Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The G12/13-RhoA signaling pathway contributes to efficient lysophosphatidic acid-stimulated cell migration

Abstract

The membrane redistribution and phosphorylation of focal adhesion kinase (FAK) have been reported to be important for cell migration. We previously showed that Lysophosphatidic acid (LPA) induced FAK membrane redistribution and autophosphorylation in ovarian cancer SK-OV3 cells and the signaling pathway consisting of Gi-Ras-MEKK1 mediated LPA-induced FAK membrane redistribution but not FAK autophosphorylation. We also showed that the disruption of the Gi-Ras-MEKK1 pathway led to a significant reduction in LPA-stimulated cell migration. These findings raised the question of whether LPA-induced FAK autophosphorylation was required for LPA-stimulated cell migration and what signaling mechanism was involved in LPA-induced FAK autophosphorylation. In this study, we expressed the membrane anchored wild-type FAK (CD2-FAK) in SK-OV3 cells and found that the expression of CD2-FAK greatly rescued LPA-stimulated cell migration in Gi or Ras-inhibited cells. However, Gi inhibitor pertussis toxin or dominant-negative H-Ras still significantly inhibited LPA-stimulated cell migration in cells expressing the membrane anchored FAK containing a mutation in the autophosphorylation site [CD2-FAK(Y397A)]. These results suggest that FAK autophosphorylation plays a role in LPA-stimulated cell migration. With the aid of p115RhoGEF-RGS, G12 and G13 minigenes to inhibit G12/13, we found that the G12/13 pathway was required for LPA-induced FAK autophosphorylation and efficient cell migration. Moreover, LPA activated RhoA and Rho kinase (ROCK) in a G12/13-dependent manner and their activities were required for LPA-induced FAK autophosphorylation. However, Rho or ROCK inhibitors displayed no effect on LPA-induced FAK membrane redistribution although they abolished LPA-induced cytoskeleton reorganization. Our studies show that the G12/13-RhoA-ROCK signaling pathway mediates LPA-induced FAK autophosphorylation and contributes to LPA-stimulated cell migration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Bian D, Su S, Mahanivong C, Cheng RK, Han Q, Pan ZK et al. (2004). Cancer Res 64: 4209–4217.

  • Bourguignon LY, Singleton PA, Zhu H, Diedrich F . (2003). J Biol Chem 278: 29420–29434.

  • Buhl A-M, Lassignal Johnson N, Dhanasekaran N, Johnson GL . (1995). J Biol Chem 270: 24631–24634.

  • Cary LA, Han D-C, Polte TR, Hanks SK, Guan J-L . (1998). J Cell Biol 140: 211–221.

  • Chan P-Y, Kanner SB, Whitney G, Aruffo A . (1994). J Biol Chem 32: 20567–20574.

  • Daaka Y . (2002). Biochim Biophys Acta 1582: 265–269.

  • Dutt P, Kjoller L, Giel M, Hall A, Toksoz D . (2002). FEBS Lett 531: 565–569.

  • Eder AM, Sasagawa T, Mao M, Aoki J, Mills GB . (2000). Clin Cancer Res 6: 2482–2491.

  • Etienne-Manneville S, Hall A . (2002). Nature 420: 629–635.

  • Fang X, Gaudette D, Furui T, Mao M, Estrella V, Eder A et al. (2000). Ann NY Acad Sci 905: 188–208.

  • Fang X, Yu S, Bast RC, Liu S, Xu H-J, Hu S-X et al. (2004). J Biol Chem 279: 9653–9661.

  • Fishman DA, Liu Y, Ellerbroek SM, Stack S . (2001). Cancer Res 61: 3194–3199.

  • Frankel A, Mills GB . (1996). Clin Cancer Res 2: 1307–1313.

  • Frisch SM, Vuori K, Ruoslahti E, Chan-Hui P-Y . (1996). J Cell Biol 134: 793–799.

  • Fujita T, Miyamoto S, Onoyama I, Sonoda K, Mekada E, Nakano H . (2003). Cancer Lett 192: 161–169.

  • Gschwind A, Prenzel N, Ullrich A . (2002). Cancer Res 62: 6329–6336.

  • Han DC, Guan JL . (1999). J Biol Chem 274: 24425–24430.

  • Han Q, Leng J, Bian D, Mahanivong C, Carpenter KA, Pan ZK et al. (2002). J Biol Chem 277: 48379–48385.

  • Holinstat M, Mehta D, Kozasa T, Minshall RD, Malik AB . (2003). J Biol Chem 278: 28793–28798.

  • Hu Y-L, Tee M-K, Goetzl EJ, Auersperg N, Mills GB, Ferrara N . (2003). J Natl Cancer Inst 93: 762–768.

  • Hunger-Glaser I, Salazar EP, Sinnett-Smith J, Rozengurt E . (2003). J Biol Chem 278: 22631–22643.

  • Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue KK, Nakatsui N et al. (1995). Nature 377: 539–544.

  • Ishibe S, Joly D, Liu ZX, Cantley LG . (2004). Mol Cell 16: 257–267.

  • Khyrul WAKM, LaLonde DP, Brown MC, Levinson H, Turner CE . (2004). J Biol Chem 279: 54131–54139.

  • Kitayama J, Shida D, Sako A, Ishikawa M, Hama K, Aoki J et al. (2004). Breast Cancer Res 6: R640–R646.

