Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The roles of DNA, RNA and histone methylation in ageing and cancer

Abstract

Chromatin is a macromolecular complex predominantly comprising DNA, histone proteins and RNA. The methylation of chromatin components is highly conserved as it helps coordinate the regulation of gene expression, DNA repair and DNA replication. Dynamic changes in chromatin methylation are essential for cell-fate determination and development. Consequently, inherited or acquired mutations in the major factors that regulate the methylation of DNA, RNA and/or histones are commonly observed in developmental disorders, ageing and cancer. This has provided the impetus for the clinical development of epigenetic therapies aimed at resetting the methylation imbalance observed in these disorders. In this Review, we discuss the cellular functions of chromatin methylation and focus on how this fundamental biological process is corrupted in cancer. We discuss methylation-based cancer therapies and provide a perspective on the emerging data from early-phase clinical trial therapies that target regulators of DNA and histone methylation. We also highlight promising therapeutic strategies, including monitoring chromatin methylation for diagnostic purposes and combination epigenetic therapy strategies that may improve immune surveillance in cancer and increase the efficacy of conventional and targeted anticancer drugs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methylation of DNA, RNA and histones.
Fig. 2: Changes in DNA and histone methylation in cells from young, ageing and cancer-bearing individuals.
Fig. 3: Expression of oncometabolites and oncohistones in cancer changes DNA and histone methylation.
Fig. 4: Targeting methylation in combination with immunotherapy.
Fig. 5: New opportunities for therapeutic intervention and monitoring.

Similar content being viewed by others

References

  1. Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Jin, B., Li, Y. & Robertson, K. D. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2, 607–617 (2011).

    Google Scholar 

  3. Luo, C., Hajkova, P. & Ecker, J. R. Dynamic DNA methylation: In the right place at the right time. Science 361, 1336–1340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stojkovic, V. & Fujimori, D. G. Mutations in RNA methylating enzymes in disease. Curr. Opin. Chem. Biol. 41, 20–27 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xie, P., Zang, L. Q., Li, X. K. & Shu, Q. An epigenetic view of developmental diseases: new targets, new therapies. World J. Pediatr. 12, 291–297 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Kohli, R. M. & Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xiao, C. L. et al. N(6)-methyladenine DNA modification in the human genome. Mol. Cell 71, 306–318 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Xie, Q. et al. N(6)-methyladenine DNA modification in glioblastoma. Cell 175, 1228–1243 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Greenberg, M. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. (in the press).

  10. Barbieri, I. et al. Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control. Nature 552, 126–131 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berulava, T., Rahmann, S., Rademacher, K., Klein-Hitpass, L. & Horsthemke, B. N6-adenosine methylation in MiRNAs. PLOS ONE 10, e0118438 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Pendleton, K. E. et al. The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169, 824–835 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Squires, J. E. et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 40, 5023–5033 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xuan, J. J. et al. RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data. Nucleic Acids Res. 46, D327–D334 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, Z. et al. FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase. Cancer Cell 31, 127–141 (2017).

    Article  PubMed  CAS  Google Scholar 

  17. Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. In the press.

  18. Clarke, S. Protein methylation. Curr. Opin. Cell Biol. 5, 977–983 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Xhemalce, B., Dawson, M. A. & Bannister, A. J. in Epigenetic Regulation and Epigenomics (ed. Meyers, R. A.) 657–703 (Wiley-Blackwell, Weinheim, 2012).

  20. Jambhekar, A., Dhall, A. & Shi, Y. Roles and regulation of histone methylation in animal development. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-019-0151-1 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deguchi, T. & Barchas, J. Inhibition of transmethylations of biogenic amines by S-adenosylhomocysteine. Enhancement of transmethylation by adenosylhomocysteinase. J. Biol. Chem. 246, 3175–3181 (1971).

    CAS  PubMed  Google Scholar 

  22. Wang, Y., Sun, Z. & Szyf, M. S-Adenosyl-methionine (SAM) alters the transcriptome and methylome and specifically blocks growth and invasiveness of liver cancer cells. Oncotarget 8, 111866–111881 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. Tessarz, P. et al. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature 505, 564–568 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Goll, M. G. et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311, 395–398 (2006). The authors show that DNMT2, which had been thought to be a DNA methyltransferase on the basis of its sequence, actually methylates RNA.

