Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomic profiling in renal cell carcinoma

Abstract

The treatment landscape of metastatic renal cell carcinoma (RCC) has been revolutionized over the past two decades, bringing forth an era in which more than a dozen therapeutic agents are now available to treat patients. As a consequence, personalized care has become a critical part of developing effective treatment guidelines and improving patient outcomes. One of the most important emerging aspects of precision medicine in cancer is matching patients and treatments based on the genomic characteristics of an individual and their tumour. Despite the lack of a single genomic predictor of treatment response or prognostication feature in RCC, emerging research suggests that the identification of such markers remains promising. Mutations in VHL and alterations in its downstream pathways are the mainstay of RCC development and progression. However, the predictive value of VHL mutations has been questioned. Further research has examined mutations in genes involved in chromosome remodelling (for example, PBRM1, BAP1 and SETD2), DNA methylation and DNA damage repair, all of which have been associated with clinical outcomes. Here, we provide a comprehensive overview of genomic evidence in the context of RCC and its potential predictive and prognostic value.

Key points

  • Renal cell carcinoma (RCC) is a complex disease entity with different histological subtypes characterized by distinct clinical and pathophysiological features; genomic research has identified relevant alterations associated with each RCC subtype.

  • In the past two decades, new insights into the mechanisms that underlie the development and progression of RCC have expanded treatment options; genomic data might guide treatment choices by enabling individuals to be matched with therapeutics that specifically target the genomic and molecular alterations present in their tumours.

  • Despite a mechanistic link between VHL alterations and RCC, alterations in this driver gene are not clearly associated with clinical outcomes.

  • Growing evidence supports the prognostic value of chromatin remodelling genes, such as PBRM1 and BAP1; alterations in PBRM1 also seem to have predictive value in responses to immunotherapy.

  • Concerning non-clear cell RCC, investigations are underway to identify the clinical role of alterations in genes such as MET in papillary RCC, TERT, TP53 and PTEN in chromophobe RCC, NF2 in collecting duct RCC and EZH2 in medullary subtypes of RCC.

  • The unique genomic and clinical features of a patient have a complex effect on disease progression and responses to treatment — this variability must be addressed when assessing potential prognostic and predictive factors in RCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of therapies in the metastatic RCC armamentarium.
Fig. 2: Location and cell of origin of RCC histological subtypes.
Fig. 3: Functional consequences of chromosome 3p loss.

Similar content being viewed by others

References

  1. Choueiri, T. K. & Motzer, R. J. Systemic therapy for metastatic renal-cell carcinoma. N. Engl. J. Med. 376, 354–366 (2017).

    CAS  PubMed  Google Scholar 

  2. Motzer, R. J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007).

    CAS  PubMed  Google Scholar 

  3. Hudes, G. et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med. 356, 2271–2281 (2007).

    CAS  PubMed  Google Scholar 

  4. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    CAS  PubMed  Google Scholar 

  5. Kim, W. Y. & Kaelin, W. G. Role of VHL gene mutation in human cancer. J. Clin. Oncol. 22, 4991–5004 (2004).

    CAS  PubMed  Google Scholar 

  6. Gnarra, J. R. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat. Genet. 7, 85–90 (1994).

    CAS  PubMed  Google Scholar 

  7. Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45, 860–867 (2013).

    CAS  PubMed  Google Scholar 

  8. Ricketts, C. J. et al. The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 23, 313–326.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rini, B. I. et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet 378, 1931–1939 (2011).

    CAS  PubMed  Google Scholar 

  10. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jonasch, E. NCCN guidelines updates: management of metastatic kidney cancer. J. Natl Compr. Canc. Netw. 17, 587–589 (2019).

    PubMed  Google Scholar 

  13. Motzer, R. J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1103–1115 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rini, B. I. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1116–1127 (2019).

    CAS  PubMed  Google Scholar 

  15. Seizinger, B. R. et al. Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332, 268–269 (1988).

    CAS  PubMed  Google Scholar 

  16. Frew, I. J. & Moch, H. A clearer view of the molecular complexity of clear cell renal cell carcinoma. Annu. Rev. Pathol. 10, 263–289 (2015).

    CAS  PubMed  Google Scholar 

  17. Wallace, A. C. & Nairn, R. C. Renal tubular antigens in kidney tumors. Cancer 29, 977–981 (1972).

    CAS  PubMed  Google Scholar 

  18. Lindgren, D., Sjolund, J. & Axelson, H. Tracing renal cell carcinomas back to the nephron. Trends Cancer 4, 472–484 (2018).

    PubMed  Google Scholar 

  19. Gu, Y. F. et al. Modeling renal cell carcinoma in mice: Bap1 and Pbrm1 inactivation drive tumor grade. Cancer Discov. 7, 900–917 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mitchell, T. J. et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell 173, 611–623.e17 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Latif, F. et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260, 1317–1320 (1993).

    CAS  PubMed  Google Scholar 

  22. Iliopoulos, O. et al. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc. Natl Acad. Sci. USA 93, 10595–10599 (1996).

    CAS  PubMed  Google Scholar 

  23. Wiesener, M. S. et al. Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1alpha in clear cell renal carcinomas. Cancer Res. 61, 5215–5222 (2001).

