Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Functional impact of concomitant versus alternative defects in the Chk2-p53 tumour suppressor pathway

Abstract

Recent evidence identified a genetic and functional link between Chk2 kinase and p53 as a candidate genome integrity checkpoint and a tumour suppressor pathway. Here we report that in human cells, Chk2 and p53 form protein–protein complexes whose abundance increased upon DNA damage, and whose formation was abrogated through cancer associated mutations in the FHA domain of Chk2, or mutations in the tetramerization domain of p53. Whereas among Li-Fraumeni syndrome families mutations of Chk2 or p53 occur in a mutually exclusive manner, we document that the colon cancer cell line HCT-15 concomitantly lacks functions of both Chk2 and p53, the latter demonstrated by a non-invasive reporter assay monitoring p53-dependent transactivation in live cells. Despite the preserved ability of common cancer-derived mutant p53 proteins to bind and potentially ‘titrate’ activated Chk2, the integrity of the S phase checkpoint response to ionizing radiation remained largely intact and dependent on Chk2 in cells with wild-type, mutant, or no p53. These results provide new mechanistic insights into the Chk2-p53 interplay, suggest how mutations in Chk2 may abrogate its tumour suppressor function, and indicate that compared with individual defects in either Chk2 or p53, concomitant mutations in both of these cell cycle checkpoint regulators may provide some additional selective advantage to tumour cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Albrechtsen N, Dornreiter I, Grosse F, Kim E, Wiesmuller L, Deppert W . 1999 Oncogene 18: 7706–7717

  • Bartek J, Iggo R, Gannon J, Lane DP . 1990 Oncogene 5: 893–899

  • Bell DW, Varley JM, Szydlo TE, Kang DH, Wahrer DC, Shannon KE, Lubratovich M, Verselis SJ, Isselbacher KJ, Fraumeni JF, Birch JM, Li FP, Garber JE, Haber DA . 1999 Science 286: 2528–2531

  • Carr AM . 2000 Science 287: 1765–1766

  • Caspari T . 2000 Curr. Biol. 10: R315–R317

  • Chehab NH, Malikzay A, Appel M, Halazonetis TD . 2000 Genes Dev. 14: 278–288

  • Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD . 1999 Proc. Natl. Acad. Sci. USA 96: 13777–13782

  • Durocher D, Henckel J, Fersht AR, Jackson SP . 1999 Mol. Cell. 4: 387–394

  • Falck J, Mailand N, Syljuåsen RG, Bartek J, Lukas J . 2001 Nature 410: 842–847

  • Giaccia AJ, Kastan MB . 1998 Genes Dev. 12: 2973–2983

  • Gire V, Wynford-Thomas D . 1998 Mol. Cell. Biol. 18: 1611–1621

  • Haruki N, Saito H, Tatematsu Y, Konishi H, Harano T, Masuda A, Osada H, Fujii Y, Takahashi T . 2000 Cancer Res. 60: 4689–4692

  • Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ, Mak TW . 2000 Science 287: 1824–1827

  • Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH, Kastan MB . 2000 Nature 404: 613–617

  • Lukas J, Herzinger T, Hansen K, Moroni MC, Resnitzky D, Helin K, Reed SI, Bartek J . 1997 Genes Dev. 11: 1479–1492

  • Mailand N, Falck J, Lukas C, Syljuåsen RG, Welcker M, Bartek J, Lukas J . 2000 Science 288: 1425–1429

  • Matsuoka S, Huang M, Elledge SJ . 1998 Science 282: 1893–1897

  • Meek DW . 2000 Pathol. Biol. (Paris) 48: 246–254

  • Melchionna R, Chen X-B, Blasina A, McGowan CH . 2000 Nat. Cell. Biol. 2: 762–765

  • O'Connor PM, Jackman J, Bae I, Myers TG, Fan S, Mutoh M, Scudiero DA, Monks A, Sausville EA, Weinstein JN, Friend S, Fornace Jr AJ, Kohn KW . 1997 Cancer Res. 57: 4285–4300

  • Petrini JH . 2000 Nat. Genet. 26: 257–258

  • Rotman G, Shiloh Y . 1999 Oncogene 18: 6135–6144

  • Santoni-Rugiu E, Falck J, Mailand N, Bartek J, Lukas J . 2000 Mol. Cell. Biol. 20: 3497–3509

  • Selivanova G, Iotsova V, Kiseleva E, Steinbeck M, Bakalkin G, Grafström RC, Wiman KG . 1996 Nucleic Acids Res. 24: 3560–3567

  • Shaulian E, Zauberman A, Ginsberg D, Oren M . 1992 Mol. Cell. Biol. 12: 5581–5592

  • Sherr CJ . 1998 Genes Dev. 12: 2984–2991

  • Shieh S-Y, Ahn J, Tamai K, Taya Y, Prives C . 2000 Genes Dev. 14: 289–300

  • Sturzbecher HW, Brain R, Addison C, Rudge K, Remm M, Grimaldi M, Keenan E, Jenkins JR . 1992 Oncogene 7: 1513–1523

  • Vogelstein B, Lane D, Levine AJ . 2000 Nature 408: 307–310

  • Xie G, Habbersett RC, Jia Y, Peterson SR, Lehnert BE, Bradbury EM, D'Anna JA . 1998 Oncogene 16: 721–736

  • Zhou BB, Elledge SJ . 2000 Nature 408: 433–439

Download references

Acknowledgements

We thank S Elledge, G Evan, SI Reed, J Jenkins, P Chumakov and M Oren for providing important reagents, and the Danish Cancer Society, the Human Frontier Science Programme, the European Commission, the Danish Medical Research Council, Swedish Cancer Society, Swedish Medical Research Council and the Danish Cancer Research Fund for grant support. Correspondence and requests for material should be addressed to J Bartek (E-mail: bartek@biobase.dk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Bartek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falck, J., Lukas, C., Protopopova, M. et al. Functional impact of concomitant versus alternative defects in the Chk2-p53 tumour suppressor pathway. Oncogene 20, 5503–5510 (2001). https://doi.org/10.1038/sj.onc.1204811

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204811

Keywords

This article is cited by

Search

Quick links