    Article  CAS  PubMed  Google Scholar 

  25. Bannister, A. J., Schneider, R. & Kouzarides, T. Histone methylation: dynamic or static? Cell 109, 801–806 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Schubeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Maunakea, A. K., Chepelev, I., Cui, K. & Zhao, K. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res. 23, 1256–1269 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Papin, C. et al. Combinatorial DNA methylation codes at repetitive elements. Genome Res. 27, 934–946 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baba, Y. et al. Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Mol. Cancer 9, 125 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Howard, G., Eiges, R., Gaudet, F., Jaenisch, R. & Eden, A. Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene 27, 404–408 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Eckersley-Maslin, M. A., Alda-Catalinas, C. & Reik, W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat. Rev. Mol. Cell Biol. 19, 436–450 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kolasinska-Zwierz, P. et al. Differential chromatin marking of introns and expressed exons by H3K36me3. Nat. Genet. 41, 376–381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim, W., Choi, M. & Kim, J. E. The histone methyltransferase Dot1/DOT1L as a critical regulator of the cell cycle. Cell Cycle 13, 726–738 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wood, K., Tellier, M. & Murphy, S. DOT1L and H3K79 methylation in transcription and genomic stability. Biomolecules 8, 11 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  36. Garrett-Bakelman, F. E. & Melnick, A. M. Mutant IDH: a targetable driver of leukemic phenotypes linking metabolism, epigenetics and transcriptional regulation. Epigenomics 8, 945–957 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006). The authors coin the phrase ‘bivalent domain’ for a region of chromatin with specific epigenetic modifications where silenced developmental genes can be rapidly activated during development in a lineage-specific manner.

    Article  CAS  PubMed  Google Scholar 

  38. Jorgensen, S., Schotta, G. & Sorensen, C. S. Histone H4 lysine 20 methylation: key player in epigenetic regulation of genomic integrity. Nucleic Acids Res. 41, 2797–2806 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Henikoff, S. & Shilatifard, A. Histone modification: cause or cog? Trends Genet. 27, 389–396 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Biggar, K. K. & Li, S. S. Non-histone protein methylation as a regulator of cellular signalling and function. Nat. Rev. Mol. Cell Biol. 16, 5–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Popis, M. C., Blanco, S. & Frye, M. Posttranscriptional methylation of transfer and ribosomal RNA in stress response pathways, cell differentiation, and cancer. Curr. Opin. Oncol. 28, 65–71 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pandolfini, L. et al. METTL1 promotes let-7 MicroRNA processing via m7G methylation. Mol. Cell. https://doi.org/10.1016/j.molcel.2019.03.040 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Patil, D. P. et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537, 369–373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bartke, T. et al. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143, 470–484 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Foster, B. M. et al. Critical role of the UBL domain in stimulating the E3 ubiquitin ligase activity of UHRF1 toward chromatin. Mol. Cell 72, 739–752 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bell, A. C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Hashimoto, H. et al. Structural basis for the versatile and methylation-dependent binding of CTCF to DNA. Mol. Cell 66, 711–720 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wilson, V. L. & Jones, P. A. DNA methylation decreases in aging but not in immortal cells. Science 220, 1055–1057 (1983).

    Article  CAS  PubMed  Google Scholar 

  51. Unnikrishnan, A. et al. Revisiting the genomic hypomethylation hypothesis of aging. Ann. NY Acad. Sci. 1418, 69–79 (2018).

    Article  PubMed  Google Scholar 

  52. De Cecco, M. et al. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging (Albany NY) 5, 867–883 (2013).

    Article  Google Scholar 

  53. Belgnaoui, S. M., Gosden, R. G., Semmes, O. J. & Haoudi, A. Human LINE-1 retrotransposon induces DNA damage and apoptosis in cancer cells. Cancer Cell. Int. 6, 13 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Gasior, S. L., Wakeman, T. P., Xu, B. & Deininger, P. L. The human LINE-1 retrotransposon creates DNA double-strand breaks. J. Mol. Biol. 357, 1383–1393 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Belancio, V. P., Deininger, P. L. & Roy-Engel, A. M. LINE dancing in the human genome: transposable elements and disease. Genome Med. 1, 97 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Tan, L. et al. Naked mole rat cells have a stable epigenome that resists iPSC reprogramming. Stem. Cell Rep. 9, 1721–1734 (2017).