    CAS  PubMed  Google Scholar 

  24. Brauch, H. et al. VHL alterations in human clear cell renal cell carcinoma: association with advanced tumor stage and a novel hot spot mutation. Cancer Res. 60, 1942–1948 (2000).

    CAS  PubMed  Google Scholar 

  25. Yao, M. et al. VHL tumor suppressor gene alterations associated with good prognosis in sporadic clear-cell renal carcinoma. J. Natl Cancer Inst. 94, 1569–1575 (2002).

    CAS  PubMed  Google Scholar 

  26. Rini, B. I. et al. Clinical response to therapy targeted at vascular endothelial growth factor in metastatic renal cell carcinoma: impact of patient characteristics and Von Hippel-Lindau gene status. BJU Int. 98, 756–762 (2006).

    CAS  PubMed  Google Scholar 

  27. Patard, J. J. et al. Low CAIX expression and absence of VHL gene mutation are associated with tumor aggressiveness and poor survival of clear cell renal cell carcinoma. Int. J. Cancer 123, 395–400 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kroeger, N. et al. Deletions of chromosomes 3p and 14q molecularly subclassify clear cell renal cell carcinoma. Cancer 119, 1547–1554 (2013).

    CAS  PubMed  Google Scholar 

  29. Kondo, K. et al. Comprehensive mutational analysis of the VHL gene in sporadic renal cell carcinoma: relationship to clinicopathological parameters. Genes Chromosomes Cancer 34, 58–68 (2002).

    CAS  PubMed  Google Scholar 

  30. Schraml, P. et al. VHL mutations and their correlation with tumour cell proliferation, microvessel density, and patient prognosis in clear cell renal cell carcinoma. J. Pathol. 196, 186–193 (2002).

    CAS  PubMed  Google Scholar 

  31. Gimenez-Bachs, J. M. et al. Determination of vhl gene mutations in sporadic renal cell carcinoma. Eur. Urol. 49, 1051–1057 (2006).

    CAS  PubMed  Google Scholar 

  32. Choueiri, T. K. et al. von Hippel-Lindau gene status and response to vascular endothelial growth factor targeted therapy for metastatic clear cell renal cell carcinoma. J. Urol. 180, 860–865; discussion 865–866 (2008).

    CAS  PubMed  Google Scholar 

  33. Choueiri, T. K. et al. The role of aberrant VHL/HIF pathway elements in predicting clinical outcome to pazopanib therapy in patients with metastatic clear-cell renal cell carcinoma. Clin. Cancer Res. 19, 5218–5226 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Smits, K. M. et al. Genetic and epigenetic alterations in the von Hippel-Lindau gene: the influence on renal cancer prognosis. Clin. Cancer Res. 14, 782–787 (2008).

    CAS  PubMed  Google Scholar 

  35. Kim, B. J. et al. Prognostic and predictive value of VHL gene alteration in renal cell carcinoma: a meta-analysis and review. Oncotarget 8, 13979–13985 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. Reisman, D., Glaros, S. & Thompson, E. A. The SWI/SNF complex and cancer. Oncogene 28, 1653 (2009).

    CAS  PubMed  Google Scholar 

  37. Kenneth, N. S. et al. SWI/SNF regulates the cellular response to hypoxia. J. Biol. Chem. 284, 4123–4131 (2009).

    CAS  PubMed  Google Scholar 

  38. Hodges, C., Kirkland, J. G. & Crabtree, G. R. The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harb. Perspect. Med. 6, a026930 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. Thompson, M. Polybromo-1: the chromatin targeting subunit of the PBAF complex. Biochimie 91, 309–319 (2009).

    CAS  PubMed  Google Scholar 

  40. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Toma, M. I. et al. Loss of heterozygosity and copy number abnormality in clear cell renal cell carcinoma discovered by high-density affymetrix 10K single nucleotide polymorphism mapping array. Neoplasia 10, 634–642 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gao, W. et al. Inactivation of the PBRM1 tumor suppressor gene amplifies the HIF-response in VHL-/- clear cell renal carcinoma. Proc. Natl Acad. Sci. USA 114, 1027–1032 (2017).

    CAS  PubMed  Google Scholar 

  43. Pena-Llopis, S. et al. BAP1 loss defines a new class of renal cell carcinoma. Nat. Genet. 44, 751–759 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hakimi, A. A. et al. Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. Eur. Urol. 63, 848–854 (2013).

    PubMed  Google Scholar 

  45. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Google Scholar 

  46. Gossage, L. et al. Clinical and pathological impact of VHL, PBRM1, BAP1, SETD2, KDM6A, and JARID1c in clear cell renal cell carcinoma. Genes Chromosomes Cancer 53, 38–51 (2014).

    CAS  PubMed  Google Scholar 

  47. Ho, T. H. et al. Correlation between molecular subclassifications of clear cell renal cell carcinoma and targeted therapy response. Eur. Urol. Focus. 2, 204–209 (2016).

    PubMed  Google Scholar 

  48. Fay, A. P. et al. Whole-exome sequencing in two extreme phenotypes of response to VEGF-targeted therapies in patients with metastatic clear cell renal cell carcinoma. J. Natl Compr. Canc. Netw. 14, 820–824 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hsieh, J. J. et al. Genomic biomarkers of a randomized trial comparing first-line everolimus and sunitinib in patients with metastatic renal cell carcinoma. Eur. Urol. 71, 405–414 (2017).

