Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Thymosin β4 triggers an epithelial–mesenchymal transition in colorectal carcinoma by upregulating integrin-linked kinase

Abstract

The epithelial–mesenchymal transition (EMT) is crucial for the invasion and metastasis of many epithelial tumors including colorectal carcinoma (CRC). In the present study, a scattering and fibroblastic morphology with reduced intercellular contacts was found in the SW480 colon cancer cells overexpressing the gene encoding thymosin β4 (Tβ4), which was accompanied by a loss of E-cadherin as well as a cytosolic accumulation of β-catenin, two most prominent markers of EMT. Whereas E-cadherin downregulation was likely to be accounted by a ZEB1-mediated transcriptional repression, the accumulation of β-catenin was a result of glycogen synthase kinase-3β inactivation mediated by integrin-linked kinase (ILK) and/or its downstream effector, Akt. Intriguingly, ILK upregulation in Tβ4-overexpressing SW480 cells seemed to be attributed mainly to a stabilization of this kinase by complexing with particularly interesting new Cys-His protein (PINCH) more efficiently. In the meantime, a strong correlation between the expression levels of Tβ4, ILK and E-cadherin in CRC patients was also revealed by immunohistochemical analysis. Taken together, these data suggest a novel role of Tβ4 in promoting CRC progression by inducing an EMT in tumor cells via upregulating ILK and consequentially its signal transduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Attwell S, Mills J, Troussard A, Wu C, Dehar S . (2003). Integration of cell attachment, cytoskeletal localization, and signaling by integrin-linked kinase (ILK), CH-ILKBP, and the tumor suppressor PTEN. Mol Biol Cell 14: 4813–4825.

    Article  CAS  Google Scholar 

  • Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J et al. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2: 84–89.

    Article  CAS  Google Scholar 

  • Behrens J, Mareel MM, van Roy FM, Birchmeier W . (1989). Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell–cell adhesion. J Cell Biol 108: 2435–2447.

    Article  CAS  Google Scholar 

  • Bock-Marquette I, Saxena A, White MD, DiMaio JM, Srivastava D . (2004). Thymosin β4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432: 466–472.

    Article  CAS  Google Scholar 

  • Bolós V, Peinado H, Pérez-Moreno MA, Fraga MF, Esteller M, Cano A . (2003). The transcription factor slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 116: 499–511.

    Article  Google Scholar 

  • Brakebusch C, Fässler R . (2003). The integrin–actin connection, an eternal love affair. EMBO J 22: 2324–2333.

    Article  CAS  Google Scholar 

  • Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. (2000). Metastasis and angiogenesis. Nat Cell Biol 2: 76–83.

    Article  CAS  Google Scholar 

  • Cohen P, Frame S . (2001). The renaissance of GSK-3β. Nat Rev Mol Cell Biol 2: 769–776.

    Article  CAS  Google Scholar 

  • Coleman ML, Marshall CJ, Olson MF . (2004). Ras and Rho GTPases in G1-phase cell-cycle regulation. Nat Rev Mol Cell Biol 5: 355–366.

    Article  CAS  Google Scholar 

  • Comijn J, Berx G, Vermassen P, Verschueren K, Grunsven LV, Bruyneel E et al. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7: 1267–1278.

    Article  CAS  Google Scholar 

  • Filipenko NR, Attwell S, Roskelley C, Dedhar S . (2005). Integrin-linked kinase activity regulates Rac- and Cdc42-mediated actin cytoskeleton reorganization via alpha-PIX. Oncogene 24: 5837–5849.

    Article  CAS  Google Scholar 

  • Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A et al. (1991). E-cadherin-mediated cell–cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 113: 173–185.

    Article  CAS  Google Scholar 

  • Fujita Y, Krause G, Scheffner M, Zechner D, Leddy HEM, Behrens J et al. (2002). Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol 4: 222–231.

    Article  CAS  Google Scholar 

  • Gottardi CJ, Gumbiner BM . (2004). Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes. J Cell Biol 167: 339–349.

    Article  CAS  Google Scholar 

  • Guaita S, Puig I, Franci C, Garrido M, Domýńguez D, Batlle E et al. (2002). Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem 277: 39209–39216.

    Article  CAS  Google Scholar 

  • Ha NC, Tonozuka T, Stamos JL, Choi HJ, Weis W . (2004). Mechanism of phosphorylation-dependent binding of APC to β-catenin and its role in β-catenin degradation. Mol Cell 15: 511–521.

    Article  CAS  Google Scholar 

  • Hajra KM, Chen DY, Fearon ER . (2002). The SLUG zinc finger protein represses E-cadherin in breast cancer. Cancer Res 62: 1613–1618.

    CAS  PubMed  Google Scholar 

  • Hannigan G, Troussard AA, Dedhar S . (2005). Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nat Rev Cancer 5: 51–63.

    Article  CAS  Google Scholar 

  • Herbert TP, Tee AR, Proud CG . (2002). The extracellular signal-regulated kinase pathway regulates the phosphorylation of 4E-BP1 at multiple sites. J Biol Chem 277: 11591–11596.

    Article  CAS  Google Scholar 

  • Ito K, Okamoto I, Araki N, Kawano Y, Nakao M, Fujiyama S et al. (1999). Calcium influx triggers the sequential proteolysis of extracellular and cytoplasmic domains of E-cadherin, leading to loss of β-catenin from cell–cell contacts. Oncogene 18: 7080–7090.

    Article  CAS  Google Scholar 

  • Kang Y, Massague J . (2004). Epithelial–mesenchymal transitions: twist in development and metastasis. Cell 118: 277–279.

    Article  CAS  Google Scholar 

  • Keller SH, Nigam SK . (2003). Biochemical processing of E-cadherin under cellular stress. Biochem Biophys Res Commun 307: 215–223.

    Article  CAS  Google Scholar 

  • Kemler R . (1992). Classical cadherins. Semin Cell Biol 3: 149–155.

    Article  CAS  Google Scholar 

  • Kikuchi A . (2000). Regulation of beta-catenin signaling in the Wnt pathway. Biochem Biophys Res Commun 16: 243–248.

    Article  Google Scholar 

  • Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y et al. (2002). Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108: 837–847.

    Article  CAS  Google Scholar 

  • Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ . (1997). Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 139: 1861–1872.

    Article  CAS  Google Scholar 

  • Marambaud P, Shioi J, Serban G, Georgakopoulos A, Sarner S, Nagy V et al. (2002). A presenilin-1/ gamma-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J 21: 1948–1956.

    Article  CAS  Google Scholar 

  • Meiners S, Brinkmann V, Naundorf H, Birchmeier W . (1998). Role of morphogenetic factors in metastasis of mammary carcinoma cells. Oncogene 16: 9–20.

    Article  CAS  Google Scholar 

  • Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al. (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275: 1787–1790.

    Article  CAS  Google Scholar 

  • Noë V, Fingleton B, Jacobs K, Crawford HC, Vermeulen S, Steelant W et al. (2001). Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 114: 111–118.

    PubMed  Google Scholar 

  • Palacios F, Tushir JS, Fujita Y, D’Souza-Schorey C . (2005). Lysosomal targeting of E-cadherin: a unique mechanism for the down-regulation of cell–cell adhesion during epithelial to mesenchymal transitions. Mol Cell Biol 25: 389–402.

    Article  CAS  Google Scholar 

  • Pecina-Slaus N, Kljaic M, Nikuseva-Martic T . (2005). Loss of heterozygosity of APC and CDH1 genes in laryngeal squamous cell carcinoma. Pathol Res Pract 201: 557–563.

    Article  CAS  Google Scholar 

  • Penuel E, Martin GS . (1999). Transformation by v-Src: Ras-MAPK and PI3K-mTOR mediate parallel pathways. Mol Biol Cell 10: 1693–1703.

    Article  CAS  Google Scholar 

  • Pérez-Moreno MA, Locascio A, Rodrigo I, Dhondt G, Portillo F, Nieto MA et al. (2001). A new role for E12/E47 in the repression of E-cadherin expression and epithelial–mesenchymal transitions. J Biol Chem 276: 27424–27431.

    Article  Google Scholar 

  • Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G . (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392: 190–193.

    Article  CAS  Google Scholar 

  • Polakis P . (2002). Casein kinase 1: a Wnt’er of disconnect. Curr Biol 12: 499–501.

    Article  Google Scholar 

  • Potter E, Bergwitz C, Brabant G . (1999). The cadherin–catenin system: implications for growth and differentiation of endocrine tissues. Endocr Rev 20: 207–239.

    Article  CAS  Google Scholar 

  • Provost E, Yamamoto Y, Lizardi I, Stern J, D’Aquila TG, Gaynor RB et al. (2003). Functional correlates of mutations in β-catenin exon 3 phosphorylation sites. J Biol Chem 278: 31781–31789.

    Article  CAS  Google Scholar 

  • Risinger JI, Berchuck A, Kohler MF, Boyd J . (1994). Mutations of the E-cadherin gene in human gynecologic cancers. Nat Genet 7: 98–102.

    Article  CAS  Google Scholar 

  • Sanders MC, Goldstein AL, Wang YL . (1992). Thymosin beta 4 (Fx peptide) is a potent regulator of actin polymerization in living cells. Proc Natl Acad Sci USA 89: 4678–4682.

    Article  CAS  Google Scholar 

  • Savagner P . (2001). Leaving the neighborhood: molecular mechanisms involved during epithelial–mesenchymal transition. BioEssays 23: 912–923.

    Article  CAS  Google Scholar 

  • Sawhney RS, Cookson MM, Sharma B, Hauser J, Brattain MG . (2004). Autocrine transforming growth factor alpha regulates cell adhesion by multiple signaling via specific phosphorylation sites of p70S6 kinase in colon cancer cell. J Biol Chem 279: 47379–47390.

    Article  CAS  Google Scholar 

  • Takeichi M . (1995). Morphogenetic roles of classic cadherins. Curr Opin Cell Biol 7: 619–627.

    Article  CAS  Google Scholar 

  • Tamura G, Yin J, Wang S, Fleisher AS, Zou T, Abraham JM et al. (2000). E-cadherin gene promoter hypermethylation in primary human gastric carcinomas. J Natl Cancer Inst 92: 569–573.

    Article  CAS  Google Scholar 

  • Thiery JP . (2002). Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2: 442–454.

    Article  CAS  Google Scholar 

  • Tsukamoto T, Nigam SK . (1999). Cell–cell dissociation upon epithelial cell scattering requires a step mediated by the proteasome. J Biol Chem 274: 24579–24584.

    Article  CAS  Google Scholar 

  • Vernon AE, LaBonne C . (2004). Tumor metastasis: a new twist on epithelial–mesenchymal transitions. Curr Biol 14: 719–721.

    Article  Google Scholar 

  • Vleminckx K, Vakaet Jr L, Mareel M, Fiers W, van Roy F . (1991). Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66: 107–119.

    Article  CAS  Google Scholar 

  • Wang WS, Chen PM, Hsiao HL, Ju SY, Su Y . (2003). Overexpression of the thymosin β4 gene is associated with malignant progression of SW480 colon carcinoma cells. Oncogene 22: 3297–3306.

    Article  CAS  Google Scholar 

  • Wang WS, Chen PM, Hsiao HL, Wang HS, Liang WY, Su Y . (2004). Overexpression of the thymosin β4 gene is associated with increased invasion of SW480 colon carcinoma cells and the distant metastasis of human colorectal carcinoma. Oncogene 23: 6666–6671.

    Article  CAS  Google Scholar 

  • Willert K, Shibamoto S, Nusse R . (1999). Wnt-induced dephosphorylation of axin releases beta-catenin from the axin complex. Genes Dev 13: 1768–1773.

    Article  CAS  Google Scholar 

  • Wu C, Keightley SY, Leung-Hagesteijn C, Radeva G, Coppolino M, Goicoechea S et al. (1998). Integrin-linked protein kinase regulates fibronectin matrix assembly, E-cadherin expression, and tumorigenicity. J Biol Chem 273: 528–536.

    Article  CAS  Google Scholar 

  • Yang SP, Lee HJ, Su Y . (2005). Molecular cloning and structural characterization of the functional human thymosin β4 gene. Mol Cell Biochem 272: 97–105.

    Article  CAS  Google Scholar 

  • Yau CYF, Wheeler JJ, Sutton KL, Hedley DW . (2005). Inhibition of integrin-linked kinase by a selective small molecule inhibitor, QLT0254, inhibits the PI3K/PKB/mTOR, Stat3, and FKHR pathways and tumor growth, and enhances gemcitabine-induced apoptosis in human orthotopic primary pancreatic cancer xenografts. Cancer Res 65: 1497–1504.

    Article  CAS  Google Scholar 

  • Yoshiura K, Kanai Y, Ochiai A, Shimoyama Y, Sugimura T, Hirohashi S . (1995). Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc Natl Acad Sci USA 92: 7416–7419.

    Article  CAS  Google Scholar 

  • Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M et al. (2004). Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial–mesenchymal transition. Nat Cell Biol 6: 931–994.

    Article  CAS  Google Scholar 

  • Zucker S, Cao J, Chen WT . (2000). Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19: 6642–6650.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants NSC 94-2320-B-010-050 and NSC 95-2320-B-010-043-MY3 from National Science Council and 95A-C-D01-PPG-03 from the Ministry of Education, Aim for the Top University Plan, of the Republic of China. We thank Ms Yi-Ting Shen for preparing the recombinant adenovirus that expresses Tβ4 antisense RNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, HC., Hu, CH., Tang, MC. et al. Thymosin β4 triggers an epithelial–mesenchymal transition in colorectal carcinoma by upregulating integrin-linked kinase. Oncogene 26, 2781–2790 (2007). https://doi.org/10.1038/sj.onc.1210078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210078

Keywords

This article is cited by

Search

Quick links