    Article  CAS  Google Scholar 

  57. Beerman, I. et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12, 413–425 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Maegawa, S. et al. Caloric restriction delays age-related methylation drift. Nat. Commun. 8, 539 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Rakyan, V. K. et al. Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 20, 434–439 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Teschendorff, A. E. et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res. 20, 440–446 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Esteller, M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21, 5427–5440 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Field, A. E. et al. DNA methylation clocks in aging: categories, causes, and consequences. Mol. Cell 71, 882–895 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Marioni, R. E. et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 16, 25 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Steensma, D. P. et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126, 9–16 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging (Albany NY) 8, 1844–1865 (2016).

    Article  CAS  Google Scholar 

  68. Sen, P., Shah, P. P., Nativio, R. & Berger, S. L. Epigenetic mechanisms of longevity and aging. Cell 166, 822–839 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. McCauley, B. S. & Dang, W. Histone methylation and aging: lessons learned from model systems. Biochim. Biophys. Acta 1839, 1454–1462 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu, L. et al. Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep. 4, 189–204 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sun, D. et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14, 673–688 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Buschbeck, M. et al. The histone variant macroH2A is an epigenetic regulator of key developmental genes. Nat. Struct. Mol. Biol. 16, 1074–1079 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Herbig, U., Ferreira, M., Condel, L., Carey, D. & Sedivy, J. M. Cellular senescence in aging primates. Science 311, 1257 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Kreiling, J. A. et al. Age-associated increase in heterochromatic marks in murine and primate tissues. Aging Cell 10, 292–304 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Dang, W. et al. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459, 802–807 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. O’Sullivan, R. J., Kubicek, S., Schreiber, S. L. & Karlseder, J. Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat. Struct. Mol. Biol. 17, 1218–1225 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Min, K. W. et al. Profiling of m6A RNA modifications identified an age-associated regulation of AGO2 mRNA stability. Aging Cell 17, e12753 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Belancio, V. P., Roy-Engel, A. M., Pochampally, R. R. & Deininger, P. Somatic expression of LINE-1 elements in human tissues. Nucleic Acids Res. 38, 3909–3922 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Berman, B. P. et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat. Genet. 44, 40–46 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Hansen, K. D. et al. Increased methylation variation in epigenetic domains across cancer types. Nat. Genet. 43, 768–775 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Buscarlet, M. et al. Lineage restriction analyses in CHIP indicate myeloid bias for TET2 and multipotent stem cell origin for DNMT3A. Blood 132, 277–280 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Challen, G. A. et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 44, 23–31 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Jeong, M. et al. Loss of Dnmt3a immortalizes hematopoietic stem cells in vivo. Cell Rep. 23, 1–10 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ko, M. et al. Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc. Natl Acad. Sci. USA 108, 14566–14571 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, Z. et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118, 4509–4518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11–24 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Quivoron, C. et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20, 25–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Coombs, C. C. et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 21, 374–382 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017). The authors show that clonal haematopoiesis is associated with a near doubling in the risk of atherosclerotic coronary artery disease.

    Article  PubMed  PubMed Central  Google Scholar 

  94. You, J. S. & Jones, P. A. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22, 9–20 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Elkashef, S. M. et al. IDH mutation, competitive inhibition of FTO, and RNA methylation. Cancer Cell 31, 619–620 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114 (2016). The authors show that IDH-mutant cancers exhibit hypermethylation of cohesin and CTCF binding sites, which results in altered topological chromatin domain structure and abnormal gene expression.