    CAS  PubMed  Google Scholar 

  50. Voss, M. H. et al. Genomically annotated risk model for advanced renal-cell carcinoma: a retrospective cohort study. Lancet Oncol. 19, 1688–1698 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. McDermott, D. F. et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med. 24, 749–757 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Miao, D. et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359, 801–806 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hakimi, A. A. et al. The impact of PBRM1 mutations on overall survival in greater than 2,100 patients treated with immune checkpoint blockade (ICB). J. Clin. Oncol. 37, 666–666 (2019).

    Google Scholar 

  54. Alaiwi, S. A. et al. Association of polybromo-associated BAF (PBAF) complex mutations with overall survival (OS) in cancer patients (pts) treated with checkpoint inhibitors (ICIs). J. Clin. Oncol. 37, 103–103 (2019).

    Google Scholar 

  55. Guo, G. et al. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat. Genet. 44, 17–19 (2011).

    PubMed  Google Scholar 

  56. Kapur, P. et al. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol. 14, 159–167 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Joseph, R. W. et al. Loss of BAP1 protein expression is an independent marker of poor prognosis in patients with low-risk clear cell renal cell carcinoma. Cancer 120, 1059–1067 (2014).

    CAS  PubMed  Google Scholar 

  58. Zisman, A. et al. Risk group assessment and clinical outcome algorithm to predict the natural history of patients with surgically resected renal cell carcinoma. J. Clin. Oncol. 20, 4559–4566 (2002).

    PubMed  Google Scholar 

  59. Hakimi, A. A. et al. Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin. Cancer Res. 19, 3259–3267 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Joseph, R. W. et al. Clear cell renal cell carcinoma subtypes identified by BAP1 and PBRM1 expression. J. Urol. 195, 180–187 (2016).

    CAS  PubMed  Google Scholar 

  61. Shrestha, R. et al. BAP1 haploinsufficiency predicts a distinct immunogenic class of malignant peritoneal mesothelioma. Genome Med. 11, 8 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Yoh, S. M., Lucas, J. S. & Jones, K. A. The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation. Genes Dev. 22, 3422–3434 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Edmunds, J. W., Mahadevan, L. C. & Clayton, A. L. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 27, 406–420 (2008).

    CAS  PubMed  Google Scholar 

  64. Gao, X. et al. Comprehensive genomic profiling of metastatic tumors in a phase 2 biomarker study of everolimus in advanced renal cell carcinoma. Clin. Genitourin. Cancer 16, 341–348 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. Simon, J. M. et al. Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects. Genome Res. 24, 241–250 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tiedemann, R. L. et al. Dynamic reprogramming of DNA methylation in SETD2-deregulated renal cell carcinoma. Oncotarget 7, 1927–1946 (2016).

    PubMed  Google Scholar 

  68. Li, F. et al. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSalpha. Cell 153, 590–600 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kanu, N. et al. SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair. Oncogene 34, 5699–5708 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Pena-Llopis, S. et al. Cooperation and antagonism among cancer genes: the renal cancer paradigm. Cancer Res. 73, 4173–4179 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Muller, J. et al. Histone methyltransferase activity of a drosophila polycomb group repressor complex. Cell 111, 197–208 (2002).

    CAS  PubMed  Google Scholar 

  73. Yamaguchi, H. & Hung, M. C. Regulation and role of EZH2 in cancer. Cancer Res. Treat. 46, 209–222 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  PubMed  Google Scholar 

  75. Liu, L. et al. Enhancer of zeste homolog 2 (EZH2) promotes tumour cell migration and invasion via epigenetic repression of E-cadherin in renal cell carcinoma. BJU Int. 117, 351–362 (2016).

    CAS  PubMed  Google Scholar 

  76. Wagener, N. et al. The enhancer of zeste homolog 2 gene contributes to cell proliferation and apoptosis resistance in renal cell carcinoma cells. Int. J. Cancer 123, 1545–1550 (2008).

    CAS  PubMed  Google Scholar 

  77. Wagener, N. et al. Enhancer of zeste homolog 2 (EZH2) expression is an independent prognostic factor in renal cell carcinoma. BMC Cancer 10, 524 (2010).

    PubMed  PubMed Central  Google Scholar 

  78. Lee, H. W. & Choe, M. Expression of EZH2 in renal cell carcinoma as a novel prognostic marker. Pathol. Int. 62, 735–741 (2012).

    CAS  PubMed  Google Scholar 

  79. Ho, T. H. et al. Multicenter validation of enhancer of zeste homolog 2 expression as an independent prognostic marker in localized clear cell renal cell carcinoma. J. Clin. Oncol. 35, 3706–3713 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Adelaiye-Ogala, R. et al. EZH2 modifies sunitinib resistance in renal cell carcinoma by kinome reprogramming. Cancer Res. 77, 6651–6666 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Italiano, A. et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 19, 649–659 (2018).

    CAS  PubMed  Google Scholar 

  82. Agulnik, M. et al. A phase II, multicenter study of the EZH2 inhibitor tazemetostat in adult subjects with INI1-negative tumors or relapsed/refractory synovial sarcoma. J. Clin. Oncol. 34, TPS11071 (2016).

