    Article  CAS  PubMed  Google Scholar 

  20. Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28:15–33.

    Article  PubMed  Google Scholar 

  21. Matsumoto S, Fujii S, Sato A, et al. A combination of Wnt and growth factor signaling induces Arl4c expression to form epithelial tubular structures. EMBO J. 2014;33:702–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5:341–54.

    Article  CAS  PubMed  Google Scholar 

  23. Birkman EM, Alqars A, Lintunen M, et al. EGFR gene amplification is relatively common and associates with outcome in intestinal adenocarcinoma of the stomach, gastro-oesophageal junction and distal oesophagus. BMC Cancer. 2016;16:406.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Burd CG, Strochlic TI, Setty SRG. Arf-like GTPases: not so Arf-like after all. Trends Cell Biol. 2004;14:687–94.

    Article  CAS  PubMed  Google Scholar 

  25. Pasqualato S, Renault L, Cherfils J. Arf, Arl, Arp and Sar proteins: a family of GTP‐binding proteins with a structural device for ‘front–back’ communication. EMBO Rep. 2002;3:1035–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hofmann I, Thompson A, Sanderson CM, et al. The Arl4 family of small G proteins can recruit the cytohesin Arf6 exchange factors to the plasma membrane. Curr Biol. 2007;17:711–6.

    Article  CAS  PubMed  Google Scholar 

  27. Huang J, Xiao D, Li G, et al. EphA2 promotes epithelial–mesenchymal transition through the Wnt/β-catenin pathway in gastric cancer cells. Oncogene. 2014;33:2737–47.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Du J, Zheng J, et al. EGF-reduced Wnt5a transcription induces epithelial–mesenchymal transition via Arf6-ERK signaling in gastric cancer cells. Oncotarget. 2015;6:7244–61.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank K. Oda, K. Kasagi, S. Sakuma, M. Oshiumi, and M. Utou for their technical assistance, Dr. T. Sato for statistical analysis, and Dr. Tyler Lahusen for English proofreading.

Funding

This work was supported in part by the following Grants and foundation: Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (Grant Nos.: 16K07177, 16K10543, 16K10397, 16K19197, 16K19107, 16H01576, 26461980, 26293303).

Disclosures

Qingjiang Hu, Takaaki Masuda, Kuniaki Sato, Taro Tobo, Sho Nambara, Shinya Kidogami, Naoki Hayashi, Yosuke Kuroda, Shuhei Ito, Hidetoshi Eguchi, Hiroshi Saeki, Eiji Oki, Yoshihiko Maehara, and Koshi Mimori have no potential conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koshi Mimori MD, PhD.

Electronic Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Masuda, T., Sato, K. et al. Identification of ARL4C as a Peritoneal Dissemination-Associated Gene and Its Clinical Significance in Gastric Cancer. Ann Surg Oncol 25, 745–753 (2018). https://doi.org/10.1245/s10434-017-6292-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-017-6292-6

Keywords

Navigation