    Article  CAS  PubMed  Google Scholar 

  97. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465, 966 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cairns, R. A. & Mak, T. W. Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. Cancer Discov. 3, 730–741 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010). The authors show that IDH1 and IDH2 mutations are mutually exclusive with TET2 mutations in AML, thereby establishing a mechanism of mutant-IDH function through perturbation of DNA methylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Glass, J. L. et al. Epigenetic identity in AML depends on disruption of nonpromoter regulatory elements and is affected by antagonistic effects of mutations in epigenetic modifiers. Cancer Discov. 7, 868–883 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gaidzik, V. I. et al. TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group. J. Clin. Oncol. 30, 1350–1357 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Su, R. et al. R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling. Cell 172, 90–105 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Piunti, A. & Shilatifard, A. Epigenetic balance of gene expression by Polycomb and COMPASS families. Science 352, aad9780 (2016).

    Article  PubMed  CAS  Google Scholar 

  105. Mohammad, F. & Helin, K. Oncohistones: drivers of pediatric cancers. Genes Dev. 31, 2313–2324 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012). The authors describe the histone gene mutations H3K27M and H3G34R or H3G34V in paediatric glioblastoma.

    Article  CAS  PubMed  Google Scholar 

  107. Sturm, D. et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Wu, G. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44, 251–253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wan, Y. C. E., Liu, J. & Chan, K. M. Histone H3 mutations in cancer. Curr. Pharmacol. Rep. 4, 292–300 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nikbakht, H. et al. Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma. Nat. Commun. 7, 11185 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mackay, A. et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 32, 520–537 (2017). A comprehensive analysis of high-grade and diffuse intrinsic pontine glioma provides a resource for the development of therapeutics for tumour subgroups with distinct biological drivers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lewis, P. W. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340, 857–861 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bender, S. et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24, 660–672 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Chan, K. M. et al. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev. 27, 985–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Justin, N. et al. Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2. Nat. Commun. 7, 11316 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Herz, H. M. et al. Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling. Science 345, 1065–1070 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang, X. et al. Molecular analysis of PRC2 recruitment to DNA in chromatin and its inhibition by RNA. Nat. Struct. Mol. Biol. 24, 1028–1038 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Stafford, J. M. et al. Multiple modes of PRC2 inhibition elicit global chromatin alterations in H3K27M pediatric glioma. Sci. Adv. 4, eaau5935 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Castel, D. et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol. 130, 815–827 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Grasso, C. S. et al. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat. Med. 21, 555–559 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hashizume, R. et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat. Med. 20, 1394–1396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kruidenier, L. et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488, 404–408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mohammad, F. et al. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat. Med. 23, 483–492 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Piunti, A. et al. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat. Med. 23, 493–500 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dawson, M. A. The cancer epigenome: Concepts, challenges, and therapeutic opportunities. Science 355, 1147–1152 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Pleyer, L. & Greil, R. Digging deep into “dirty” drugs - modulation of the methylation machinery. Drug Metab. Rev. 47, 252–279 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dombret, H. et al. International phase 3 study of azacitidine versus conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood 126, 291–299 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fenaux, P. et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J. Clin. Oncol. 28, 562–569 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Fenaux, P. et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 10, 223–232 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Silverman, L. R. et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J. Clin. Oncol. 20, 2429–2440 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Jones, P. A., Issa, J. P. & Baylin, S. Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 17, 630–641 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Oki, Y., Jelinek, J., Shen, L., Kantarjian, H. M. & Issa, J. P. Induction of hypomethylation and molecular response after decitabine therapy in patients with chronic myelomonocytic leukemia. Blood 111, 2382–2384 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tsai, H. C. et al. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 21, 430–446 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Agrawal, K., Das, V., Vyas, P. & Hajduch, M. Nucleosidic DNA demethylating epigenetic drugs – a comprehensive review from discovery to clinic. Pharmacol. Ther. 188, 45–79 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Pappalardi, M. B. et al. Abstract 2994: discovery of selective, noncovalent small molecule inhibitors of DNMT1 as an alternative to traditional DNA hypomethylating agents. Cancer Res. 78 (Suppl. 13), 2994 (2018).