    Google Scholar 

  83. Germano, G. et al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature 552, 116–120 (2017).

    CAS  PubMed  Google Scholar 

  84. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    PubMed  PubMed Central  Google Scholar 

  86. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Teo, M. Y. et al. Alterations in DNA damage response and repair genes as potential marker of clinical benefit from PD-1/PD-L1 blockade in advanced urothelial cancers. J. Clin. Oncol. 36, 1685–1694 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ged, Y. et al. Alterations in DNA damage repair (DDR) genes and outcomes to systemic therapy in 225 immune-oncology (IO) versus tyrosine kinase inhibitor (TKI) treated metastatic clear cell renal cell carcinoma (mccRCC) patients (pts). J. Clin. Oncol. 37, 551 (2019).

    Google Scholar 

  89. Labriola, M. et al. Characterization of tumor mutational burden (TMB), PD-L1, and DNA repair genes to assess correlation with immune checkpoint inhibitors (ICIs) response in metastatic renal cell carcinoma (mRCC). J. Clin. Oncol. 37, 589–589 (2019).

    Google Scholar 

  90. Pignot, G. et al. Survival analysis of 130 patients with papillary renal cell carcinoma: prognostic utility of type 1 and type 2 subclassification. Urology 69, 230–235 (2007).

    PubMed  Google Scholar 

  91. Klatte, T. et al. Cytogenetic and molecular tumor profiling for type 1 and type 2 papillary renal cell carcinoma. Clin. Cancer Res. 15, 1162–1169 (2009).

    CAS  PubMed  Google Scholar 

  92. Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet. 16, 68–73 (1997).

    CAS  PubMed  Google Scholar 

  93. Schmidt, L. et al. Two North American families with hereditary papillary renal carcinoma and identical novel mutations in the MET proto-oncogene. Cancer Res. 58, 1719–1722 (1998).

    CAS  PubMed  Google Scholar 

  94. Linehan, W. M. et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N. Engl. J. Med. 374, 135–145 (2016).

    PubMed  Google Scholar 

  95. Birchmeier, C. et al. Met, metastasis, motility and more. Nat. Rev. Mol. Cell Biol. 4, 915–925 (2003).

    CAS  PubMed  Google Scholar 

  96. Tovar, E. A. & Graveel, C. R. MET in human cancer: germline and somatic mutations. Ann. Transl. Med. 5, 205 (2017).

    PubMed  PubMed Central  Google Scholar 

  97. Danilkovitch-Miagkova, A. & Zbar, B. Dysregulation of Met receptor tyrosine kinase activity in invasive tumors. J. Clin. Invest. 109, 863–867 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Pal, S. K. et al. Characterization of clinical cases of advanced papillary renal cell carcinoma via comprehensive genomic profiling. Eur. Urol. 73, 71–78 (2018).

    CAS  PubMed  Google Scholar 

  99. Cancer Genome Atlas Research Network et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N. Engl. J. Med. 374, 135–145 (2016).

    Google Scholar 

  100. Albiges, L. et al. MET is a potential target across all papillary renal cell carcinomas: result from a large molecular study of pRCC with CGH array and matching gene expression array. Clin. Cancer Res. 20, 3411–3421 (2014).

    CAS  PubMed  Google Scholar 

  101. Choueiri, T. K. et al. Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J. Clin. Oncol. 31, 181–186 (2013).

    CAS  PubMed  Google Scholar 

  102. Twardowski, P. W. et al. Parallel (randomized) phase II evaluation of tivantinib (ARQ197) and tivantinib in combination with erlotinib in papillary renal cell carcinoma: SWOG S1107. Kidney Cancer 1, 123–132 (2017).

    PubMed  PubMed Central  Google Scholar 

  103. Choueiri, T. K. et al. Biomarker-based phase II trial of savolitinib in patients with advanced papillary renal cell cancer. J. Clin. Oncol. 35, 2993–3001 (2017).

    CAS  PubMed  Google Scholar 

  104. Martinez Chanza, N. et al. Cabozantinib in advanced non-clear-cell renal cell carcinoma: a multicentre, retrospective, cohort study. Lancet Oncol. 20, 581–590 (2019).

    CAS  PubMed  Google Scholar 

  105. Schöffski P. et al. Crizotinib achieves long-lasting disease control in advanced papillary renal-cell carcinoma type 1 patients with MET mutations or amplification. EORTC 90101 CREATE trial. Eur. J. Cancer 87, 147–63 (2017).

    PubMed  Google Scholar 

  106. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03091192 (2020).

  107. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02761057 (2020).

  108. Amin, M. B. et al. Prognostic impact of histologic subtyping of adult renal epithelial neoplasms: an experience of 405 cases. Am. J. Surg. Pathol. 26, 281–291 (2002).

    PubMed  Google Scholar 

  109. Zbar, B. et al. Risk of renal and colonic neoplasms and spontaneous pneumothorax in the Birt-Hogg-Dube syndrome. Cancer Epidemiol. Biomarkers Prev. 11, 393–400 (2002).

    PubMed  Google Scholar 

  110. Volpe, A. et al. Chromophobe renal cell carcinoma (RCC): oncological outcomes and prognostic factors in a large multicentre series. BJU Int. 110, 76–83 (2012).