  • Kozasa T, Ye RD . (2004). G Protein Signaling: Methods and Protocols. Humana Press Inc.: Totowa, pp 153–167.

    Google Scholar 

  • Kranenburg O, Poland M, van Horck FPG, Drechsel D, Hall A, Moolenaar WH . (1999). Mol Biol Cell 10: 1851–1857.

  • Li H, Ye X, Mahanivong C, Bian D, Chun J, Huang S . (2005). J Biol Chem 280: 10564–10571.

  • Linseman DA, Hofmann F, Fisher SK . (2000). J Neurochem 74: 2010–2020.

  • Luquain C, Singh A, Wang L, Vishwanathan N, Morris AJ . (2003). J Lipid Res 44: 1963–1975.

  • Martelli AM, Gilmour RS, Bertagnolo V, Neri LM, Manzoli L, Cocco L . (1992). Nature 358: 242–245.

  • Moolenaar WH . (1999). Exp Cell Res 253: 230–238.

  • Moolenaar WH, van Meeteren LA, Giepmans BNG . (2004). Bio Essay 26: 870–881.

  • Mukai M, Imamura F, Ayaki M, Shinkai K, Iwasaki T, Murakami-Murofushi K et al. (1999). Int J Cancer 81: 918–922.

  • Needham LK, Rozengurt E . (1998). J Biol Chem 273: 14626–14632.

  • Panetti TS, Nowlen J, Mosher DF . (2000). Arterioscler Thromb Vasc Biol 20: 1013–1019.

  • Pustilnik TB, Estrella V, Wiener JR, Mao M, Eder A, Watt M-AV et al. (1999). Clin Cancer Res 5: 3704–3710.

  • Raftopoulou M, Hall A . (2004). Dev Biol 265: 23–32.

  • Riento K, Ridley AJ . (2003). Nat Rev Mol Cell Biol 4: 446–456.

  • Sah VP, Seasholtz TM, Sagi SA, Brown JH . (2005). Annu Rev Pharmacol Toxicol 40: 459–489.

  • Sawada K, Morishige K, Tahara M, Ikebuchi Y, Kawagishi R, Tasaka K et al. (2002a). Gynecol Oncol 87: 252–259.

  • Sawada K, Morishige K, Tahara M, Kawagishi R, Ikebuchi Y, Tasaka K et al. (2002b). Cancer Res 62: 6015–6020.

  • Schaller MD . (2003). Biochim Biophys Acta 1540: 1–21.

  • Schwartz BM, Hong G, Morrison BH, Wu W, Baudhuin LM, Xiao Y-J et al. (2001). Gynecol Oncol 81: 291–300.

  • Sengupta S, Wang Z, Tipps R, Xu Y . (2004). Semin Cell Dev Biol 15: 503–512.

  • Shen Z, Belinson J, Morton RE, Xu Y, Xu Y . (1998). Gynecol Oncol 71: 364–368.

  • Shida D, Watanabe T, Aoki J, Hama K, Kitayama J, Sonoda H et al. (2004). Lab Invest 84: 1352–1362.

  • Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH et al. (2000). Nat Cell Biol 2: 249–256.

  • Stähle M, Veit C, Bachfischer U, Schierling K, Skripczynski B, Hall A et al. (2003). J Cell Sci 116: 3835–3846.

  • Sundberg LJ, Galante LM, Bill HM, Mack CP, Taylor JM . (2003). J Biol Chem 278: 29783–29791.

  • Symowicz J, Adley BP, Woo MMM, Auersperg N, Hudson LG, Stack MS . (2005). Cancer Res 65: 2234–2242.

  • Tanyi JL, Morris AJ, Wolf JK, Fang X, Hasegawa Y, LaPushin R et al. (2003). Cancer Res 63: 1073–1082.

  • van Leeuwen FN, Giepmans BNG, van Meeteren LA, Moolenaar WH . (2003a). Biochem Soc Trans 31: 1209–1212.

  • van Leeuwen FN, Olivo C, Grivell S, Giepmans BNG, Collard JG, Moolenaar WH . (2003b). J Biol Chem 278: 400–406.

  • Wang F, Nobes CD, Hall A, Spiegel S . (1997). Biochem J 324: 481–488.

  • Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT et al. (2004). Nat Cell Biol 6: 154–161.

  • Xie Y, Gibbs TC, Meier KE . (2002). Biochim Biophys Acta 1582: 270–281.

  • Xu Y, Fang XJ, Casey G, Mills GB . (1995a). Biochem J 309: 933–940.

  • Xu Y, Gaudette DC, Boynton JD, Frankel A, Fang XJ, Sharma A et al. (1995b). Clin Cancer Res 1: 1223–1232.

  • Yuan J, Slice LW, Gu J, Rozengurt E . (2003). J Biol Chem 278: 4882–4891.

  • Zeng H, Zhao D, Mukhopadhyay D . (2002). J Biol Chem 277: 46791–46798.

Download references

Acknowledgements

We are grateful to Joan Gausepohl for preparation of this manuscript. This study was supported by the National Institute of Health Grant R01 CA93926. This is paper IMM-17465 from the Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bian, D., Mahanivong, C., Yu, J. et al. The G12/13-RhoA signaling pathway contributes to efficient lysophosphatidic acid-stimulated cell migration. Oncogene 25, 2234–2244 (2006). https://doi.org/10.1038/sj.onc.1209261

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209261

Keywords

This article is cited by

Search

Quick links