    Google Scholar 

  136. Arrowsmith, C. H., Bountra, C., Fish, P. V., Lee, K. & Schapira, M. Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug Discov. 11, 384–400 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. McCabe, M. T., Mohammad, H. P., Barbash, O. & Kruger, R. G. Targeting histone methylation in cancer. Cancer J. 23, 292–301 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wassef, M. & Margueron, R. The multiple facets of PRC2 alterations in cancers. J. Mol. Biol. 429, 1978–1993 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Beguelin, W. et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23, 677–692 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B cell lymphomas of germinal-center origin. Nat. Genet. 42, 181–185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sneeringer, C. J. et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B cell lymphomas. Proc. Natl Acad. Sci. USA 107, 20980–20985 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bodor, C. et al. EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood 122, 3165–3168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. LaFave, L. M. et al. Loss of BAP1 function leads to EZH2-dependent transformation. Nat. Med. 21, 1344–1349 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kim, K. H. et al. SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nat. Med. 21, 1491–1496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bitler, B. G. et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat. Med. 21, 231–238 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Wilson, B. G. et al. Epigenetic antagonism between Polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 18, 316–328 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Stanton, B. Z. et al. Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nat. Genet. 49, 282–288 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Kadoch, C. et al. Dynamics of BAF-Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat. Genet. 49, 213–222 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Bitler, B. G., Aird, K. M. & Zhang, R. Epigenetic synthetic lethality in ovarian clear cell carcinoma: EZH2 and ARID1A mutations. Mol. Cell Oncol. 3, e1032476 (2016).

    Article  PubMed  CAS  Google Scholar 

  151. Campagne, A. et al. BAP1 complex promotes transcription by opposing PRC1-mediated H2A ubiquitylation. Nat. Commun. 10, 348 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Schoumacher, M. et al. Uveal melanoma cells are resistant to EZH2 inhibition regardless of BAP1 status. Nat. Med. 22, 577–578 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet. 42, 722–726 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Puda, A. et al. Frequent deletions of JARID2 in leukemic transformation of chronic myeloid malignancies. Am. J. Hematol. 87, 245–250 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Score, J. et al. Inactivation of polycomb repressive complex 2 components in myeloproliferative and myelodysplastic/myeloproliferative neoplasms. Blood 119, 1208–1213 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Ueda, T. et al. EED mutants impair polycomb repressive complex 2 in myelodysplastic syndrome and related neoplasms. Leukemia 26, 2557–2560 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Nikoloski, G., van der Reijden, B. A. & Jansen, J. H. Mutations in epigenetic regulators in myelodysplastic syndromes. Int. J. Hematol. 95, 8–16 (2012).

    Article  PubMed  Google Scholar 

  158. Lee, W. et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat. Genet. 46, 1227–1232 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ntziachristos, P. et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat. Med. 18, 298–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhang, J. et al. The genetic basis of early T cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Comet, I., Riising, E. M., Leblanc, B. & Helin, K. Maintaining cell identity: PRC2-mediated regulation of transcription and cancer. Nat. Rev. Cancer 16, 803–810 (2016).

    Article  CAS  PubMed  Google Scholar 

  162. Chen, L. et al. CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. J. Clin. Invest. 128, 446–462 (2018).

    Article  PubMed  Google Scholar 

  163. Tsubota, S. et al. PRC2-mediated transcriptomic alterations at the embryonic stage govern tumorigenesis and clinical outcome in MYCN-driven neuroblastoma. Cancer Res. 77, 5259–5271 (2017).

    Article  CAS  PubMed  Google Scholar 

  164. Iliopoulos, D. et al. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol. Cell 39, 761–772 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gardner, E. E. et al. Chemosensitive relapse in small cell lung cancer proceeds through an EZH2-SLFN11 axis. Cancer Cell 31, 286–299 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hubaux, R. et al. EZH2 promotes E2F-driven SCLC tumorigenesis through modulation of apoptosis and cell-cycle regulation. J. Thorac Oncol. 8, 1102–1106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA 100, 11606–11611 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    Article  CAS  PubMed  Google Scholar 

  169. Chi, N. S. et al. A phase I study of the EZH2 inhibitor tazemetostat in pediatric subjects with relapsed or refractory INI1-negative tumors or synovial sarcoma [abstract]. J. Clin. Oncol. 34 (Suppl. 15), TPS10587 (2016).

