Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Downregulation of osteopontin and bone sialoprotein II is related to reduced colony formation and metastasis formation of MDA-MB-231 human breast cancer cells

Abstract

Osteopontin (OPN), bone sialoprotein (BSPII), and osteonectin (ON) belong to a family of glycoproteins, which have been linked to cancer metastasis and progression. Here, we report on the selection of antisense oligonucleotides (ASOs), which are effective in reducing their protein levels. In human MDA-MB-231 breast cancer cells, the maximum inhibition of protein expression ranged from 84% (OPN) to 75% (BSPII) and 70% (ON). Erucylphospho-NNN-trimethylpropanolamine (ErPC3) was used as positive control and combination partner. Exposure to ErPC3 inhibited colony formation of MDA-MB-231 cells by 11% (10 μM), 45% (14 μM) and 78% (20 μM). The clonogenicity of breast cancer cells was reduced by 15%, 11%, 8% (5 μM), 39%, 19%, 14% (10 μM) and 46%, 39%, 21% (20 μM) in response to ASO-OPN-04, ASO-BSPII-06 and ASO-ON-03, respectively. Combination of ErPC3 with the ASOs caused additive combination effects. Pre-exposure to the ASOs, but not to the NSO, inhibited formation of osteolytic metastasis in three of four (ASO-OPN-04, P<0.03) and two of four (ASO-BSPII-06) nude rats, and reduced metastasis lesions significantly (T/C%=4.3 and 9.1, P=0.05, respectively). We conclude that downregulation of OPN and BSPII reduces colony formation of MDA-MB-231 cells and formation of osteolytic metastasis in nude rats.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

OPN:

osteopontin

BSPII:

bone sialoprotein II

ON:

osteonectin

ErPC3:

Erucylphospho-NNN-trimethylpropanolamine

ASO:

antisense oligonucleotide

NSO:

nonsense oligonucleotide

SIBLING:

small integrin-binding ligandN-linked glycoprotein

ECM:

extracellular matrix

FBS:

fetal bovine serum

HUSAR:

Heidelberg UNIX sequence Analysis Resource

References

  1. Agrawal D, Chen T, Irby R, et al. Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. J Natl Cancer Inst. 2002;94:513–521.

    Article  CAS  PubMed  Google Scholar 

  2. Rudland PS, Platt-Higgins A, El-Tanani M, et al. Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. Cancer Res. 2002;62:3417–3427.

    CAS  PubMed  Google Scholar 

  3. Tuck AB, Chambers AF . The role of osteopontin in breast cancer: clinical and experimental studies. J Mammary Gland Biol Neoplasia. 2001;6:419–427.

    Article  CAS  PubMed  Google Scholar 

  4. Senger DR, Perruzzi CA, Papadopoulos A . Elevated expression of secreted phosphoprotein I (osteopontin, 2ar) as a consequence of neoplastic transformation. Anticancer Res. 1989;9:1291–1299.

    CAS  PubMed  Google Scholar 

  5. Franzen A, Heinegard D . Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochem J. 1985;232:715–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Patarca R, Saavedra RA, Cantor H . Molecular and cellular basis of genetic resistance to bacterial infection: the role of the early T-lymphocyte activation-1/osteopontin gene. Crit Rev Immunol. 1993;13:225–246.

    CAS  PubMed  Google Scholar 

  7. Giachelli CM, Steitz S . Osteopontin: a versatile regulator of inflammation and biomineralization. Matrix Biol. 2000;19:615–622.

    Article  CAS  PubMed  Google Scholar 

  8. Rosol TJ . Pathogenesis of bone metastases: role of tumor-related proteins. J Bone Miner Res. 2000;15:844–850.

    Article  CAS  PubMed  Google Scholar 

  9. Fisher LW, Torchia DA . Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochem Biophys Res Commun. 2001;280:460–465.

    Article  CAS  PubMed  Google Scholar 

  10. Diel IJ, Solomayer EF, Seibel MJ, et al. Serum bone sialoprotein in patients with primary breast cancer is a prognostic marker for subsequent bone metastasis. Clin Cancer Res. 1999;5:3914–3919.

    CAS  PubMed  Google Scholar 

  11. Sharp JA, Sung V, Slavin J, Thompson EW, Henderson MA . Tumor cells are the source of osteopontin and bone sialoprotein expression in human breast cancer. Lab Invest. 1999;79:869–877.

    CAS  PubMed  Google Scholar 

  12. Waltregny D, Bellahcene A, Van Riet I, et al. Prognostic value of bone sialoprotein expression in clinically localized human prostate cancer. J Natl Cancer Inst. 1998;90:1000–1008.

    Article  CAS  PubMed  Google Scholar 

  13. Fedarko NS, Jain A, Karadag A, Van Eman MR, Fisher LW . Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clin Cancer Res. 2001;7:4060–4066.

    CAS  PubMed  Google Scholar 

  14. Karmatschek M, Maier I, Seibel MJ, Woitge HW, Ziegler R, Armbruster FP . Improved purification of human bone sialoprotein and development of a homologous radioimmunoassay. Clin Chem. 1997;43:2076–2082.

    CAS  PubMed  Google Scholar 

  15. Castronovo V, Bellahcene A . Evidence that breast cancer associated microcalcifications are mineralized malignant cells. Int J Oncol. 1998;12:305–308.

    CAS  PubMed  Google Scholar 

  16. Porte H, Chastre E, Prevot S, et al. Neoplastic progression of human colorectal cancer is associated with overexpression of the stromelysin-3 and BM-40/SPARC genes. Int J Cancer. 1995;64:70–75.

    Article  CAS  PubMed  Google Scholar 

  17. Yamanaka M, Kanda K, Li NC, et al. Analysis of the gene expression of SPARC and its prognostic value for bladder cancer. J Urol. 2001;166:2495–2499.

    Article  CAS  PubMed  Google Scholar 

  18. Jacob K, Webber M, Benayahu D, Kleinman HK . Osteonectin promotes prostate cancer cell migration and invasion: a possible mechanism for metastasis to bone. Cancer Res. 1999;59:4453–4457.

    CAS  PubMed  Google Scholar 

  19. Brekken RA, Sage EH . SPARC, a matricellular protein: at the crossroads of cell–matrix communication. Matrix Biol. 2001;19:816–827.

    Article  CAS  PubMed  Google Scholar 

  20. Bradshaw AD, Reed MJ, Sage EH . SPARC-null mice exhibit accelerated cutaneous wound closure. J Histochem Cytochem. 2002;50:1–10.

    Article  CAS  PubMed  Google Scholar 

  21. Yan Q, Sage EH . SPARC, a matricellular glycoprotein with important biological functions. J Histochem Cytochem. 1999;47:1495–1506.

    Article  CAS  PubMed  Google Scholar 

  22. Zuker M . On finding all suboptimal foldings of an RNA molecule. Science. 1989;244:48–52.

    Article  CAS  PubMed  Google Scholar 

  23. Devereux J, Haeberli P, Smithies O . A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984;12:387–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Senger M, Glatting KH, Ritter O, Suhai S . X-HUSAR, an X-based graphical interface for the analysis of genomic sequences. Comput Methods Programs Biomed. 1995;46:131–141.

    Article  CAS  PubMed  Google Scholar 

  25. Dunn OJ . Multiple comparison using rank sums. Technometrics. 1964;6:241–252.

    Article  Google Scholar 

  26. Berenbaum MC . What is synergy? Pharmacol Rev. 1989;41:93–141.

    CAS  PubMed  Google Scholar 

  27. Chou TC, Talalay P . Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55.

    Article  CAS  PubMed  Google Scholar 

  28. Papagerakis P, Berdal A, Mesbah M, et al. Investigation of osteocalcin, osteonectin, and dentin sialophosphoprotein in developing human teeth. Bone. 2002;30:377–385.

    Article  CAS  PubMed  Google Scholar 

  29. Denhardt DT, Giachelli CM, Rittling SR . Role of osteopontin in cellular signaling and toxicant injury. Annu Rev Pharmacol Toxicol. 2001;41:723–749.

    Article  CAS  PubMed  Google Scholar 

  30. Bellahcene A, Merville MP, Castronovo V . Expression of bone sialoprotein, a bone matrix protein, in human breast cancer. Cancer Res. 1994;54:2823–2826.

    CAS  PubMed  Google Scholar 

  31. Arafat HA, Wein AJ, Chacko S . Osteopontin gene expression and immunolocalization in the rabbit urinary tract. J Urol. 2002;167:746–752.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J, Takahashi K, Takahashi F, et al. Differential osteopontin expression in lung cancer. Cancer Lett. 2001;171:215–222.

    Article  CAS  PubMed  Google Scholar 

  33. Ibrahim T, Leong I, Sanchez-Sweatman O, et al. Expression of bone sialoprotein and osteopontin in breast cancer bone metastases. Clin Exp Metast. 2000;18:253–260.

    Article  CAS  Google Scholar 

  34. Kim YW, Park YK, Lee J, Ko SW, Yang MH . Expression of osteopontin and osteonectin in breast cancer. J Korean Med Sci. 1998;13:652–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barry ST, Ludbrook SB, Murrison E, Horgan CM . Analysis of the alpha4beta1 integrin–osteopontin interaction. Exp Cell Res. 2000;258:342–351.

    Article  CAS  PubMed  Google Scholar 

  36. Smith LL, Giachelli CM . Structural requirements for alpha 9 beta 1-mediated adhesion and migration to thrombin-cleaved osteopontin. Exp Cell Res. 1998;242:351–360.

    Article  CAS  PubMed  Google Scholar 

  37. Weber GF . The metastasis gene osteopontin: a candidate target for cancer therapy. Biochim Biophys Acta. 2001;1552:61–85.

    Article  CAS  PubMed  Google Scholar 

  38. Jain A, Karadag A, Fohr B, Fisher LW, Fedarko NS . Three SIBLINGs (small integrin-binding ligand, N-linked glycoproteins) enhance factor H′s cofactor activity enabling MCP-like cellular evasion of complement-mediated attack. J Biol Chem. 2002;277:13700–13708.

    Article  CAS  PubMed  Google Scholar 

  39. Yan Q, Clark JI, Wight TN, Sage EH . Alterations in the lens capsule contribute to cataractogenesis in SPARC-null mice. J Cell Sci. 2002;115:2747–2756.

    CAS  PubMed  Google Scholar 

  40. Briggs J, Chamboredon S, Castellazzi M, Kerry JA, Bos TJ . Transcriptional upregulation of SPARC, in response to c-Jun overexpression, contributes to increased motility and invasion of MCF7 breast cancer cells. Oncogene. 2002;21:7077–7091.

    Article  CAS  PubMed  Google Scholar 

  41. TA, Yin JJ, Taylor SD, et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest. 1996;98:1544–1549.

    Article  Google Scholar 

  42. Patzel V, Steidl U, Kronenwett R, Haas R, Sczakiel G . A theoretical approach to select effective antisense oligodeoxyribonucleotides at high statistical probability. Nucleic Acids Res. 1999;27:4328–4334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scherr M, Rossi JJ, Sczakiel G, Patzel V . RNA accessibility prediction: a theoretical approach is consistent with experimental studies in cell extracts. Nucleic Acids Res. 2000;28:2455–2461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lehmann MJ, Patzel V, Sczakiel G . Theoretical design of antisense genes with statistically increased efficacy. Nucleic Acids Res. 2000;28:2597–2604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Branch AD . A good antisense molecule is hard to find. Trends Biochem Sci. 1998;23:45–50.

    Article  CAS  PubMed  Google Scholar 

  46. Mergny JL, Duval-Valentin G, Nguyen CH, et al. Triple helix-specific ligands. Science. 1992;256:1681–1684.

    Article  CAS  PubMed  Google Scholar 

  47. Dennis JU, Dean NM, Bennett CF, Griffith JW, Lang CM, Welch DR . Human melanoma metastasis is inhibited following ex vivo treatment with an antisense oligonucleotide to protein kinase C-alpha. Cancer Lett. 1998;128:65–70.

    Article  CAS  PubMed  Google Scholar 

  48. Khan SA, Lopez-Chua CA, Zhang J, Fisher LW, Sorensen ES, Denhardt DT . Soluble osteopontin inhibits apoptosis of adherent endothelial cells deprived of growth factors. J Cell Biochem. 2002;85:728–736.

    Article  CAS  PubMed  Google Scholar 

  49. Behrend EI, Craig AM, Wilson SM, Denhardt DT, Chambers AF . Reduced malignancy of ras-transformed NIH 3T3 cells expressing antisense osteopontin RNA. Cancer Res. 1994;54:832–837.

    CAS  PubMed  Google Scholar 

  50. Su L, Mukherjee AB, Mukherjee BB . Expression of antisense osteopontin RNA inhibits tumor promoter-induced neoplastic transformation of mouse JB6 epidermal cells. Oncogene. 1995;10:2163–2169.

    CAS  PubMed  Google Scholar 

  51. Gardner HA, Berse B, Senger DR . Specific reduction in osteopontin synthesis by antisense RNA inhibits the tumorigenicity of transformed Rat1 fibroblasts. Oncogene. 1994;9:2321–2326.

    CAS  PubMed  Google Scholar 

  52. Van Tendeloo VF, Ponsaerts P, Lardon F, et al. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood. 2001;98:49–56.

    Article  CAS  PubMed  Google Scholar 

  53. Baker EA, Vaughn MV, Haviland DL . Choices in transfection methodologies: transfection efficiency should not be the sole criterion. Focus. 2000;22:31–33.

    Google Scholar 

  54. Nemoto H, Rittling SR, Yoshitake H, et al. Osteopontin deficiency reduces experimental tumor cell metastasis to bone and soft tissues. J Bone Miner Res. 2001;16:652–659.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The experiments described were performed within the framework of the DKFZ Heidelberg-MOS Israel cooperation in cancer research and one of the authors (HA) was funded by a grant from this cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin R Berger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adwan, H., Bäuerle, T. & Berger, M. Downregulation of osteopontin and bone sialoprotein II is related to reduced colony formation and metastasis formation of MDA-MB-231 human breast cancer cells. Cancer Gene Ther 11, 109–120 (2004). https://doi.org/10.1038/sj.cgt.7700659

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700659

Keywords

This article is cited by

Search

Quick links