    PubMed  Google Scholar 

  111. Stec, R. et al. Chromophobe renal cell cancer — review of the literature and potential methods of treating metastatic disease. J. Exp. Clin. Cancer Res. 28, 134 (2009).

    PubMed  PubMed Central  Google Scholar 

  112. Prasad, S. R. et al. Segmental disorders of the nephron: histopathological and imaging perspective. Br. J. Radiol. 80, 593–602 (2007).

    CAS  PubMed  Google Scholar 

  113. Davis, C. F. et al. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell 26, 319–330 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Casuscelli, J. et al. Genomic landscape and evolution of metastatic chromophobe renal cell carcinoma. JCI Insight 2, e92688 (2017).

    PubMed Central  Google Scholar 

  115. Shuch, B. et al. Sarcomatoid renal cell carcinoma: a comprehensive review of the biology and current treatment strategies. Oncologist 17, 46–54 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Cheville, J. C. et al. Sarcomatoid renal cell carcinoma: an examination of underlying histologic subtype and an analysis of associations with patient outcome. Am. J. Surg. Pathol. 28, 435–441 (2004).

    PubMed  Google Scholar 

  117. Adibi, M. et al. Percentage of sarcomatoid component as a prognostic indicator for survival in renal cell carcinoma with sarcomatoid dedifferentiation. Urol. Oncol. 33, 427.e17–23 (2015).

    Google Scholar 

  118. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Jones, T. D. et al. Clonal divergence and genetic heterogeneity in clear cell renal cell carcinomas with sarcomatoid transformation. Cancer 104, 1195–1203 (2005).

    CAS  PubMed  Google Scholar 

  120. Pal, S. K. et al. RNA-seq reveals aurora kinase-driven mTOR pathway activation in patients with sarcomatoid metastatic renal cell carcinoma. Mol. Cancer Res. 13, 130–137 (2015).

    CAS  PubMed  Google Scholar 

  121. Voss, M. H. et al. Treatment outcome with mTOR inhibitors for metastatic renal cell carcinoma with nonclear and sarcomatoid histologies. Ann. Oncol. 25, 663–668 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Bi, M. et al. Genomic characterization of sarcomatoid transformation in clear cell renal cell carcinoma. Proc. Natl Acad. Sci. USA 113, 2170–2175 (2016).

    CAS  PubMed  Google Scholar 

  123. Malouf, G. G. et al. Genomic characterization of renal cell carcinoma with sarcomatoid dedifferentiation pinpoints recurrent genomic alterations. Eur. Urol. 70, 348–357 (2016).

    CAS  PubMed  Google Scholar 

  124. Bakouny, Z. et al. Efficacy of immune checkpoint inhibitors (ICI) and genomic characterization of sarcomatoid and/or rhabdoid (S/R) metastatic renal cell carcinoma (mRCC). J. Clin. Oncol. 37, 4514–4514 (2019).

    Google Scholar 

  125. Wang, Z. et al. Sarcomatoid renal cell carcinoma has a distinct molecular pathogenesis, driver mutation profile and transcriptional landscape. Clin. Cancer Res. 23, 6686–6696 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Sebastian, C., Artur, J. & Beata, S.-C. Collecting (Bellini) duct carcinoma: a clinical study of a rare tumour and review of the literature. Can. Urol. Assoc. J. 9, E589–E593 (2015).

    Google Scholar 

  127. Gupta, R. et al. Carcinoma of the collecting ducts of Bellini and renal medullary carcinoma: clinicopathologic analysis of 52 cases of rare aggressive subtypes of renal cell carcinoma with a focus on their interrelationship. Am. J. Surg. Pathol. 36, 1265–1278 (2012).

    PubMed  Google Scholar 

  128. Pinto, A. et al. Collecting duct carcinoma of the kidney: analysis of our experience at the SPANISH ‘Grupo Centro’of genitourinary tumors. Kidney Cancer 3, 177–182 (2019).

    CAS  Google Scholar 

  129. Pécuchet, N. et al. Triple combination of bevacizumab, gemcitabine and platinum salt in metastatic collecting duct carcinoma. Ann. Oncol. 24, 2963–2967 (2013).

    PubMed  Google Scholar 

  130. Malouf, G. G. et al. Unique transcriptomic profile of collecting duct carcinomas relative to upper tract urothelial carcinomas and other kidney carcinomas. Sci. Rep. 6, 30988 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Pal, S. K. et al. Characterization of clinical cases of collecting duct carcinoma of the kidney assessed by comprehensive genomic profiling. Eur. Urol. 70, 516–521 (2016).

    PubMed  Google Scholar 

  132. Lopez-Lago, M. A. et al. Loss of the tumor suppressor gene NF2, encoding merlin constitutively activates integrin-dependent mTORC1 signaling. Mol. Cell. Biol. 29, 4235–4249 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ali, S. M. et al. Exceptional response on addition of everolimus to taxane in urothelial carcinoma bearing an NF2 mutation. Eur. Urol. 67, 1195–1196 (2015).

    CAS  PubMed  Google Scholar 

  134. Ross, J. S. et al. Comprehensive genomic profiling of 295 cases of clinically advanced urothelial carcinoma of the urinary bladder reveals a high frequency of clinically relevant genomic alterations. Cancer 122, 702–711 (2016).

    CAS  PubMed  Google Scholar 

  135. Li, N. et al. Combined mTOR/MEK inhibition prevents proliferation and induces apoptosis in NF2-mutant tumors. Eur. Rev. Med. Pharmacol. Sci. 23, 5874–5883 (2019).

    CAS  PubMed  Google Scholar 

  136. Mathew Thomas, V., Bindal, P. & Vredenburgh, J. J. Everolimus and bevacizumab in the management of recurrent, progressive intracranial NF2 mutated meningioma. Case Rep. Oncol. 12, 126–130 (2019).

    PubMed  PubMed Central  Google Scholar 

  137. Goutagny, S. et al. Phase II study of mTORC1 inhibition by everolimus in neurofibromatosis type 2 patients with growing vestibular schwannomas. J. Neurooncol. 122, 313–320 (2015).

    CAS  PubMed  Google Scholar 

  138. Tsaras, G. et al. Complications associated with sickle cell trait: a brief narrative review. Am. J. Med. 122, 507–512 (2009).

    PubMed  Google Scholar 

  139. Shah, A. Y. et al. Management and outcomes of patients with renal medullary carcinoma: a multicentre collaborative study. BJU Int. 120, 782–792 (2017).

    PubMed  Google Scholar 

  140. Tannir, N. M. et al. Outcome of patients (pts) with renal medullary carcinoma (RMC) treated in the era of targeted therapies (TT): a multicenter experience. J. Clin. Oncol. 29, 386–386 (2011).

    Google Scholar 

  141. Msaouel, P. et al. Comparative transcriptomic profiling of renal medullary carcinoma (RMC) to determine distinct signatures and pathways associated with response to chemotherapy. J. Clin. Oncol. 36, 4575–4575 (2018).

    Google Scholar 

  142. Cheng, J. X. et al. Renal medullary carcinoma: rhabdoid features and the absence of INI1 expression as markers of aggressive behavior. Mod. Pathol. 21, 647–652 (2008).

    CAS  PubMed  Google Scholar 

  143. Liu, Q. et al. Renal medullary carcinoma: molecular, immunohistochemistry, and morphologic correlation. Am. J. Surg. Pathol. 37, 368–374 (2013).

    PubMed  Google Scholar 

  144. Calderaro, J. et al. SMARCB1/INI1 inactivation in renal medullary carcinoma. Histopathology 61, 428–435 (2012).

    PubMed  Google Scholar 

  145. Beckermann, K. E. et al. Renal medullary carcinoma: establishing standards in practice. J. Oncol. Pract. 13, 414–421 (2017).

    PubMed  PubMed Central  Google Scholar 

  146. Marino-Enriquez, A. et al. ALK rearrangement in sickle cell trait-associated renal medullary carcinoma. Genes Chromosomes Cancer 50, 146–153 (2011).

    CAS  PubMed  Google Scholar 

  147. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02601950 (2020).

  148. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03587662 (2020).

  149. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03274258 (2019).

  150. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02721732 (2020).

  151. Zhong, M. et al. Translocation renal cell carcinomas in adults: a single-institution experience. Am. J. Surg. Pathol. 36, 654–662 (2012).

    PubMed  PubMed Central  Google Scholar 

  152. Cheng, X. et al. Clinical characteristics of XP11.2 translocation/TFE3 gene fusion renal cell carcinoma: a systematic review and meta-analysis of observational studies. BMC Urol. 16, 40 (2016).

    PubMed  PubMed Central  Google Scholar 

  153. Choueiri, T. K. et al. Vascular endothelial growth factor-targeted therapy for the treatment of adult metastatic Xp11.2 translocation renal cell carcinoma. Cancer 116, 5219–5225 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Malouf, G. G. et al. Targeted agents in metastatic Xp11 translocation/TFE3 gene fusion renal cell carcinoma (RCC): a report from the Juvenile RCC network. Ann. Oncol. 21, 1834–1838 (2010).

    CAS  PubMed  Google Scholar 

  155. Malouf, G. G. et al. DNA methylation signature reveals cell ontogeny of renal cell carcinomas. Clin. Cancer Res. 22, 6236–6246 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Humphrey, P. A. et al. The 2016 WHO classification of tumours of the urinary system and male genital organs — Part B: prostate and bladder tumours. Eur. Urol. 70, 106–119 (2016).

    PubMed  Google Scholar 

  157. Argani, P. et al. Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am. J. Pathol. 159, 179–192 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Klatte, T. et al. Renal cell carcinoma associated with transcription factor E3 expression and Xp11.2 translocation: incidence, characteristics, and prognosis. Am. J. Clin. Pathol. 137, 761–768 (2012).

    PubMed  Google Scholar 

  159. Kauffman, E. C. et al. Molecular genetics and cellular features of TFE3 and TFEB fusion kidney cancers. Nat. Rev. Urol. 11, 465–475 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Malouf, G. G. et al. Genomic heterogeneity of translocation renal cell carcinoma. Clin. Cancer Res. 19, 4673–4684 (2013).

    CAS  PubMed  Google Scholar 

  161. Durinck, S. et al. Spectrum of diverse genomic alterations define non-clear cell renal carcinoma subtypes. Nat. Genet. 47, 13–21 (2015).