    Article  Google Scholar 

  170. Zauderer, M. G. et al. Phase 2, multicenter study of the EZH2 inhibitor tazemetostat as monotherapy in adults with relapsed or refractory (R/R) malignant mesothelioma (MM) with BAP1 inactivation [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 8515 (2018).

    Article  Google Scholar 

  171. [No authors listed]. Positive results for tazemetostat in follicular lymphoma. Cancer Discov. 8, OF3 (2018).

  172. McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492, 108–112 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Knutson, S. K. et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat. Chem. Biol. 8, 890–896 (2012).

    Article  CAS  PubMed  Google Scholar 

  174. Souroullas, G. P. et al. An oncogenic Ezh2 mutation induces tumors through global redistribution of histone 3 lysine 27 trimethylation. Nat. Med. 22, 632–640 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Stein, E. M. et al. The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood 131, 2661–2669 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Gulla, A. et al. Protein arginine methyltransferase 5 has prognostic relevance and is a druggable target in multiple myeloma. Leukemia 32, 996–1002 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Blanc, R. S. & Richard, S. Arginine methylation: the coming of age. Mol. Cell 65, 8–24 (2017).

    Article  CAS  PubMed  Google Scholar 

  178. Hu, D. et al. Interplay between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis. Nat. Commun. 6, 8419 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Tarighat, S. S. et al. The dual epigenetic role of PRMT5 in acute myeloid leukemia: gene activation and repression via histone arginine methylation. Leukemia 30, 789–799 (2016).

    Article  CAS  PubMed  Google Scholar 

  180. Yan, F. et al. Genetic validation of the protein arginine methyltransferase PRMT5 as a candidate therapeutic target in glioblastoma. Cancer Res. 74, 1752–1765 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Koh, C. M. et al. MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature 523, 96–100 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. Li, Y. et al. PRMT5 is required for lymphomagenesis triggered by multiple oncogenic drivers. Cancer Discov. 5, 288–303 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Mack, S. C. et al. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506, 445–450 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chan-Penebre, E. et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat. Chem. Biol. 11, 432–437 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Klose, R. J., Kallin, E. M. & Zhang, Y. JmjC-domain-containing proteins and histone demethylation. Nat. Rev. Genet. 7, 715–727 (2006).

    Article  CAS  PubMed  Google Scholar 

  186. Somervaille, T. et al. Safety, phamacokinetics (PK), pharmacodynamics (PD) and preliminary activity in acute leukemia of Ory-1001, a first-in-class inhibitor of lysine-specific histone demethylase 1A (LSD1/KDM1A): initial results from a first-in-human phase 1 study. Blood 128, 4060–4060 (2016).

    Google Scholar 

  187. Hamamoto, R., Saloura, V. & Nakamura, Y. Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nat. Rev. Cancer 15, 110 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. Biggar, K. K. & Li, S. S. C. Non-histone protein methylation as a regulator of cellular signalling and function. Nat. Rev. Mol. Cell Biol. 16, 5 (2014).

    Article  PubMed  CAS  Google Scholar 

  189. Fong, C. Y. et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature 525, 538–542 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Rathert, P. et al. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature 525, 543–547 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Shu, S. et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature 529, 413–417 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Tyler, D. S. et al. Click chemistry enables preclinical evaluation of targeted epigenetic therapies. Science 356, 1397–1401 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Holohan, C., Van Schaeybroeck, S., Longley, D. B. & Johnston, P. G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013).

    Article  CAS  PubMed  Google Scholar 

  194. Marazzi, I., Greenbaum, B. D., Low, D. H. P. & Guccione, E. Chromatin dependencies in cancer and inflammation. Nat. Rev. Mol. Cell Biol. 19, 245–261 (2018).

    Article  CAS  PubMed  Google Scholar 

  195. Sigalotti, L., Fratta, E., Coral, S. & Maio, M. Epigenetic drugs as immunomodulators for combination therapies in solid tumors. Pharmacol. Ther. 142, 339–350 (2014).

    Article  CAS  PubMed  Google Scholar 

  196. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015). Chiappinelli et al. and Roulois et al. demonstrate that DNA-demethylating agents activate endogenous retroviral elements in cancer cells, leading to activation of double-stranded RNA sensing pathways and type I interferon production, and set a precedent for combining use of epigenetic therapeutic agents with immunotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sheng, W. et al. LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell 174, 549–563 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Topper, M. J. et al. Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung cancer. Cell 171, 1284–1300 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Stone, M. L. et al. Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc. Natl Acad. Sci. USA 114, E10981–E10990 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Arenas-Ramirez, N., Sahin, D. & Boyman, O. Epigenetic mechanisms of tumor resistance to immunotherapy. Cell. Mol. Life Sci. 75, 4163–4176 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Han, D. et al. Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature 566, 270–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Brach, D. et al. EZH2 inhibition by tazemetostat results in altered dependency on B cell activation signaling in DLBCL. Mol. Cancer Ther. 16, 2586–2597 (2017).

    Article  CAS  PubMed  Google Scholar 

  204. Beguelin, W. et al. EZH2 and BCL6 cooperate to assemble CBX8-BCOR complex to repress bivalent promoters, mediate germinal center formation and lymphomagenesis. Cancer Cell 30, 197–213 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Matei, D. et al. Epigenetic resensitization to platinum in ovarian cancer. Cancer Res. 72, 2197–2205 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Nguyen, A. T. & Zhang, Y. The diverse functions of Dot1 and H3K79 methylation. Genes Dev. 25, 1345–1358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406–411 (2004).

    Article  CAS  PubMed  Google Scholar 

  208. Lin, Y. H. et al. Global reduction of the epigenetic H3K79 methylation mark and increased chromosomal instability in CALM-AF10-positive leukemias. Blood 114, 651–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  209. Wakeman, T. P., Wang, Q., Feng, J. & Wang, X. F. Bat3 facilitates H3K79 dimethylation by DOT1L and promotes DNA damage-induced 53BP1 foci at G1/G2 cell-cycle phases. EMBO J. 31, 2169–2181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Oksenych, V. et al. Histone methyltransferase DOT1L drives recovery of gene expression after a genotoxic attack. PLOS Genet. 9, e1003611 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Prebet, T. et al. Prolonged administration of azacitidine with or without entinostat for myelodysplastic syndrome and acute myeloid leukemia with myelodysplasia-related changes: results of the US Leukemia Intergroup trial E1905. J. Clin. Oncol. 32, 1242–1248 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kalin, J. H. et al. Targeting the CoREST complex with dual histone deacetylase and demethylase inhibitors. Nat. Commun. 9, 53 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Liszczak, G. P. et al. Genomic targeting of epigenetic probes using a chemically tailored Cas9 system. Proc. Natl Acad. Sci. USA 114, 681–686 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Luskin, M. R. et al. A clinical measure of DNA methylation predicts outcome in de novo acute myeloid leukemia. JCI Insight 1, e87323 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Koch, A. et al. Analysis of DNA methylation in cancer: location revisited. Nat. Rev. Clin. Oncol. 15, 459–466 (2018).

    Article  CAS  PubMed  Google Scholar 

  217. Bienkowski, M. et al. Clinical neuropathology practice guide 5-2015: MGMT methylation pyrosequencing in glioblastoma: unresolved issues and open questions. Clin. Neuropathol. 34, 250–257 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Shen, S. Y. et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 563, 579–583 (2018). The authors describe the development of a sensitive method to profile the methylation of cell-free tumour DNA circulating in plasma, and propose that the profile may be a useful biomarker for cancer diagnosis and monitoring.

    Article  CAS  PubMed  Google Scholar 

  219. Dawson, S. J. et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).

    Article  CAS  PubMed  Google Scholar 

  220. Agarwal, R. et al. Dynamic molecular monitoring reveals that SWI-SNF mutations mediate resistance to ibrutinib plus venetoclax in mantle cell lymphoma. Nat. Med. 25, 119–129 (2019).

    Article  CAS  PubMed  Google Scholar 

  221. Rodriguez-Terrones, D. & Torres-Padilla, M. E. Nimble and ready to mingle: transposon outbursts of early development. Trends Genet. 34, 806–820 (2018).

    Article  CAS  PubMed  Google Scholar 

  222. Faulkner, G. J. et al. The regulated retrotransposon transcriptome of mammalian cells. Nat. Genet. 41, 563 (2009).

    Article  CAS  PubMed  Google Scholar 

  223. Tchasovnikarova, I. A. et al. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells. Science 348, 1481–1485 (2015). The first identification of the human silencing hub (HUSH) complex, which has been implicated in silencing of integrated retroviruses and long interspersed nuclear elements 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Liu, N. et al. Selective silencing of euchromatic L1s revealed by genome-wide screens for L1 regulators. Nature 553, 228–232 (2018).

    Article  CAS  PubMed  Google Scholar 

  225. Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    Article  CAS  PubMed  Google Scholar 

  226. Ohm, J. E. et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat. Genet. 39, 237–242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Schlesinger, Y. et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat. Genet. 39, 232–236 (2007).

    Article  CAS  PubMed  Google Scholar 

  228. Widschwendter, M. et al. Epigenetic stem cell signature in cancer. Nat. Genet. 39, 157–158 (2007).

    Article  CAS  PubMed  Google Scholar 

  229. Nacev, B. A. et al. The expanding landscape of ‘oncohistone’ mutations in human cancers. Nature 567, 473–478 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Fang, J. et al. Cancer-driving H3G34V/R/D mutations block H3K36 methylation and H3K36me3-MutSalpha interaction. Proc. Natl Acad. Sci. USA 115, 9598–9603 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Canadas, I. et al. Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Nat. Med. 24, 1143–1150 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Zingg, D. et al. The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep. 20, 854–867 (2017).

    Article  CAS  PubMed  Google Scholar 

  233. Abou El Hassan, M. et al. Cancer cells hijack PRC2 to modify multiple cytokine pathways. PLOS ONE 10, e0126466 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Peng, D. et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249–253 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Wang, D. et al. Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity. Cell Rep. 23, 3262–3274 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Goswami, S. et al. Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. J. Clin. Invest. 128, 3813–3818 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to researching data for the article, the discussion of content, writing of the manuscript and editing it before final submission.

Corresponding authors

Correspondence to Andrew J. Bannister or Mark A. Dawson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks P. Adams, E. So and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://www.clinicaltrials.gov

The Cancer Genome Atlas Program: https://tcga-data.nci.nih.gov/docs/publications/tcga

Supplementary information

Glossary

SET domain

An evolutionarily conserved domain initially identified in the Su(var)3-9, enhancer of zeste and trithorax proteins in the fruitfly, whose conformation determines the catalytic activity of histone methyltransferases.

X chromosome inactivation

A gene-dosage compensation process by which one of the two X chromosomes in the cells of female mammals is transcriptionally silenced through heterochromatin formation.

Gene imprinting

Heritable gene expression pattern established in the germline through epigenetic modifications to maintain parent-of-origin gene-expression status in somatic cells.

Chromodomain

A conserved structural domain of ~40–50 amino acids commonly found in proteins associated with chromatin remodelling and with proteins that bind methylated histones.

Topologically associating domains

Insulated three-dimensional chromosomal domains of submegabase size, within which DNA sequences preferentially contact each other.

Replicative lifespan

The time during which a cell can divide and produce daughter cells before becoming senescent.

Oncometabolites

Metabolic intermediates that accumulate in cancer cells, often through loss-of-function or gain-of-function mutations in genes that encode enzymes, resulting in cancer-relevant epigenetic changes.

Tumour lysis syndrome

A potentially fatal complication arising during cancer therapy from the killing (lysis) of large numbers of tumour cells and the release of their contents into the bloodstream.

Gatekeeper mutations

Mutations in the functional domain of a protein that confer resistance to a pharmacological agent while preserving the function of the protein.

Immune-checkpoint inhibitors

Drugs that target key inhibitory molecules of immune cell activation.

Viral mimicry

Reactivation of endogenous retroviruses in the genome of tumour cells, leading to activation of double-stranded RNA sensing pathways and innate immune responses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michalak, E.M., Burr, M.L., Bannister, A.J. et al. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat Rev Mol Cell Biol 20, 573–589 (2019). https://doi.org/10.1038/s41580-019-0143-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-019-0143-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing