Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Small interfering RNA expression vector targeting hypoxia-inducible factor 1 alpha inhibits tumor growth in hepatobiliary and pancreatic cancers

Abstract

Hepatobiliary and pancreatic carcinomas are hypovascular tumors that can proliferate under hypoxic conditions. Recent reports have demonstrated that hypoxia-inducible factor 1 alpha (HIF1α) plays an important role in the survival of these cancers. Given these findings, the inhibition of the HIF1α pathway might prove to be a powerful tool in the treatment of these cancers. To inhibit HIF1α expression, we used small interference RNA (siRNA) expression vectors in this study. The transient transfection of siRNA expression vectors significantly reduced both HIF1α mRNA levels (13% of control) and protein levels (41% of control) and significantly inhibited the growth of cancer cell lines (P<0.05). VEGF, Glut1, and aldorase A expressions were also significantly reduced by transfection with these vectors (P<0.05), and we found that these vectors induced apoptosis but not cell cycle arrest. In a subcutaneous tumor model using nude mice, transfected MIA PaCa-2 cells, stably expressing siRNAs, barely formed tumors compared to control (P<0.05). This study thus demonstrates the usefulness of siRNA expression vector in targeting HIF1α and points to a potential clinical role in the treatment of pancreatic and hepatobiliary carcinomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wang GL, Jiang BH, Rue EA, Semenza GL . Hypoxia-inducible factor 1 is a basic–helix–loop–helix–PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995; 92: 5510–5514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ . Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J 2001; 20: 5197–5206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pugh CW, Ratcliffe PJ . Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 2003; 9: 677–684.

    Article  CAS  PubMed  Google Scholar 

  4. Shibaji T, Nagao M, Ikeda N, Kanehiro H, Hisanaga M, Ko S et al. Prognostic significance of HIF-1 alpha overexpression in human pancreatic cancer. Anticancer Res 2003; 23: 4721–4727.

    CAS  PubMed  Google Scholar 

  5. Kurokawa T, Miyamoto M, Kato K, Cho Y, Kawarada Y, Hida Y et al. Overexpression of hypoxia-inducible-factor 1alpha(HIF-1alpha) in oesophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Br J Cancer 2003; 89: 1042–1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buchler P, Reber HA, Buchler M, Shrinkante S, Buchler MW, Friess H et al. Hypoxia-inducible factor 1 regulates vascular endothelial growth factor expression in human pancreatic cancer. Pancreas 2003; 26: 56–64.

    Article  CAS  PubMed  Google Scholar 

  7. Schindl M, Schoppmann SF, Samonigg H, Hausmaninger H, Kwasny W, Gnant M et al. Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res 2002; 8: 1831–1837.

    CAS  PubMed  Google Scholar 

  8. Sun X, Kanwar JR, Leung E, Lehnert K, Wang D, Krissansen GW . Gene transfer of antisense hypoxia inducible factor-1 alpha enhances the therapeutic efficacy of cancer immunotherapy. Gene Therapy 2001; 8: 638–645.

    Article  CAS  PubMed  Google Scholar 

  9. Maemura K, Hsieh CM, Jain MK, Fukumoto S, Layne MD, Liu Y et al. Generation of a dominant-negative mutant of endothelial PAS domain protein 1 by deletion of a potent C-terminal transactivation domain. J Biol Chem 1999; 274: 31565–31570.

    Article  CAS  PubMed  Google Scholar 

  10. Rose F, Grimminger F, Appel J, Heller M, Pies V, Weissmann N et al. Hypoxic pulmonary artery fibroblasts trigger proliferation of vascular smooth muscle cells: role of hypoxia-inducible transcription factors. FASEB J 2002; 16: 1660–1661.

    Article  CAS  PubMed  Google Scholar 

  11. Hunter T, Hunt T, Jackson RJ, Robertson HD . The characteristics of inhibition of protein synthesis by double-stranded ribonucleic acid in reticulocyte lysates. J Biol Chem 1975; 250: 409–417.

    CAS  PubMed  Google Scholar 

  12. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–498.

    Article  CAS  PubMed  Google Scholar 

  13. Miyagishi M, Hayashi M, Taira K . Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev 2003; 13: 1–7.

    Article  CAS  PubMed  Google Scholar 

  14. Miyagishi M, Taira K . U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 2002; 20: 497–500.

    Article  CAS  PubMed  Google Scholar 

  15. Brummelkamp TR, Bernards R, Agami R . A system for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296: 550–553.

    Article  CAS  PubMed  Google Scholar 

  16. Lee NS, Dohjima T, Bauer G, Li H, Li MJ, Ehsani A et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 2002; 20: 500–505.

    Article  CAS  PubMed  Google Scholar 

  17. Paul CP, Good PD, Winer I, Engelke DR . Effective expression of small interfering RNA in human cells. Nat Biotechnol 2002; 20: 505–508.

    Article  CAS  PubMed  Google Scholar 

  18. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS . Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 2002; 16: 948–958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sui G, Soohoo C, Affarel B, Gay F, Shi Y, Forrester WC . A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA 2002; 99: 5515–5520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu JY, DeRuiter SL, Turner DL . RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 2002; 99: 6047–6052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McManus MT, Petersen CP, Haines BB, Chen J, Sharp PA . Gene silencing using micro-RNA designed hairpins. RNA 2002; 8: 842–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elbashir SM, Lendeckel W, Tuschl T . RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001; 15: 188–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bernstein E, Caudy AA, Hammond SM, Hannon GJ . Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409: 363–366.

    Article  CAS  PubMed  Google Scholar 

  24. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003; 21: 635–637.

    Article  CAS  PubMed  Google Scholar 

  25. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ et al. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 2000; 157: 411–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhong H, De Marzo AM, Laughner E, Lim M, Holton DA, Zagzag D et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 1999; 59: 5830–5835.

    CAS  PubMed  Google Scholar 

  27. Stebbins CE, Kaelin Jr WG, Pavletich NP . Structure of the VHL–ElonginC–ElonginB complex: implications for VHL tumor suppressor function. Science 1999; 284: 455–461.

    CAS  PubMed  Google Scholar 

  28. Tanimoto K, Makino Y, Pereira T, Poellinger L . Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel–Lindau tumor suppressor protein. EMBO J 2000; 19: 4298–4309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Clifford SC, Astuti D, Hooper L, Maxwell PH, Ratcliffe PJ, Maher ER . The pVHL-associated SCF ubiquitin ligase complex: molecular genetic analysis of elongin B and C, Rbx1 and HIF-1alpha in renal cell carcinoma. Oncogene 2001; 20: 5067–5074.

    Article  CAS  PubMed  Google Scholar 

  30. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 1996; 379: 88–91.

    Article  CAS  PubMed  Google Scholar 

  31. Amellem O, Sandvik JA, Stokke T, Pettersen EO . The retinoblastoma protein-associated cell cycle arrest in S-phase under moderate hypoxia is disrupted in cells expressing HPV18 E7 oncoprotein. Br J Cancer 1998; 77: 862–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmaltz C, Hardenbergh PH, Wells A, Fisher DE . Regulation of proliferation–survival decisions during tumor cell hypoxia. Mol Cell Biol 1998; 18: 2845–2854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leuenroth SJ, Grutkoski PS, Ayala A, Simms HH . Suppression of PMN apoptosis by hypoxia is dependent on Mcl-1 and MAPK activity. Surgery 2000; 128: 171–177.

    Article  CAS  PubMed  Google Scholar 

  34. Hruban RH, Lacobuzio-Donahue C, Wilentz RE, Goggins M, Kern SE . Molecular pathology of pancreatic cancer. Cancer J 2001; 7: 251–258.

    CAS  PubMed  Google Scholar 

  35. Butz J, Wickstrom E, Edwards J . Characterization of mutations and loss of heterozygosity of p53 and K-ras2 in pancreatic cancer cell lines by immobilized polymerase chain reaction. BMC Biotechnol 2003; 3: 11.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ryan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbeit JM et al. Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Cancer Res 2000; 60: 4010–4015.

    CAS  PubMed  Google Scholar 

  37. Baek JH, Jang JE, Kang CM, Chung HY, Kim ND, Kim KW . Hypoxia-induced VEGF enhances tumor survivability via suppression of serum deprivation-induced apoptosis. Oncogene 2000; 19: 4621–4631.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizuno, T., Nagao, M., Yamada, Y. et al. Small interfering RNA expression vector targeting hypoxia-inducible factor 1 alpha inhibits tumor growth in hepatobiliary and pancreatic cancers. Cancer Gene Ther 13, 131–140 (2006). https://doi.org/10.1038/sj.cgt.7700871

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700871

Keywords

This article is cited by

Search

Quick links