Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Growth factor-dependent activation of the Ras-Raf-MEK-MAPK pathway in the human pancreatic carcinoma cell line PANC-1 carrying activated K-ras: implications for cell proliferation and cell migration

Abstract

Human ductal adenocarcinoma of the pancreas frequently carry activating point mutations in the K-ras protooncogene. We have analysed the activity of the Ras-Raf-MEK-MAPK cascade in the human pancreatic carcinoma cell line PANC-1 carrying an activating K-ras mutation. Serum-starved cells and cells grown in medium with serum did not show constitutively activated c-Raf, MEK-1, or p42 MAPK. Stimulation of cells with epidermal growth factor (EGF) or fetal calf serum (FCS) resulted in activation of N-Ras, but not K-Ras, as well as activation of c-Raf, MEK-1, and p42 MAPK. Preincubation of serum-starved cells with MEK-1 inhibitor PD98059 abolished EGF- and FCS-induced MAPK activation, identifying MEK as the upstream activator of MAPK. PANC-1 cells exhibited marked serum-dependence of anchorage-dependent and -independent cell growth as well as cell migration. EGF, alone or in combination with insulin and transferrin, did not induce cell proliferation of serum-starved PANC-1 cells, indicating that activation of MAPK alone was not sufficient to induce cell proliferation. FCS-induced DNA synthesis was inhibited by 40% by the MEK-1 inhibitor. On the other hand, treatment with either FCS or EGF alone resulted in marked, MEK-dependent increase of directed cell migration. Collectively, our results show that the activating K-ras mutation in PANC-1 cells does not result in constitutively increased Raf-MEK-MAPK signaling. Signal transduction via the Ras-Raf-MEK-MAPK cascade is maintained in these cells and is required for growth factor-induced cell proliferation and directed cell migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 6
Figure 3
Figure 4
Figure 5
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Anand-Apte B and Zetter B . 1997 Stem Cells 15: 259–267

  • Aoki K, Yoshida T, Matsumoto N, Ide H, Sugimura T and Terada M . 1997 Mol Carcinog 20: 251–258

  • Avruch J, Zhang X and Kyriakis JM . 1994 Trends Biochem Sci 19: 279–283

  • Beauchamp RD, Lyons RM, Yang EY, Coffey Jr RJ and Moses HL . 1990 Pancreas 5: 369–380

  • Boguski MS and McCormick F . 1993 Nature 366: 643–654

  • Bonner TI, Kerby SB, Sutrave P, Gunnell MA, Mark G and Rapp UR . 1985 Mol Cell Biol 5: 1400–1407

  • Bos JL . 1989 Cancer Res 49: 4682–4689

  • Brat DJ, Hahn SA, Griffin CA, Yeo CJ, Kern SE and Hruban RH . 1997 Am J Pathol 150: 383–391

  • Buard A, Zipfel PA, Frey RS and Mulder KM . 1996 Int J Cancer 67: 539–546

  • Buday L and Downward J . 1993 Cell 73: 611–620

  • Caldas C and Kern SE . 1995 Int J Pancreatol 18: 1–6

  • Capon DJ, Seeburg PH, McGrath JP, Hayflick JS, Edman U, Levinson AD and Goeddel DV . 1983 Nature 304: 507–513

  • Chang EH, Furth ME, Scolnick EM and Lowy DR . 1982 Nature 297: 479–483

  • Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, Shen Q, O'Hagan R, Pantginis J, Zhou H, Horner JW, Cordon-Cardo C, Yancopoulos GD and DePinho RA . 1999 Nature 400: 468–472

  • Cox AD and Der CJ . 1997 Biochim Biophys Acta 1333: F51–71

  • Cox AD, Solski PA, Jordan JD and Der CJ . 1995 Methods Enzymol 255: 195–220

  • de Rooij J and Bos JL . 1997 Oncogene 14: 623–625

  • Downward J . 1998 Curr Opin Genet Dev 8: 49–54

  • Dudley DT, Pang L, Decker SJ, Bridges AJ and Saltiel AR . 1995 Proc Natl Acad Sci USA 92: 7686–7689

  • Fan J and Bertino JR . 1997 Oncogene 14: 2595–2607

  • Freeman JW, Hattingly CA and Strodel WE . 1995 J Cell Physiol 165: 155–163

  • Friess H, Berberat P, Schilling M, Kunz J, Korc M and Buchler MW . 1996 J Mol Med 74: 35–42

  • Gardner AM, Lange-Carter CA, Vaillancourt RR and Johnson GL . 1994 Methods Enzymol 238: 258–270

  • Gillespie J, Dye JF, Schachter M and Guillou PJ . 1993 Br J Cancer 68: 1122–1126

  • Grewe M, Gansauge F, Schmid RM, Adler G and Seufferlein T . 1999 Cancer Res 59: 3581–3587

  • Hamilton M and Wolfman A . 1998 Oncogene 16: 1417–1428

  • Hattori S, Fukuda M, Yamashita T, Nakamura S, Gotoh Y and Nishida E . 1992 J Biol Chem 267: 20346–20351

  • Herrmann C, Martin GA and Wittinghofer A . 1995 J Biol Chem 270: 2901–2905

  • Hruban RH, van Mansfeld AD, Offerhaus GJ, van Weering DH, Allison DC, Goodman SN, Kensler TW, Bose KK, Cameron JL and Bos JL . 1993 Am J Pathol 143: 545–554

  • Huang W, Alessandrini A, Crews CM and Erikson RL . 1993 Proc Natl Acad Sci USA 90: 10947–10951

  • Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E, Bronson RT, Umanoff H, Edelmann W, Kucherlapati R and Jacks T . 1997 Genes Dev 11: 2468–2481

  • Khosravi-Far R, Campbell S, Rossman KL and Der CJ . 1998 Adv Cancer Res 72: 57–107

  • Kita K, Saito S, Morioka CY and Watanabe A . 1999 Int J Cancer 80: 553–558

  • Koera K, Nakamura K, Nakao K, Miyoshi J, Toyoshima K, Hatta T, Otani H, Aiba A and Katsuki M . 1997 Oncogene 15: 1151–1159

  • Korc M, Chandrasekar B, Yamanaka Y, Friess H, Buchier M and Beger HG . 1992 J Clin Invest 90: 1352–1360

  • Laird AD and Shalloway D . 1997 Cell Signal 9: 249–255

  • Lieber M, Mazzetta J, Nelson-Rees W, Kaplan M and Todaro G . 1975 Int J Cancer 15: 741–747

  • Longnecker DS and Terhune PG . 1998 Pancreas 17: 323–324

  • Lowy DR and Willumsen BM . 1993 Annu Rev Biochem 62: 851–891

  • Maher J, Baker DA, Manning M, Dibb NJ and Roberts IAG . 1995 Oncogene 11: 1639–1647

  • Marshall CJ . 1996 Curr Opin Cell Biol 8: 197–204

  • McGrath JP, Capon DJ, Smith DH, Chen EY, Seeburg PH, Goeddel DV and Levinson AD . 1983 Nature 304: 501–506

  • Moepps B, Vatter P, Frodl R, Waechter F, Dixkens C, Hameister H and Gierschik P . 1999 Genomics 60: 199–209

  • Okada S, Yoshimori M and Kakizoe T . 1998 Pancreas 16: 349–354

  • Payne MD, Rossomando AJ, Martino P, Erickson AK, Her J-H, Shabanowitz J, Hunt DF, Weber MJ and Sturgill TW . 1991 EMBO J 10: 885–892

  • Rodriguez Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P, Waterfield MD, Ridley A and Downward J . 1997 Cell 89: 457–467

  • Rozengurt E . 1986 Science 234: 161–166

  • Satoh T, Endo M, Nakafuku M, Akiyama T, Yamamoto T and Kaziro Y . 1990 Proc Natl Acad Sci USA 87: 7926–7929

  • Schagger H and von Jagow G . 1987 Anal Biochem 166: 368–379

  • Seger R and Krebs EG . 1995 FASEB J 9: 726–735

  • Seth A, Gonzalez FA, Gupta S, Raden DL and Davis RJ . 1992 J Biol Chem 267: 24796–24804

  • Seufferlein T, Van LJ, Liptay S, Adler G and Schmid RM . 1999 Gastroenterology 116: 1441–1452

  • Shimizu K, Birnbaum D, Ruley MA, Fasano O, Suard Y, Edlund L, Taparowsky E, Goldfarb M and Wigler M . 1983 Nature 304: 497–500

  • Smith JJ, Derynck R and Korc M . 1987 Proc Natl Acad Sci USA 84: 7567–7570

  • Sturgill TW, Ray BL, Erikson E and Maller JL . 1988 Nature 334: 715–718

  • Sumi S, Beauchamp RD, Townsend Jr CM, Pour PM, Ishizuka J and Thompson JC . 1994 Pancreas 9: 657–661

  • Tan MH, Nowak NJ, Loor R, Ochi H, Sandberg AA, Lopez C, Pickren JW, Berjian R, Douglass HOJ and Chu TM . 1986 Cancer Invest 4: 15–23

  • Treisman R . 1996 Curr Opin Cell Biol 8: 205–215

  • Verbeek BS, Adriaansen-Slot SS, Vroom TM, Beckers T and Rijksen G . 1998 FEBS Lett 425: 145–150

  • Watanabe M, Nobuta A, Tanaka J and Asaka M . 1996 Int J Cancer 67: 264–268

  • Wells A, Gupta K, Chang P, Swindle S, Glading A and Shiraha H . 1998 Microsc Res Tech 43: 395–411

  • Yan J, Roy S, Apolloni A, Lane A and Hancock JF . 1998 J Biol Chem 273: 24052–24056

  • Yip-Schneider MT, Lin A, Barnard D, Sweeney CJ and Marshall MS . 1999 Int J Oncol 15: 271–279

Download references

Acknowledgements

We thank UR Rapp for providing the c-Raf antiserum, W Kölch for cooperation in establishing the Raf-assay and T Seufferlein for introduction into the MAPK-assay. We wish to thank Y Kloog for providing the N-Ras cDNA, C Block for pcDNA/H-Ras (S17N) and JS Gutkind for pcDNA3/HA-MAPK expression plasmid, respectively. Furthermore, we greatly appreciate the help of B Moepps, S Gierschik and U Bachfischer. This work was supported by a grant of the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (project 01-KS-9605/2).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giehl, K., Skripczynski, B., Mansard, A. et al. Growth factor-dependent activation of the Ras-Raf-MEK-MAPK pathway in the human pancreatic carcinoma cell line PANC-1 carrying activated K-ras: implications for cell proliferation and cell migration. Oncogene 19, 2930–2942 (2000). https://doi.org/10.1038/sj.onc.1203612

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1203612

Keywords

This article is cited by

Search

Quick links