Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Efficient elimination of chronic lymphocytic leukaemia B cells by autologous T cells with a bispecific anti-CD19/anti-CD3 single-chain antibody construct

Abstract

Recently, we have shown that a novel recombinant bispecific single-chain antibody construct (bscCD19 × CD3), induces highly efficacious lymphoma-directed cytotoxicity mediated by unstimulated peripheral T lymphocytes. Functional analysis of bscCD193CD3 has so far been exclusively performed with human B lymphoma cell lines and T cells from healthy donors. Here we analysed the properties of bscCD193CD3 using primary B cells and autologous T cells from healthy volunteers or patients with B-cell chronic lymphocytic leukaemia (B-CLL). We show that bscCD193CD3 induces T-cell-mediated depletion of nonmalignant B cells in all four cases and depletion of primary lymphoma cells in 22 out of 25 cases. This effect could be observed at low effector-to-target (E:T) ratios and in the majority of cases without additional activation of autologous T cells by IL-2. Even in samples derived from patients heavily pretreated with different chemotherapy regimens, strong cytotoxic effects of bscCD193CD3 could be observed. The addition of bscCD193CD3 to patients' cells resulted in an upregulation of activation-specific cell surface antigens on autologous T cells and elevated levels of CD95 on lymphoma B cells. Although anti-CD95 antibody CH-11 failed to induce apoptosis in lymphoma cells, we provide evidence that B-CLL cell depletion by bscCD3CD3 is mediated at least in part by apoptosis via the caspase pathway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Landis SH, Murray T, Bolden S, Wingo PA . Cancer statistics, 1999. CA: Cancer J Clin 1999; 49: 8–31, 31.

    CAS  Google Scholar 

  2. Österborg A, Fassas AS, Anagnostopoulos A, Dyer MJS . Humanized CD52 monoclonal antibody Campath-1H as first-line treatment in chronic lymphocytic leukemia. Br J Haematol 1996; 93: 151–153.

    Article  PubMed  Google Scholar 

  3. Österborg A, Dyer MJS, Bunjes D, Pangalis GA, Bastion Y, Catovsky D et al. Phase II multicenter study of human CD52 antibody in previously treated chronic lymphocytic leukemia. J Clin Oncol 1997; 15: 1567–1574.

    Article  PubMed  Google Scholar 

  4. Sacchi S, Federico M, Dastoli G, Fiorani C, Vinci G, Clo V et al. Treatment of B-cell non-Hodgkin's lymphoma with anti-CD 20 monoclonal antibody Rituximab. Crit Rev Oncol Hematol 2001; 37: 13–25.

    Article  CAS  PubMed  Google Scholar 

  5. Maloney DG, Grillo-López AJ, White CA, Bodkin D, Schilder RJ, Neidhart JA et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood 1997; 90: 2188–2195.

    CAS  PubMed  Google Scholar 

  6. Huhn D, von Schilling C, Wilhelm M, Ho AD, Hallek M, Kuse R et al. Rituximab in the treatment of patients with B-cell chronic lymphocytic leukemia. Blood 2001; 98: 1326–1331.

    Article  CAS  PubMed  Google Scholar 

  7. Winkler U, Jensen M, Manzke O, Schulz H, Diehl V, Engert A . Cytokine-release syndrome in patients with B-Cell chronic lymphocytic leukemia and high lymphocyte counts after treatment with an anti-CD20 monoclonal antibody (Rituximab, IDEC-C2B8). Blood 1999; 94: 2217–2224.

    CAS  PubMed  Google Scholar 

  8. Clynes RA, Towers TL, Presta LG, Ravetch JV . Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 2000; 6: 443–446.

    Article  CAS  PubMed  Google Scholar 

  9. Dyer MJ, Hale G, Hayhoe FG, Waldmann H . Effects of CAMPATH-1 antibodies in vivo in patients with lymphoid malignancies: influence of antibody isotype. Blood 1989; 73: 1431–1439.

    CAS  PubMed  Google Scholar 

  10. van Spriel AB, van Ojik HH, van De Winkel JG . Immunotherapeutic perspective for bispecific antibodies. Immunol Today 2000; 21: 391–397.

    Article  CAS  PubMed  Google Scholar 

  11. Weiner GJ, De Gast GC . Bispecific monoclonal antibody therapy of B-cell malignancy. Leukemia Lymphoma 1995; 16: 199–207.

    Article  CAS  PubMed  Google Scholar 

  12. Tedder TF, Zhou LJ, Engel P . The CD19/CD21 signal transduction complex of B lymphocytes. Immunol Today 1994; 15: 437–442.

    Article  CAS  PubMed  Google Scholar 

  13. Tedder TF, Inaoki M, Sato S . The CD19-CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity 1997; 6: 107–118.

    Article  CAS  PubMed  Google Scholar 

  14. Demanet C, Brissinck J, De Jonge J, Thielemans K . Bispecific antibody-mediated immunotherapy of the BCL1 lymphoma: increased efficacy with multiple injections and CD28-induced costimulation. Blood 1996; 87: 4390–4398.

    CAS  PubMed  Google Scholar 

  15. Haagen IA, Geerars AJ, de Lau WB, Bast BJ, De Gast BC . The efficacy of CD3 × CD19 bispecific monoclonal antibody (BsAb) in a clonogenic assay: the effect of repeated addition of BsAb and interleukin-2. Blood 1995; 85: 3208–3212.

    CAS  PubMed  Google Scholar 

  16. Honeychurch J, Tutt AL, Valerius T, Heijnen IA, Van De Winkel JG, Glennie MJ . Therapeutic efficacy of FcgammaRI/CD64-directed bispecific antibodies in B-cell lymphoma. Blood 2000; 96: 3544–3552.

    CAS  PubMed  Google Scholar 

  17. Daniel PT, Kroidl A, Kopp J, Sturm I, Moldenhauer G, Dörken B et al. Immunotherapy of B-cell lymphoma with CD3 × 19 bispecific antibodies: costimulation via CD28 prevents ‘veto’ apoptosis of antibody-targeted cytotoxic T cells. Blood 1998; 92: 4750–4757.

    CAS  PubMed  Google Scholar 

  18. Nitta T, Sato K, Yagita H, Okumura K, Ishii S . Preliminary trial of specific targeting therapy against malignant glioma. Lancet 1990; 335: 368–371.

    Article  CAS  PubMed  Google Scholar 

  19. Canevari S, Stoter G, Arienti F, Bolis G, Colnaghi MI, Di Re EM et al. Regression of advanced ovarian carcinoma by intraperitoneal treatment with autologous T lymphocytes retargeted by a bispecific monoclonal antibody. J Natl Cancer Inst 1995; 87: 1463–1469.

    Article  CAS  PubMed  Google Scholar 

  20. De Gast GC, Van Houten AA, Haagen IA, Klein S, De Weger RA, Van Dijk A et al. Clinical experience with CD3 × CD19 bispecific antibodies in patients with B cell malignancies. J Hematother 1995; 4: 433–437.

    Article  CAS  PubMed  Google Scholar 

  21. Hartmann F, Renner C, Jung W, Deisting C, Juwana M, Eichentopf B et al. Treatment of refractory Hodgkin's disease with an anti-CD16/CD30 bispecific antibody. Blood 1997; 89: 2042–2047.

    CAS  PubMed  Google Scholar 

  22. Borchmann P, Schnell R, Fuss I, Manzke O, Davis T, Lewis LD et al. Phase 1 trial of the novel bispecific molecule H22 × Ki-4 in patients with refractory Hodgkin lymphoma. Blood 2002; 100: 3101–3107.

    Article  CAS  PubMed  Google Scholar 

  23. Kostelny SA, Cole MS, Tso JY . Formation of a bispecific antibody by the use of leucine zippers. J Immunol 1992; 148: 1547–1553.

    CAS  PubMed  Google Scholar 

  24. Lanzavecchia A, Scheidegger D . The use of hybrid hybridomas to target human cytotoxic T lymphocytes. Eur J Immunol 1987; 17: 105–111.

    Article  CAS  PubMed  Google Scholar 

  25. Mallender WD, Voss EJ . Construction, expression, and activity of a bivalent bispecific single-chain antibody. J Biol Chem 1994; 269: 199–206.

    CAS  PubMed  Google Scholar 

  26. Löffler A, Kufer P, Lutterbüse R, Zettl F, Daniel PT, Schwenkenbecher JM et al. A recombinant bispecific single-chain antibody, CD19 × CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 2000; 95: 2098–2103.

    PubMed  Google Scholar 

  27. Dreier T, Lorenczewski G, Brandl C, Hoffmann P, Syring U, Hanakam F et al. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer 2002; 100: 690–697.

    Article  CAS  PubMed  Google Scholar 

  28. Blagosklonny M . Treatment with inhibitors of caspases that are substrates of drug transporters, selectively permits chemotherapy-induced apoptosis in multidrug-resistant cells but protects normal cells. Leukemia 2001; 15: 936–941.

    Article  CAS  PubMed  Google Scholar 

  29. Mack M, Riethmüller G, Kufer P . A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc Natl Acad Sci USA 1995; 92: 7021–7025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kwon SH, Ahn SH, Kim YK, Bae GU, Yoon JW, Hong S et al. Apicidin, a histone deacetylase inhibitor, induces apoptosis and Fas/Fas ligand expression in human acute promyelocytic leukemia cells. J Biol Chem 2001; 277: 2073–2080.

    Article  PubMed  Google Scholar 

  31. Ozoren N, Kim K, Burns TF, Dicker DT, Moscioni AD, El-Deiry WS . The caspase 9 inhibitor Z-LEHD-FMK protects human liver cells while permitting death of cancer cells exposed to tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 2000; 60: 6259–6265.

    CAS  PubMed  Google Scholar 

  32. Seol DW, Li J, Seol MH, Park SY, Talanian RV, Billiar TR . Signaling events triggered by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL): caspase-8 is required for TRAIL-induced apoptosis. Cancer Res 2001; 61: 1138–1143.

    CAS  PubMed  Google Scholar 

  33. Tesch H, Engert A, Manzke O, Diehl V, Bohlen H . Treatment of patients with malignant lymphomas with monoclonal antibodies. Bone Marrow Transplant 2000; 26(Suppl 2): S50–S53.

    Article  Google Scholar 

  34. Treon SP, Anderson KC . The use of rituximab in the treatment of malignant and nonmalignant plasma cell disorders. Semin Oncol 2000; 27: 79–85.

    CAS  PubMed  Google Scholar 

  35. Ayanlar-Batuman O, Ebert E, Hauptman SP . Defective inter-leukin-2 production and responsiveness by T cells in patients with chronic lymphocytic leukemia of B cell variety. Blood 1986; 67: 279–284.

    CAS  PubMed  Google Scholar 

  36. Bartik MM, Welker D, Kay NE . Impairments in immune cell function in B cell chronic lymphocytic leukemia. Semin Oncol 1998; 25: 27–33.

    CAS  PubMed  Google Scholar 

  37. Kay NE, Kaplan ME . Defective T cell responsiveness in chronic lymphocytic leukemia: analysis of activation events. Blood 1986; 67: 578–581.

    CAS  PubMed  Google Scholar 

  38. Prieto A, Garcia-Suarez J, Reyes E, Lapena P, Hernandez M, Alvarez-Mon M . Diminished DNA synthesis in T cells from B chronic lymphocytic leukemia after phytohemagglutinin, anti-CD3, and phorbol myristate acetate mitogenic signals. Exp Hematol 1993; 21: 1563–1569.

    CAS  PubMed  Google Scholar 

  39. Zaknoen SL, Kay NE. Immunoregulatory cell dysfunction in chronic B-cell leukemias. Blood Rev 1990; 4: 165–174.

    Article  CAS  PubMed  Google Scholar 

  40. Shimoni A, Marcus H, Dekel B, Shkarchi R, Arditti F, Shvidel L et al. Autologous T cells control B-chronic lymphocytic leukemia tumor progression in human-->mouse radiation chimera. Cancer Res 1999; 59: 5968–5974.

    CAS  PubMed  Google Scholar 

  41. Natarajan S, Kay NE, Yannelli JR . In vitro propagation of anti-tumor lymphocytes derived from the peripheral blood mononuclear cells of patients with B-chronic lymphocytic leukemia. Blood 1996; 99: 589a.

    Google Scholar 

  42. Davis TA, Grillo-Lopez AJ, White CA, McLaughlin P, Czuczman MS, Link BK et al. Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin's lymphoma: safety and efficacy of re-treatment. J Clin Oncol 2000; 18: 3135–3143.

    Article  CAS  PubMed  Google Scholar 

  43. McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 1998; 16: 2825–2833.

    Article  CAS  PubMed  Google Scholar 

  44. Bohlen H, Manzke O, Patel B, Moldenhauer G, Dörken B, von Fliedner V et al. Cytolysis of leukemic B-cells by T-cells activated via two bispecific antibodies. Cancer Res 1993; 53: 4310–4314.

    CAS  PubMed  Google Scholar 

  45. Manzke O, Berthold F, Huebel K, Tesch H, Diehl V, Bohlen H . CD3 × CD19 bispecific antibodies and CD28 bivalent antibodies enhance T- cell reactivity against autologous leukemic cells in pediatric B-ALL bone marrow. Int J Cancer 1999; 80: 715–722.

    Article  CAS  PubMed  Google Scholar 

  46. Haagen IA, van de Griend R, Clark M, Geerars A, Bast B, de Gast B . Killing of human leukaemia/lymphoma B cells by activated cytotoxic T lymphocytes in the presence of a bispecific monoclonal antibody (alpha CD3/alpha CD19). Clin Exp Immunol 1992; 90: 368–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Haagen IA, Geerars AJ, de Lau WB, Clark MR, van de Griend RJ, Bast BJ et al. Killing of autologous B-lineage malignancy using CD3 × CD19 bispecific monoclonal antibody in end stage leukemia and lymphoma. Blood 1994; 84: 556–563.

    CAS  PubMed  Google Scholar 

  48. Cochlovius B, Kipriyanov SM, Stassar MJ, Christ O, Schuhmacher J, Strauss G et al. Treatment of human B cell lymphoma xenografts with a CD3 × CD19 diabody and T cells. J Immunol 2000; 165: 888–895.

    Article  CAS  PubMed  Google Scholar 

  49. Lehmann C, Zeis M, Schmitz N, Uharek L . Impaired binding of perforin on the surface of tumor cells is a cause of target cell resistance against cytotoxic effector cells. Blood 2000; 96: 594–600.

    CAS  PubMed  Google Scholar 

  50. Renner C, Hartmann F, Pfreundschuh M . Treatment of refractory Hodgkin's disease with an anti-CD16/CD30 bispecific antibody. Cancer Immunol Immunother 1997; 45: 184–186.

    Article  CAS  PubMed  Google Scholar 

  51. Bauer S, Renner C, Juwana JP, Held G, Ohnesorge S, Gerlach K et al. Immunotherapy of human tumors with T-cell-activating bispecific antibodies: stimulation of cytotoxic pathways in vivo. Cancer Res 1999; 59: 1961–1965.

    CAS  PubMed  Google Scholar 

  52. Russell JH, Ley TJ . Lymphocyte-mediated cytotoxicity. Annu Rev Immunol 2002; 20: 323–370.

    Article  CAS  PubMed  Google Scholar 

  53. Hennino A, Berard M, Casamayor-Palleja M, Krammer PH, Defrance T . Regulation of the Fas death pathway by FLICE-inhibitory protein in primary human B cells. J Immunol 2000; 165: 3023–3030.

    Article  CAS  PubMed  Google Scholar 

  54. Barry M, Heibein JA, Pinkoski MJ, Lee SF, Moyer RW, Green DR et al. Granzyme B short-circuits the need for caspase 8 activity during granule-mediated cytotoxic T-lymphocyte killing by directly cleaving Bid. Mol Cell Biol 2000; 20: 3781–3794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thomas DA, Du C, Xu M, Wang X, Ley TJ . DFF45/ICAD can be directly processed by granzyme B during the induction of apoptosis. Immunity 2000; 12: 621–632.

    Article  CAS  PubMed  Google Scholar 

  56. Kitada S, Zapata JM, reeff M, Reed JC . Bryostatin and CD40-ligand enhance apoptosis resistance and induce expression of cell survival genes in B-cell chronic lymphocytic leukaemia. Br J Haematol 1999; 106: 995–1004.

    Article  CAS  PubMed  Google Scholar 

  57. Jones DT, Ganeshaguru K, Virchis AE, Folarin NI, Lowdell MW, Mehta AB et al. Caspase 8 activation independent of Fas (CD95/APO-1) signaling may mediate killing of B-chronic lymphocytic leukemia cells by cytotoxic drugs or gamma radiation. Blood 2001; 98: 2800–2807.

    Article  CAS  PubMed  Google Scholar 

  58. Roue G, Lancry L, Duquesne F, Salaun V, Troussard X, Sola B . Upstream mediators of the Fas apoptotic transduction pathway are defective in B-chronic lymphocytic leukemia. Leukemia Res 2001; 25: 967–980.

    Article  CAS  Google Scholar 

  59. Osorio LM, Aguilar-Santelises M, De Santiago A, Hachiya T, Mellstedt H, Jondal M . Increased serum levels of soluble Fas in progressive B-CLL. Eur J Haematol 2001; 66: 342–346.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Peter Trinder and Dr Thorsten Stuehmer for critical reading of the manuscript. This investigation was supported in part by the Deutsche Forschungsgemeinschaft, Klinische Forschergruppe, Grant No. KFO 105/1.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löffler, A., Gruen, M., Wuchter, C. et al. Efficient elimination of chronic lymphocytic leukaemia B cells by autologous T cells with a bispecific anti-CD19/anti-CD3 single-chain antibody construct. Leukemia 17, 900–909 (2003). https://doi.org/10.1038/sj.leu.2402890

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402890

Keywords

This article is cited by

Search

Quick links