    CAS  PubMed  Google Scholar 

  162. Malouf, G. G. et al. Next-generation sequencing of translocation renal cell carcinoma reveals novel RNA splicing partners and frequent mutations of chromatin-remodeling genes. Clin. Cancer Res. 20, 4129–4140 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Network CGAR. Comprehensive molecular characterization of papillary renal-cell carcinoma. N. Engl. J. Med. 374, 135–145 (2016).

    Google Scholar 

  164. Motzer, R. J. et al. Adjuvant sunitinib for high-risk renal cell carcinoma after nephrectomy: subgroup analyses and updated overall survival results. Eur. Urol. 73, 62–68 (2018).

    CAS  PubMed  Google Scholar 

  165. Dizman, N. et al. Adjuvant treatment in renal cell carcinoma. Clin. Adv. Hematol. Oncol. 16, 555–563 (2018).

    PubMed  Google Scholar 

  166. Escudier, B. J. et al. Phase III trial of adjuvant sunitinib in patients with high-risk renal cell carcinoma (RCC): validation of the 16-gene recurrence score in stage III patients. J. Clin. Oncol. 35, 4508–4508 (2017).

    Google Scholar 

  167. Haas, N. B. et al. Adjuvant sunitinib or sorafenib for high-risk, non-metastatic renal-cell carcinoma (ECOG-ACRIN E2805): a double-blind, placebo-controlled, randomised, phase 3 trial. Lancet 387, 2008–2016 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Motzer, R. J. et al. Randomized phase III trial of adjuvant pazopanib versus placebo after nephrectomy in patients with locally advanced renal cell carcinoma (RCC) (PROTECT). J. Clin. Oncol. 35, 4507–4507 (2017).

    Google Scholar 

  169. Gross-Goupil, M. et al. Axitinib versus placebo as an adjuvant treatment of renal cell carcinoma: results from the phase III, randomized ATLAS trial. Ann. Oncol. 29, 2371–2378 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Zisman, A. et al. Improved prognostication of renal cell carcinoma using an integrated staging system. J. Clin. Oncol. 19, 1649–1657 (2001).

    CAS  PubMed  Google Scholar 

  171. Leibovich, B. C. et al. Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma. Cancer 97, 1663–1671 (2003).

    PubMed  Google Scholar 

  172. Frank, I. et al. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. J. Urol. 168, 2395–2400 (2002).

    PubMed  Google Scholar 

  173. Patard, J. J. et al. Use of the University of California Los Angeles integrated staging system to predict survival in renal cell carcinoma: an international multicenter study. J. Clin. Oncol. 22, 3316–3322 (2004).

    PubMed  Google Scholar 

  174. Rini, B. et al. A 16-gene assay to predict recurrence after surgery in localised renal cell carcinoma: development and validation studies. Lancet Oncol. 16, 676–685 (2015).

    CAS  PubMed  Google Scholar 

  175. Rini, B. I. et al. Validation of the 16-gene recurrence score in patients with locoregional, high-risk renal cell carcinoma from a phase III trial of adjuvant sunitinib. Clin. Cancer Res. 24, 4407–4415 (2018).

    CAS  PubMed  Google Scholar 

  176. Brannon, A. R. et al. Molecular stratification of clear cell renal cell carcinoma by consensus clustering reveals distinct subtypes and survival patterns. Genes Cancer 1, 152–163 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Brannon, A. R. et al. Meta-analysis of clear cell renal cell carcinoma gene expression defines a variant subgroup and identifies gender influences on tumor biology. Eur. Urol. 61, 258–268 (2012).

    PubMed  Google Scholar 

  178. Brooks, S. A. et al. ClearCode34: a prognostic risk predictor for localized clear cell renal cell carcinoma. Eur. Urol. 66, 77–84 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Zigeuner, R. et al. External validation of the Mayo Clinic stage, size, grade, and necrosis (SSIGN) score for clear-cell renal cell carcinoma in a single European centre applying routine pathology. Eur. Urol. 57, 102–109 (2010).

    PubMed  Google Scholar 

  180. Morgan, T. M. et al. A multigene signature based on cell cycle proliferation improves prediction of mortality within 5 Yr of radical nephrectomy for renal cell carcinoma. Eur. Urol. 73, 763–769 (2018).

    CAS  PubMed  Google Scholar 

  181. Karakiewicz, P. I. et al. Multi-institutional validation of a new renal cancer-specific survival nomogram. J. Clin. Oncol. 25, 1316–1322 (2007).

    PubMed  Google Scholar 

  182. Haake, S. M. et al. Patients with ClearCode34-identified molecular subtypes of clear cell renal cell carcinoma represent unique populations with distinct comorbidities. Urol. Oncol. 34, 122.e1–122.e7 (2016).

    CAS  Google Scholar 

  183. Rini, B. I. et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet 393, 2404–2415 (2019).

    PubMed  Google Scholar 

  184. Hakimi, A. A. et al. Transcriptomic profiling of the tumor microenvironment reveals distinct subgroups of clear cell renal cell cancer: data from a randomized phase III Trial. Cancer Discov. 9, 510–525 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Masiero, M. et al. A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis. Cancer Cell 24, 229–241 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Choueiri, T. K. et al. Biomarker analyses from JAVELIN renal 101: avelumab + axitinib (A+Ax) versus sunitinib (S) in advanced renal cell carcinoma (aRCC) [abstract 101]. J. Clin. Oncol. 37 (Suppl 15), 101 (2019).

    Google Scholar 

  187. Zhan, Y. et al. A five-gene signature predicts prognosis in patients with kidney renal clear cell carcinoma. Comput. Math. Methods Med. 2015, 842784 (2015).

    PubMed  PubMed Central  Google Scholar 

  188. Yao, M. et al. A three-gene expression signature model to predict clinical outcome of clear cell renal carcinoma. Int. J. Cancer 123, 1126–1132 (2008).

    CAS  PubMed  Google Scholar 

  189. Boguslawska, J. et al. Expression of genes involved in cellular adhesion and extracellular matrix remodeling correlates with poor survival of patients with renal cancer. J. Urol. 195, 1892–1902 (2016).

    CAS  PubMed  Google Scholar 

  190. Dai, J. et al. A four-gene signature predicts survival in clear-cell renal-cell carcinoma. Oncotarget 7, 82712–82726 (2016).

    PubMed  PubMed Central  Google Scholar 

  191. Xiong, Y. et al. Individualized immune-related gene signature predicts immune status and oncologic outcomes in clear cell renal cell carcinoma patients. Urol. Oncol. 38, 7.e1–7.e8 (2019).

    Google Scholar 

  192. Rebuzzi, S. E. et al. Prognostic and predictive molecular biomarkers in metastatic renal cell carcinoma patients treated with immune checkpoint inhibitors: a systematic review. Expert Rev. Mol. Diagn. 20, 169–185 (2020).

    CAS  PubMed  Google Scholar 

  193. Turajlic, S. et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell 173, 581–594.e12 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Turajlic, S. et al. Deterministic evolutionary trajectories influence primary tumor growth: TRACERx renal. Cell 173, 595–610.e11 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03226886 (2019).

  196. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Hahn, A. W. et al. Correlation of genomic alterations assessed by next-generation sequencing (NGS) of tumor tissue DNA and circulating tumor DNA (ctDNA) in metastatic renal cell carcinoma (mRCC): potential clinical implications. Oncotarget 8, 33614 (2017).

    PubMed  PubMed Central  Google Scholar 

  198. Al-Qassab, U. et al. PNFBA-12 Liquid biopsy for renal cell carcinoma. J. Urol. 197, e913–e914 (2017).

    Google Scholar 

  199. Pal, S. K. et al. Evolution of circulating tumor DNA profile from first-line to subsequent therapy in metastatic renal cell carcinoma. Eur. Urol. 72, 557–564 (2017).

    CAS  PubMed  Google Scholar 

  200. Markowski, M. C. et al. The microbiome and genitourinary cancer: a collaborative review. Eur. Urol. 75, 637–646 (2019).

    PubMed  Google Scholar 

  201. Routy, B. et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    CAS  Google Scholar 

  202. Pal, S. K. et al. Stool bacteriomic profiling in patients with metastatic renal cell carcinoma receiving vascular endothelial growth factor-tyrosine kinase inhibitors. Clin. Cancer Res. 21, 5286–5293 (2015).

    CAS  PubMed  Google Scholar 

  203. Helmink, B. A. et al. The microbiome, cancer, and cancer therapy. Nat. Med. 25, 377–388 (2019).

    CAS  PubMed  Google Scholar 

  204. Choueiri, T. K. et al. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1814–1823 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Motzer, R. J. et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 16, 1473–1482 (2015).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, wrote the manuscript, made substantial contributions to discussions of the content and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Sumanta K. Pal.

Ethics declarations

Competing interests

S.K.P. consults for Genentech, Aveo, Eisai, Roche, Pfizer, Novartis, Exelixis, Ipsen, BMS and Astellas. N.D. and E.J.P. declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks A.A. Hakimi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Chromothripsis

The shattering of a chromosome and reassembly of its fragments in a different order and orientation.

Loss of heterozygosity

A chromosomal event involving the loss of one allele of a gene or a chromosomal region.

Fuhrman grade

A scoring system based on pathological appearance (that is, diameter, shape and characteristics of nuclei) of renal cell carcinoma cells.

Rhabdoid pathological features

Pathological characteristics that may be present in RCC cells and include a large and prominent nucleus, and prominent eosinophilic inclusion bodies.

Microsatellite instability

The tendency to accumulate abnormally high rates of mutations owing to defects in DNA mismatch repair.

Nude mice

Laboratory mice with impaired T cell-mediated immunity due to the absence of a thymus.

TNM stage

A cancer staging system based on tumour extent, nodal involvement and the presence of metastatic disease.

Genomic hybridization studies

Genetic method used to analyse copy number variations.

Spindle cells

Narrow and elongated, spindle-shaped cells that can be present in sarcoma.

Adjuvant therapies

Cancer therapies used with the intention of avoiding disease recurrence after complete resection of a tumour.

Neoadjuvant settings

Treatment settings in which a cancer therapeutic is given to a patient with the intention of decreasing tumour burden before definitive surgery.

Allelic imbalance

Instance in which two alleles of a gene have different levels of expression.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dizman, N., Philip, E.J. & Pal, S.K. Genomic profiling in renal cell carcinoma. Nat Rev Nephrol 16, 435–451 (2020). https://doi.org/10.1038/s41581-020-0301-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-020-0301-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing