Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in targeting ‘undruggable’ transcription factors with small molecules

Abstract

Transcription factors (TFs) represent key biological players in diseases including cancer, autoimmunity, diabetes and cardiovascular disease. However, outside nuclear receptors, TFs have traditionally been considered ‘undruggable’ by small-molecule ligands due to significant structural disorder and lack of defined small-molecule binding pockets. Renewed interest in the field has been ignited by significant progress in chemical biology approaches to ligand discovery and optimization, especially the advent of targeted protein degradation approaches, along with increasing appreciation of the critical role a limited number of collaborators play in the regulation of key TF effector genes. Here, we review current understanding of TF-mediated gene regulation, discuss successful targeting strategies and highlight ongoing challenges and emerging approaches to address them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomy of a TF.
Fig. 2: Overview of the modern model of the transcriptional activation process.
Fig. 3: Common mechanisms of transcriptional dysregulation in disease.
Fig. 4: Examples of molecules that target TFs by various mechanisms.
Fig. 5: Overview of monomeric and PROTAC-based targeted protein degradation strategies.

Similar content being viewed by others

References

  1. Lambert, S. A. et al. The human transcription factors. Cell 172, 650–665 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Vernimmen, D. & Bickmore, W. A. The hierarchy of transcriptional activation: from enhancer to promoter. Trends Genet. 31, 696–708 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Lee, T. I. & Young, R. A. Transcriptional regulation and its misregulation in disease. Cell 152, 1237–1251 (2013). This review is a valuable reference for understanding the mechanisms by which transcription is dysregulated in disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brivanlou, A. H. & Darnell, J. E. Signal transduction and the control of gene expression. Science 295, 813–818 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Darnell, J. E. Transcription factors as targets for cancer therapy. Nat. Rev. Cancer 2, 740–749 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Bushweller, J. H. Targeting transcription factors in cancer — from undruggable to reality. Nat. Rev. Cancer 19, 611–624 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shah, D. R., Shah, R. R. & Morganroth, J. Tyrosine kinase inhibitors: their on-target toxicities as potential indicators of efficacy. Drug Saf. 36, 413–426 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Lehal, R. et al. Pharmacological disruption of the Notch transcription factor complex. Proc. Natl Acad. Sci. USA 117, 16292–16301 (2020). This paper demonstrates pharmacological advantages for directly targeting TFs over upstream signalling proteins and is one of the few studies that use functional target identification methods to support an on-target mechanism for an ‘undruggable’ TF inhibitor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lovly, C. M. & Shaw, A. T. Molecular pathways: resistance to kinase inhibitors and implications for therapeutic strategies. Clin. Cancer Res. 20, 2249–2256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gronemeyer, H., Gustafsson, J.-Å. & Laudet, V. Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug Discov. 3, 950–964 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, J. et al. Intrinsic disorder in transcription factors. Biochemistry 45, 6873–6888 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Voss, T. C. & Hager, G. L. Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat. Rev. Genet. 15, 69–81 (2014). This article presents a comprehensive review of spatial and temporal mechanisms of transcriptional regulation, and highlights the importance of studying transcription from the perspective of single TF molecules.

    Article  CAS  PubMed  Google Scholar 

  13. Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855.e16 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Ptashne, M. & Gann, A. Transcriptional activation by recruitment. Nature 386, 569–577 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Allen, B. L. & Taatjes, D. J. The Mediator complex: a central integrator of transcription. Nat. Rev. Mol. Cell Biol. 16, 155–166 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Centore, R. C., Sandoval, G. J., Soares, L. M. M., Kadoch, C. & Chan, H. M. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies. Trends Genet. 36, 936–950 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Lee, T. I. & Young, R. A. Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34, 77–137 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Spitz, F. & Furlong, E. E. M. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 13, 613–626 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Giacinti, C. & Giordano, A. RB and cell cycle progression. Oncogene 25, 5220–5227 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Rohs, R. et al. Origins of specificity in protein–DNA recognition. Annu. Rev. Biochem. 79, 233–269 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goldstein, I. & Hager, G. L. Dynamic enhancer function in the chromatin context: dynamic mechanism for enhancer activation. Wiley Interdiscip. Rev. Syst. Biol. Med. 10, e1390 (2018).

    Article  Google Scholar 

  22. Dames, S. A., Martinez-Yamout, M., De Guzman, R. N., Dyson, H. J. & Wright, P. E. Structural basis for Hif-1/CBP recognition in the cellular hypoxic response. Proc. Natl Acad. Sci. USA 99, 5271–5276 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zor, T., De Guzman, R. N., Dyson, H. J. & Wright, P. E. Solution structure of the KIX domain of CBP bound to the transactivation domain of c-Myb. J. Mol. Biol. 337, 521–534 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Dyson, H. J. & Wright, P. E. Role of intrinsic protein disorder in the function and interactions of the transcriptional coactivators CREB-binding protein (CBP) and p300. J. Biol. Chem. 291, 6714–6722 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma, J. & Ptashne, M. A new class of yeast transcriptional activators. Cell 51, 113–119 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Warfield, L., Tuttle, L. M., Pacheco, D., Klevit, R. E. & Hahn, S. A sequence-specific transcription activator motif and powerful synthetic variants that bind Mediator using a fuzzy protein interface. Proc. Natl Acad. Sci. USA 111, E3506–E3513 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Staller, M. V. et al. A high-throughput mutational scan of an intrinsically disordered acidic transcriptional activation domain. Cell Syst. 6, 444–455.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sigler, P. B. Acid blobs and negative noodles. Nature 333, 210–212 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Tuttle, L. M. et al. Gcn4-mediator specificity is mediated by a large and dynamic fuzzy protein–protein complex. Cell Rep. 22, 3251–3264 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chong, S. et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361, eaar2555 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Henley, M. J. et al. Unexpected specificity within dynamic transcriptional protein–protein complexes. Proc. Natl Acad. Sci. USA 117, 27346–27353 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McSwiggen, D. T. et al. Evidence for DNA-mediated nuclear compartmentalization distinct from phase separation. eLife 8, e47098 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Loh, C.-Y. et al. Signal transducer and activator of transcription (STATs) proteins in cancer and inflammation: functions and therapeutic implication. Front. Oncol. 9, 48 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. McEwan, I. J. in The Nuclear Receptor Superfamily Vol. 1443 (ed. McEwan, I. J.) 3–9 (Humana, 2016).

  35. Jones, S. An overview of the basic helix–loop–helix proteins. Genome Biol. 5, 226 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Voss, T. C. et al. Dynamic exchange at regulatory elements during chromatin remodeling underlies assisted loading mechanism. Cell 146, 544–554 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018). This study represents the first demonstration that super-enhancers can concentrate transcriptional apparatus into phase-separated condensates.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Szabo, Q., Bantignies, F. & Cavalli, G. Principles of genome folding into topologically associating domains. Sci. Adv. 5, eaaw1668 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Beagan, J. A. & Phillips-Cremins, J. E. On the existence and functionality of topologically associating domains. Nat. Genet. 52, 8–16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paakinaho, V. et al. Single-molecule analysis of steroid receptor and cofactor action in living cells. Nat. Commun. 8, 15896 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schoenfelder, S. & Fraser, P. Long-range enhancer–promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. He, Y., Fang, J., Taatjes, D. J. & Nogales, E. Structural visualization of key steps in human transcription initiation. Nature 495, 481–486 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. He, Y. et al. Near-atomic resolution visualization of human transcription promoter opening. Nature 533, 359–365 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schilbach, S. et al. Structures of transcription pre-initiation complex with TFIIH and mediator. Nature 551, 204–209 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bickmore, W. A. The spatial organization of the human genome. Annu. Rev. Genomics Hum. Genet. 14, 67–84 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Bonev, B. & Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661–678 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Hnisz, D., Day, D. S. & Young, R. A. Insulated neighborhoods: structural and functional units of mammalian gene control. Cell 167, 1188–1200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dowen, J. M. et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159, 374–387 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ghavi-Helm, Y. et al. Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression. Nat. Genet. 51, 1272–1282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Saint-André, V. et al. Models of human core transcriptional regulatory circuitries. Genome Res. 26, 385–396 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hnisz, D. et al. Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers. Mol. Cell 58, 362–370 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McNally, J. G. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287, 1262–1265 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Hager, G. L., McNally, J. G. & Misteli, T. Transcription dynamics. Mol. Cell 35, 741–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lovén, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013). This study is the first to show that super-enhancers can be more sensitive to inhibition of general transcriptional machinery than typical enhancers due to increased cooperativity of TFs and co-regulators.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kwiatkowski, N. et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511, 616–620 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chipumuro, E. et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 159, 1126–1139 (2014). This paper shows that a covalent CDK7/12/13 inhibitor preferentially reduces MYCN-driven oncogenic transcriptional programmes by selectively targeting MYCN-associated super-enhancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Richters, A. et al. Modulating androgen receptor-driven transcription in prostate cancer with selective CDK9 inhibitors. Cell Chem. Biol. 28, 134–147.e14 (2021). This study identifies two potent and highly selective CDK9 inhibitors from a binding-focused screen ofundruggableARV7 in cell lysates; similar to CDK7/12/13 inhibitors, these molecules show high selectivity for specific disease-related transcriptional programmes.

    Article  CAS  PubMed  Google Scholar 

  60. Gryder, B. E. et al. Chemical genomics reveals histone deacetylases are required for core regulatory transcription. Nat. Commun. 10, 3004 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gryder, B. E. et al. Histone hyperacetylation disrupts core gene regulatory architecture in rhabdomyosarcoma. Nat. Genet. 51, 1714–1722 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Marques, J. G. et al. NuRD subunit CHD4 regulates super-enhancer accessibility in rhabdomyosarcoma and represents a general tumor dependency. eLife 9, e54993 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wei, M.-T. et al. Nucleated transcriptional condensates amplify gene expression. Nat. Cell Biol. 22, 1187–1196 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543–548 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Henninger, J. E. et al. RNA-mediated feedback control of transcriptional condensates. Cell 184, 207–225.e24 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Shrinivas, K. et al. Enhancer features that drive formation of transcriptional condensates. Mol. Cell 75, 549–561.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, W. et al. Biophysical properties of AKAP95 protein condensates regulate splicing and tumorigenesis. Nat. Cell Biol. 22, 960–972 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Plys, A. J. et al. Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2. Genes Dev. 33, 799–813 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sanulli, S. et al. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature 575, 390–394 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McSwiggen, D. T., Mir, M., Darzacq, X. & Tjian, R. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev. 33, 1619–1634 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mir, M., Bickmore, W., Furlong, E. E. M. & Narlikar, G. Chromatin topology, condensates and gene regulation: shifting paradigms or just a phase? Development 146, dev182766 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bradner, J. E., Hnisz, D. & Young, R. A. Transcriptional addiction in cancer. Cell 168, 629–643 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 3, 11–22 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. O’Shea, J. J. et al. The JAK–STAT pathway: impact on human disease and therapeutic intervention. Annu. Rev. Med. 66, 311–328 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Taniguchi, K. & Karin, M. NF-κB, inflammation, immunity and cancer: coming of age. Nat. Rev. Immunol. 18, 309–324 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Kastenhuber, E. R. & Lowe, S. W. Putting p53 in context. Cell 170, 1062–1078 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cardenas, M. G. et al. The expanding role of the BCL6 oncoprotein as a cancer therapeutic target. Clin. Cancer Res. 23, 885–893 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Dupain, C., Harttrampf, A. C., Urbinati, G., Geoerger, B. & Massaad-Massade, L. Relevance of fusion genes in pediatric cancers: toward precision medicine. Mol. Ther. Nucleic Acids 6, 315–326 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. White, M. K., Pagano, J. S. & Khalili, K. Viruses and human cancers: a long road of discovery of molecular paradigms. Clin. Microbiol. Rev. 27, 463–481 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Flavahan, W. A., Gaskell, E. & Bernstein, B. E. Epigenetic plasticity and the hallmarks of cancer. Science 357, eaal2380 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ramsay, R. G. & Gonda, T. J. MYB function in normal and cancer cells. Nat. Rev. Cancer 8, 523–534 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Mansour, M. R. et al. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 346, 1373–1377 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Blackwell, T., Kretzner, L., Blackwood, E., Eisenman, R. & Weintraub, H. Sequence-specific DNA binding by the c-Myc protein. Science 250, 1149–1151 (1990).

    Article  CAS  PubMed  Google Scholar 

  87. Rahl, P. B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rahl, P. B. & Young, R. A. MYC and transcription elongation. Cold Spring Harb. Perspect. Med. 4, a020990 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lin, C. Y. et al. Transcriptional amplification in tumor cell elevated c-Myc. Cell 151, 56–67 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schuijers, J. et al. Transcriptional dysregulation of MYC reveals common enhancer-docking mechanism. Cell Rep. 23, 349–360 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Soucek, L. et al. Modelling Myc inhibition as a cancer therapy. Nature 455, 679–683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Felsher, D. W. MYC inactivation elicits oncogene addiction through both tumor cell-intrinsic and host-dependent mechanisms. Genes Cancer 1, 597–604 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gryder, B. E. et al. PAX3–FOXO1 establishes myogenic super enhancers and confers BET bromodomain vulnerability. Cancer Discov. 7, 884–899 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chapuy, B. et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell 24, 777–790 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Simmonds, R. E. & Foxwell, B. M. Signalling, inflammation and arthritis: NF-κB and its relevance to arthritis and inflammation. Rheumatology 47, 584–590 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Atreya, I., Atreya, R. & Neurath, M. F. NF-κB in inflammatory bowel disease. J. Intern. Med. 263, 591–596 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Leibowitz, S. M. & Yan, J. NF-κB pathways in the pathogenesis of multiple sclerosis and the therapeutic implications. Front. Mol. Neurosci. 9, 84 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yue, Y., Stone, S. & Lin, W. Role of nuclear factor κB in multiple sclerosis and experimental autoimmune encephalomyelitis. Neural Regen. Res. 13, 1507 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Flanagan, S. E. et al. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat. Genet. 46, 812–814 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Milner, J. D. et al. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood 125, 591–599 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Walford, H. H. & Doherty, T. A. STAT6 and lung inflammation. JAK-STAT 2, e25301 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Holland, S. M. et al. STAT3 mutations in the hyper-IgE syndrome. N. Engl. J. Med. 357, 1608–1619 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Skapenko, A., Leipe, J., Lipsky, P. E. & Schulze-Koops, H. The role of the T cell in autoimmune inflammation. Arthritis Res. Ther. 7, S4 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ji, N., Sosa, R. A. & Forsthuber, T. G. More than just a T-box: the role of T-bet as a possible biomarker and therapeutic target in autoimmune diseases. Immunotherapy 3, 435–441 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Kanhere, A. et al. T-bet and GATA3 orchestrate TH1 and TH2 differentiation through lineage-specific targeting of distal regulatory elements. Nat. Commun. 3, 1268 (2012).

    Article  PubMed  Google Scholar 

  108. Capone, A. & Volpe, E. Transcriptional regulators of T helper 17 cell differentiation in health and autoimmune diseases. Front. Immunol. 11, 348 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Isono, F., Fujita-Sato, S. & Ito, S. Inhibiting RORγt/TH17 axis for autoimmune disorders. Drug Discov. Today 19, 1205–1211 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Bosnjak, B., Stelzmueller, B., Erb, K. J. & Epstein, M. M. Treatment of allergic asthma: modulation of TH2 cells and their responses. Respir. Res. 12, 114 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fernando, V. et al. Regulation of an autoimmune model for multiple sclerosis in TH2-biased GATA3 transgenic mice. Int. J. Mol. Sci. 15, 1700–1718 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Tao, J.-H. et al. Foxp3, regulatory T cell, and autoimmune diseases. Inflammation 40, 328–339 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. d’Hennezel, E. et al. FOXP3 forkhead domain mutation and regulatory T cells in the IPEX syndrome. N. Engl. J. Med. 361, 1710–1713 (2009).

    Article  PubMed  Google Scholar 

  114. Banerjee, S., Biehl, A., Gadina, M., Hasni, S. & Schwartz, D. M. JAK–STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs 77, 521–546 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Udler, M. S., McCarthy, M. I., Florez, J. C. & Mahajan, A. Genetic risk scores for diabetes diagnosis and precision medicine. Endocr. Rev. 40, 1500–1520 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Pihoker, C. et al. Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in HNF1A, HNF4A, and glucokinase: results from the SEARCH for diabetes in youth. J. Clin. Endocrinol. Metab. 98, 4055–4062 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mitchell, S. M. S. & Frayling, T. M. The role of transcription factors in maturity-onset diabetes of the young. Mol. Genet. Metab. 77, 35–43 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Minra, N. & Tanaka, K. Analysis of the rat hepatocyte nuclear factor (HNF) 1 gene promoter: synergistic activation by HNF4 and HNF1 proteins. Nucleic Acids Res. 21, 3731–3736 (1993).

    Article  Google Scholar 

  119. Grunert, M., Dorn, C. & Rickert-Sperling, S. in Congenital Heart Diseases: The Broken Heart (eds Rickert-Sperling, S., Kelly, R. G. & Driscoll, D. J.) 139–152 (Springer, 2016).

  120. Kohli, S., Ahuja, S. & Rani, V. Transcription factors in heart: promising therapeutic targets in cardiac hypertrophy. Curr. Cardiol. Rev. 7, 262–271 (2012).

    Article  Google Scholar 

  121. Epstein, J. A. & Buck, C. A. Transcriptional regulation of cardiac development: implications for congenital heart disease and DiGeorge syndrome. Pediatr. Res. 48, 717–724 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. McCulley, D. J. & Black, B. L. in Current Topics in Developmental Biology Vol. 100 (ed. Bruneau, B. G.) 253–277 (Elsevier, 2012).

  123. Hammoudeh, D. I., Follis, A. V., Prochownik, E. V. & Metallo, S. J. Multiple independent binding sites for small-molecule inhibitors on the oncoprotein c-Myc. J. Am. Chem. Soc. 131, 7390–7401 (2009). This study investigates the highly dynamic and non-specific binding modes of inhibitors of the disordered MYC TF; notably, the non-specific binding may be related to the promiscuous chemotypes of these molecules.

    Article  CAS  PubMed  Google Scholar 

  124. Baell, J. B. & Nissink, J. W. M. Seven year itch: pan-assay interference compounds (PAINS) in 2017—utility and limitations. ACS Chem. Biol. 13, 36–44 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Mazaira, G. I. et al. The nuclear receptor field: a historical overview and future challenges. Nucl. Recept. Res. 5, 101320 (2018).

    Article  CAS  Google Scholar 

  126. Fernandez, E. J. Allosteric pathways in nuclear receptors — potential targets for drug design. Pharmacol. Ther. 183, 152–159 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. de Vera, I. M. S. Advances in orphan nuclear receptor pharmacology: a new era in drug discovery. ACS Pharmacol. Transl. Sci. 1, 134–137 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Zhu, Y. et al. Role of androgen receptor splice variant-7 (AR-V7) in prostate cancer resistance to 2nd-generation androgen receptor signaling inhibitors. Oncogene 39, 6935–6949 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Holden, J. K. & Cunningham, C. N. Targeting the Hippo pathway and cancer through the TEAD family of transcription factors. Cancers 10, 81 (2018).

    Article  PubMed Central  Google Scholar 

  131. Johnson, R. & Halder, G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat. Rev. Drug Discov. 13, 63–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Dey, A., Varelas, X. & Guan, K.-L. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat. Rev. Drug Discov. 19, 480–494 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Noland, C. L. et al. Palmitoylation of TEAD transcription factors is required for their stability and function in Hippo pathway signaling. Structure 24, 179–186 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Chan, P. et al. Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway. Nat. Chem. Biol. 12, 282–289 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Huh, H., Kim, D., Jeong, H.-S. & Park, H. Regulation of TEAD transcription factors in cancer biology. Cells 8, 600 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  136. Pobbati, A. V. et al. Identification of quinolinols as activators of TEAD-dependent transcription. ACS Chem. Biol. 14, 2909–2921 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Bum-Erdene, K. et al. Small-molecule covalent modification of conserved cysteine leads to allosteric inhibition of the TEADYap protein–protein interaction. Cell Chem. Biol. 26, 378–389.e13 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Holden, J. K. et al. Small molecule dysregulation of TEAD lipidation induces a dominant-negative inhibition of Hippo pathway signaling. Cell Rep. 31, 107809 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Kakiuchi-Kiyota, S., Schutten, M. M., Zhong, Y., Crawford, J. J. & Dey, A. Safety considerations in the development of Hippo pathway inhibitors in cancers. Front. Cell Dev. Biol. 7, 156 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Zhao, Y., Aguilar, A., Bernard, D. & Wang, S. Small-molecule inhibitors of the MDM2–p53 protein–protein interaction (MDM2 Inhibitors) in clinical trials for cancer treatment: miniperspective. J. Med. Chem. 58, 1038–1052 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Jones, S. N., Roe, A. E., Donehower, L. A. & Bradley, A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206–208 (1995).

    Article  CAS  PubMed  Google Scholar 

  142. Brown, C. J., Lain, S., Verma, C. S., Fersht, A. R. & Lane, D. P. Awakening guardian angels: drugging the p53 pathway. Nat. Rev. Cancer 9, 862–873 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Wells, M. et al. Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Proc. Natl Acad. Sci. USA 105, 5762–5767 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Estrada-Ortiz, N., Neochoritis, C. G. & Dömling, A. How to design a successful p53-MDM2/X interaction inhibitor: a thorough overview based on crystal structures. ChemMedChem 11, 757–772 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Chang, Y. S. et al. Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc. Natl Acad. Sci. USA 110, E3445–E3454 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kaelin, W. G. Jr The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer. Nat. Rev. Cancer 8, 865–873 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Buckley, D. L. et al. Targeting the von Hippel–Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. J. Am. Chem. Soc. 134, 4465–4468 (2012). This paper is the first to demonstrate effective targeting of the TF HIF1α by the development of an inhibitor of the HIF1α-associated ubiquitin E3 ligase von Hippel–Lindau disease tumour suppressor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Fraile, J. M., Quesada, V., Rodríguez, D., Freije, J. M. P. & López-Otín, C. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 31, 2373–2388 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Bruno, P. A., Morriss-Andrews, A., Henderson, A. R., Brooks, C. L. & Mapp, A. K. A synthetic loop replacement peptide that blocks canonical NF-κB signaling. Angew. Chem. Int. Ed. 55, 14997–15001 (2016).

    Article  CAS  Google Scholar 

  150. Vincendeau, M. et al. Inhibition of canonical NF-κB signaling by a small molecule targeting NEMO–ubiquitin interaction. Sci. Rep. 6, 18934 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Maculins, T. et al. Discovery of protein–protein interaction inhibitors by integrating protein engineering and chemical screening platforms. Cell Chem. Biol. 27, 1441–1451.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Miklossy, G., Hilliard, T. S. & Turkson, J. Therapeutic modulators of STAT signalling for human diseases. Nat. Rev. Drug Discov. 12, 611–629 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rogers, J. L. et al. Development of inhibitors of the PAS-B domain of the HIF-2α transcription factor. J. Med. Chem. 56, 1739–1747 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Scheuermann, T. H. et al. Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat. Chem. Biol. 9, 271–276 (2013). This paper describes the development and characterization of the first direct-binding allosteric inhibitor of the TF HIF2α.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Chen, W. et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wallace, E. M. et al. A small-molecule antagonist of HIF2α is efficacious in preclinical models of renal cell carcinoma. Cancer Res. 76, 5491–5500 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Xu, R. et al. 3-[(1S, 2S, 3R)-2,3-Difluoro-1-hydroxy-7-methylsulfonylindan-4-yl]oxy-5-fluorobenzonitrile (PT2977), a hypoxia-inducible factor 2α (HIF-2α) inhibitor for the treatment of clear cell renal cell carcinoma. J. Med. Chem. 62, 6876–6893 (2019).

  158. Grembecka, J. et al. Menin–MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat. Chem. Biol. 8, 277–284 (2012). This paper describes the development and characterization of the first menin inhibitors that impede activity of the oncogenic TF MLL by blocking menin–MLL association.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Borkin, D. et al. Pharmacologic inhibition of the menin–MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell 27, 589–602 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Borkin, D. et al. Complexity of blocking bivalent protein–protein interactions: development of a highly potent inhibitor of the menin–mixed-lineage leukemia interaction. J. Med. Chem. 61, 4832–4850 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Klossowski, S. et al. Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia. J. Clin. Invest. 130, 981–997 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Xu, S. et al. Discovery of M-808 as a highly potent, covalent, small-molecule inhibitor of the menin–MLL interaction with strong in vivo antitumor activity. J. Med. Chem. 63, 4997–5010 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kopan, R. & Ilagan, M. X. G. The canonical notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lukasik, S. M. et al. Altered affinity of CBFβ–SMMHC for Runx1 explains its role in leukemogenesis. Nat. Struct. Biol. 9, 674–679 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Illendula, A. et al. A small-molecule inhibitor of the aberrant transcription factor CBFβ–SMMHC delays leukemia in mice. Science 347, 779–784 (2015). This paper describes the first inhibitor of the oncogenic fusion CBFβ–SMMHC, which releases the RUNX1 TF from repressive CBFβ–SMMHC–RUNX1 complexes and delays progression of AML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Struntz, N. B. et al. Stabilization of the Max homodimer with a small molecule attenuates Myc-driven transcription. Cell Chem. Biol. 26, 711–723.e14 (2019). This paper demonstrates that inhibition of theundruggableTF MYC can be achieved by a small molecule that sequesters its requisite binding partner MAX into transcriptionally inactive homodimers.

    Article  CAS  PubMed  Google Scholar 

  167. Lao, B. B. et al. In vivo modulation of hypoxia-inducible signaling by topographical helix mimetics. Proc. Natl Acad. Sci. USA 111, 7531–7536 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Xie, X. et al. Targeting HPV16 E6-p300 interaction reactivates p53 and inhibits the tumorigenicity of HPV-positive head and neck squamous cell carcinoma. Oncogene 33, 1037–1046 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Wang, N. et al. Ordering a dynamic protein via a small-molecule stabilizer. J. Am. Chem. Soc. 135, 3363–3366 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Henderson, A. R. et al. Conservation of coactivator engagement mechanism enables small-molecule allosteric modulators. Proc. Natl Acad. Sci. USA 115, 8960–8965 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Cook, K. M. et al. Epidithiodiketopiperazines block the interaction between hypoxia-inducible factor-1α (HIF-1α) and p300 by a zinc ejection mechanism. J. Biol. Chem. 284, 26831–26838 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Majmudar, C. Y. et al. Sekikaic acid and lobaric acid target a dynamic interface of the coactivator CBP/p300. Angew. Chem. Int. Ed. 51, 11258–11262 (2012).

    Article  CAS  Google Scholar 

  173. Ramaswamy, K. et al. Peptidomimetic blockade of MYB in acute myeloid leukemia. Nat. Commun. 9, 110 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Henchey, L. K. et al. Inhibition of hypoxia inducible factor 1—transcription coactivator interaction by a hydrogen bond surrogate α-Helix. J. Am. Chem. Soc. 132, 941–943 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Schreiber, S. L. The rise of molecular glues. Cell 184, 3–9 (2021).

    Article  CAS  PubMed  Google Scholar 

  176. Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. Kronke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

    Article  PubMed  Google Scholar 

  178. Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of ikaros proteins. Science 343, 305–309 (2014). Together with Kronke et al. (2014), this study demonstrates that the anticancer IMiDs function by degrading the TFs IKZF1 and IKZF3.

    Article  CAS  PubMed  Google Scholar 

  179. Chamberlain, P. P. et al. Structure of the human cereblon–DDB1–lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat. Struct. Mol. Biol. 21, 803–809 (2014).

    Article  CAS  PubMed  Google Scholar 

  180. Petzold, G., Fischer, E. S. & Thomä, N. H. Structural basis of lenalidomide-induced CK1α degradation by the CRL4CRBN ubiquitin ligase. Nature 532, 127–130 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Sievers, Q. L. et al. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362, eaat0572 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Isobe, Y. et al. Manumycin polyketides act as molecular glues between UBR7 and P53. Nat. Chem. Biol. 16, 1189–1198 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hanan, E. J. et al. Monomeric targeted protein degraders. J. Med. Chem. 63, 11330–11361 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Dauvois, S., Danielian, P. S., White, R., Parker, M. G. & Antiestrogen, I. C. I. 164,384 reduces cellular estrogen receptor content by increasing its turnover. Proc. Natl Acad. Sci. USA 89, 4037–4041 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wu, Y.-L. et al. Structural basis for an unexpected mode of SERM-mediated ER antagonism. Mol. Cell 18, 413–424 (2005).

    Article  CAS  PubMed  Google Scholar 

  186. Kerres, N. et al. Chemically induced degradation of the oncogenic transcription factor BCL6. Cell Rep. 20, 2860–2875 (2017). This paper describes the discovery of potent monomeric degraders of the TF BCL-6 from a medicinal chemistry campaign focused on optimizing BCL-6 PPI inhibitors.

    Article  CAS  PubMed  Google Scholar 

  187. Bellenie, B. R. et al. Achieving in vivo target depletion through the discovery and optimization of benzimidazolone BCL6 degraders. J. Med. Chem. 63, 4047–4068 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Słabicki, M. et al. Small-molecule-induced polymerization triggers degradation of BCL6. Nature 588, 164–168 (2020). This study defines a molecular glue mechanism of action for a potent BCL-6 monomeric degrader that involves polymerization of BCL-6 followed by degradation.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Faust, T. B. et al. Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15. Nat. Chem. Biol. 16, 7–14 (2020).

    Article  CAS  PubMed  Google Scholar 

  190. Powell, C. E. et al. Selective degradation of GSPT1 by cereblon modulators identified via a focused combinatorial library. ACS Chem. Biol. 15, 2722–2730 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Mayor-Ruiz, C. et al. Rational discovery of molecular glue degraders via scalable chemical profiling. Nat. Chem. Biol. 16, 1199–1207 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1–Cullin-F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Paiva, S.-L. & Crews, C. M. Targeted protein degradation: elements of PROTAC design. Curr. Opin. Chem. Biol. 50, 111–119 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Nalawansha, D. A. & Crews, C. M. PROTACs: an emerging therapeutic modality in precision medicine. Cell Chem. Biol. 27, 998–1014 (2020). This modern review succinctly highlights the advantages of PROTAC approaches and lays out a road map for the future development of this technology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bai, L. et al. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell 36, 498–511.e17 (2019). This paper showcases the advantages of degrading the STAT3 TF with PROTACs over the more traditional approach of disrupting homodimerization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Gechijian, L. N. et al. Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands. Nat. Chem. Biol. 14, 405–412 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Bassi, Z. I. et al. Modulating PCAF/GCN5 immune cell function through a PROTAC approach. ACS Chem. Biol. 13, 2862–2867 (2018).

    Article  CAS  PubMed  Google Scholar 

  198. Cromm, P. M., Samarasinghe, K. T. G., Hines, J. & Crews, C. M. Addressing kinase-independent functions of Fak via PROTAC-mediated degradation. J. Am. Chem. Soc. 140, 17019–17026 (2018).

    Article  CAS  PubMed  Google Scholar 

  199. Degorce, S. L. et al. Discovery of proteolysis-targeting chimera molecules that selectively degrade the IRAK3 pseudokinase. J. Med. Chem. 63, 10460–10473 (2020).

    Article  CAS  PubMed  Google Scholar 

  200. Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015). This paper is the first to demonstrate that von Hippel–Lindau disease tumour suppressor (VHL) ligands can serve as E3-ligase recruiting modules for PROTACs and also describes the catalytic mechanism of action of VHL-based degraders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Fisher, S. L. & Phillips, A. J. Targeted protein degradation and the enzymology of degraders. Curr. Opin. Chem. Biol. 44, 47–55 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Buhimschi, A. D. et al. Targeting the C481S ibrutinib-resistance mutation in Bruton’s tyrosine kinase using PROTAC-mediated degradation. Biochemistry 57, 3564–3575 (2018).

    Article  CAS  PubMed  Google Scholar 

  203. Burslem, G. M. et al. The advantages of targeted protein degradation over inhibition: an RTK case study. Cell Chem. Biol. 25, 67–77.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  204. Mares, A. et al. Extended pharmacodynamic responses observed upon PROTAC-mediated degradation of RIPK2. Commun. Biol. 3, 140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Huang, H.-T. et al. A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. Cell Chem. Biol. 25, 88–99.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  206. Nowak, R. P. et al. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol. 14, 706–714 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Bondeson, D. P. et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol. 25, 78–87.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  208. Brand, M. et al. Homolog-selective degradation as a strategy to probe the function of CDK6 in AML. Cell Chem. Biol. 26, 300–306.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  209. Donovan, K. A. et al. Mapping the degradable kinome provides a resource for expedited degrader development. Cell 183, 1714–1731.e10 (2020). This study describes the characterization of a large library of kinase PROTACs using chemoproteomics and demonstrates that the most potent and selective PROTACs are not necessarily derived from the most potent and selective inhibitors.

    Article  CAS  PubMed  Google Scholar 

  210. Mullard, A. First targeted protein degrader hits the clinic. Nat. Rev. Drug Discov. 18, 237–239 (2019).

    Google Scholar 

  211. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  212. Li, Y. et al. Discovery of MD-224 as a first-in-class, highly potent, and efficacious proteolysis targeting chimera murine double minute 2 degrader capable of achieving complete and durable tumor regression. J. Med. Chem. 62, 448–466 (2019).

    Article  CAS  PubMed  Google Scholar 

  213. Winter, G. E. et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015). This study is the first to demonstrate that IMiDs, which are primarily ligands of the E3 ligase CRBN, can be used as E3-ligase recruiting modules for PROTACs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Zengerle, M., Chan, K.-H. & Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 10, 1770–1777 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Faivre, E. J. et al. Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer. Nature 578, 306–310 (2020).

    Article  CAS  PubMed  Google Scholar 

  216. Gilan, O. et al. Selective targeting of BD1 and BD2 of the BET proteins in cancer and immuno-inflammation. Science 368, 387–394 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Iniguez, A. B. et al. EWS/FLI confers tumor cell synthetic lethality to CDK12 inhibition in Ewing sarcoma. Cancer Cell 33, 202–216.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Lasko, L. M. et al. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature 550, 128–132 (2017). This paper describes the development of the first potent and selective inhibitor of the HAT domain of the related transcriptional co-activators CBP and p300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Schick, S. et al. Acute BAF perturbation causes immediate changes in chromatin accessibility. Nat. Genet. 53, 269–278 (2021).

    Article  CAS  PubMed  Google Scholar 

  220. Osborne, J., Panova, S., Rapti, M., Urushima, T. & Jhoti, H. Fragments: where are we now? Biochem. Soc. Trans. 48, 271–280 (2020).

    Article  CAS  PubMed  Google Scholar 

  221. Li, Q. Application of fragment-based drug discovery to versatile targets. Front. Mol. Biosci. 7, 180 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Riback, J. A. et al. Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water. Science 358, 238–241 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Marsh, J. A. & Forman-Kay, J. D. Sequence determinants of compaction in intrinsically disordered proteins. Biophys. J. 98, 2383–2390 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Banks, A., Qin, S., Weiss, K. L., Stanley, C. B. & Zhou, H.-X. Intrinsically disordered protein exhibits both compaction and expansion under macromolecular crowding. Biophys. J. 114, 1067–1079 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Demarest, S. J. et al. Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 415, 549–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  226. Kjaergaard, M., Teilum, K. & Poulsen, F. M. Conformational selection in the molten globule state of the nuclear coactivator binding domain of CBP. Proc. Natl Acad. Sci. USA 107, 12535–12540 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Naganathan, A. N. & Orozco, M. The native ensemble and folding of a protein molten-globule: functional consequence of downhill folding. J. Am. Chem. Soc. 133, 12154–12161 (2011).

    Article  CAS  PubMed  Google Scholar 

  228. Schneider, R. et al. Visualizing the molecular recognition trajectory of an intrinsically disordered protein using multinuclear relaxation dispersion NMR. J. Am. Chem. Soc. 137, 1220–1229 (2015).

    Article  CAS  PubMed  Google Scholar 

  229. Adamski, W. et al. A unified description of intrinsically disordered protein dynamics under physiological conditions using NMR spectroscopy. J. Am. Chem. Soc. 141, 17817–17829 (2019).

    Article  CAS  PubMed  Google Scholar 

  230. Milles, S., Salvi, N., Blackledge, M. & Jensen, M. R. Characterization of intrinsically disordered proteins and their dynamic complexes: from in vitro to cell-like environments. Prog. Nucl. Magn. Reson. Spectrosc. 109, 79–100 (2018).

    Article  CAS  PubMed  Google Scholar 

  231. Krishnan, N. et al. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat. Chem. Biol. 10, 558–566 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Heller, G. T., Bonomi, M. & Vendruscolo, M. Structural ensemble modulation upon small-molecule binding to disordered proteins. J. Mol. Biol. 430, 2288–2292 (2018).

    Article  CAS  PubMed  Google Scholar 

  233. Heller, G. T. et al. Small-molecule sequestration of amyloid-β as a drug discovery strategy for Alzheimer’s disease. Sci. Adv. 6, eabb5924 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Flanagan, J. J. & Neklesa, T. K. Targeting nuclear receptors with PROTAC degraders. Mol. Cell. Endocrinol. 493, 110452 (2019).

    Article  CAS  PubMed  Google Scholar 

  235. Han, X. et al. Discovery of highly potent and efficient PROTAC degraders of androgen receptor (AR) by employing weak binding affinity VHL E3 ligase ligands. J. Med. Chem. 62, 11218–11231 (2019).

    Article  CAS  PubMed  Google Scholar 

  236. Hu, J. et al. Discovery of ERD-308 as a highly potent proteolysis targeting chimera (PROTAC) degrader of estrogen receptor (ER). J. Med. Chem. 62, 1420–1442 (2019).

    Article  CAS  PubMed  Google Scholar 

  237. Kargbo, R. B. PROTAC-mediated degradation of estrogen receptor in the treatment of cancer. ACS Med. Chem. Lett. 10, 1367–1369 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Silva, M. C. et al. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. eLife 8, e45457 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Li, H. et al. Discovery of small-molecule inhibitors selectively targeting the DNA-binding domain of the human androgen receptor. J. Med. Chem. 57, 6458–6467 (2014).

    Article  CAS  PubMed  Google Scholar 

  240. Lee, G. T. et al. Effects of MTX-23, a novel PROTAC of androgen receptor splice variant-7 and androgen receptor, on CRPC resistant to second-line antiandrogen therapy. Mol. Cancer Ther. 20, 490–499 (2021).

    Article  CAS  PubMed  Google Scholar 

  241. Schapira, M., Calabrese, M. F., Bullock, A. N. & Crews, C. M. Targeted protein degradation: expanding the toolbox. Nat. Rev. Drug Discov. 18, 949–963 (2019).

    Article  CAS  PubMed  Google Scholar 

  242. Schneekloth, A. R., Pucheault, M., Tae, H. S. & Crews, C. M. Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg. Med. Chem. Lett. 18, 5904–5908 (2008).

    Article  CAS  PubMed  Google Scholar 

  243. Itoh, Y., Ishikawa, M., Naito, M. & Hashimoto, Y. Protein knockdown using methyl bestatin−ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins. J. Am. Chem. Soc. 132, 5820–5826 (2010).

    Article  CAS  PubMed  Google Scholar 

  244. Zhang, X., Crowley, V. M., Wucherpfennig, T. G., Dix, M. M. & Cravatt, B. F. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nat. Chem. Biol. 15, 737–746 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Ward, C. C. et al. Covalent ligand screening uncovers a RNF4 E3 ligase recruiter for targeted protein degradation applications. ACS Chem. Biol. 14, 2430–2440 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Spradlin, J. N. et al. Harnessing the anti-cancer natural product nimbolide for targeted protein degradation. Nat. Chem. Biol. 15, 747–755 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Tong, B. et al. Bardoxolone conjugation enables targeted protein degradation of BRD4. Sci. Rep. 10, 15543 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Luo, M. et al. Chemoproteomics-enabled discovery of covalent RNF114-based degraders that mimic natural product function. Cell Chem. Biol. 28, 559–566.e15 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Molina, D. M. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013).

    Article  CAS  Google Scholar 

  250. Burslem, G. M., Bondeson, D. P. & Crews, C. M. Scaffold hopping enables direct access to more potent PROTACs with in vivo activity. Chem. Commun. 56, 6890–6892 (2020).

    Article  CAS  Google Scholar 

  251. Schreiber, S. L. A chemical biology view of bioactive small molecules and a binder-based approach to connect biology to precision medicines. Isr. J. Chem. 59, 52–59 (2019).

    Article  CAS  PubMed  Google Scholar 

  252. Bradner, J. E. et al. A robust small-molecule microarray platform for screening cell lysates. Chem. Biol. 13, 493–504 (2006).

    Article  CAS  PubMed  Google Scholar 

  253. Bradner, J. E., McPherson, O. M. & Koehler, A. N. A method for the covalent capture and screening of diverse small molecules in a microarray format. Nat. Protoc. 1, 2344–2352 (2006).

    Article  CAS  PubMed  Google Scholar 

  254. Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Pop, M. S. et al. A small molecule that binds and inhibits the ETV1 transcription factor oncoprotein. Mol. Cancer Ther. 13, 1492–1502 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Yang, Z., Koehler, A. N. & Wang, L. A novel small molecule activator of nuclear receptor SHP inhibits HCC cell migration via suppressing Ccl2. Mol. Cancer Ther. 15, 2294–2301 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Roberts, A. M. et al. Chemoproteomic screening of covalent ligands reveals UBA5 as a novel pancreatic cancer target. ACS Chem. Biol. 12, 899–904 (2017).

    Article  CAS  PubMed  Google Scholar 

  258. Resnick, E. et al. Rapid covalent-probe discovery by electrophile-fragment screening. J. Am. Chem. Soc. 141, 8951–8968 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).

    Article  CAS  PubMed  Google Scholar 

  261. Hallin, J. et al. The KRASG12C inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov. 10, 54–71 (2020).

    Article  CAS  PubMed  Google Scholar 

  262. Boike, L. et al. Discovery of a functional covalent ligand targeting an intrinsically disordered cysteine within MYC. Cell Chem. Biol. 28, 4–13.e17 (2021). This paper describes the discovery of a covalent inhibitor of a disordered region of MYC, illustrating the power of covalent approaches for targeting challenging TFs.

    Article  CAS  PubMed  Google Scholar 

  263. Brenner, S. & Lerner, R. A. Encoded combinatorial chemistry. Proc. Natl Acad. Sci. USA 89, 5381–5383 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Goodnow, R. A., Dumelin, C. E. & Keefe, A. D. DNA-encoded chemistry: enabling the deeper sampling of chemical space. Nat. Rev. Drug Discov. 16, 131–147 (2017).

    Article  CAS  PubMed  Google Scholar 

  265. Neri, D. & Lerner, R. A. DNA-encoded chemical libraries: a selection system based on endowing organic compounds with amplifiable information. Annu. Rev. Biochem. 87, 479–502 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Gerry, C. J., Wawer, M. J., Clemons, P. A. & Schreiber, S. L. DNA barcoding a complete matrix of stereoisomeric small molecules. J. Am. Chem. Soc. 141, 10225–10235 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Gerry, C. J. & Schreiber, S. L. Recent achievements and current trajectories of diversity-oriented synthesis. Curr. Opin. Chem. Biol. 56, 1–9 (2020).

    Article  CAS  PubMed  Google Scholar 

  268. Bunnage, M. E., Gilbert, A. M., Jones, L. H. & Hett, E. C. Know your target, know your molecule. Nat. Chem. Biol. 11, 368–372 (2015).

    Article  CAS  PubMed  Google Scholar 

  269. Mo, H. & Henriksson, M. Identification of small molecules that induce apoptosis in a Myc-dependent manner and inhibit Myc-driven transformation. Proc. Natl Acad. Sci. USA 103, 6344–6349 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Wang, H. et al. Improved low molecular weight Myc-Max inhibitors. Mol. Cancer Ther. 6, 2399–2408 (2007).

    Article  CAS  PubMed  Google Scholar 

  271. Castell, A. et al. A selective high affinity MYC-binding compound inhibits MYC:MAX interaction and MYC-dependent tumor cell proliferation. Sci. Rep. 8, 10064 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Jafari, R. et al. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat. Protoc. 9, 2100–2122 (2014).

    Article  CAS  PubMed  Google Scholar 

  273. Smith, E. & Collins, I. Photoaffinity labeling in target- and binding-site identification. Future Med. Chem. 7, 159–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  274. Gao, J., Mfuh, A., Amako, Y. & Woo, C. M. Small molecule interactome mapping by photoaffinity labeling reveals binding site hotspots for the NSAIDs. J. Am. Chem. Soc. 140, 4259–4268 (2018).

    Article  CAS  PubMed  Google Scholar 

  275. Franken, H. et al. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat. Protoc. 10, 1567–1593 (2015).

    Article  CAS  PubMed  Google Scholar 

  276. Iacobucci, C. et al. Carboxyl-photo-reactive MS-cleavable cross-linkers: unveiling a hidden aspect of diazirine-based reagents. Anal. Chem. 90, 2805–2809 (2018).

    Article  CAS  PubMed  Google Scholar 

  277. Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Wang, C., Weerapana, E., Blewett, M. M. & Cravatt, B. F. A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles. Nat. Methods 11, 79–85 (2014).

    Article  PubMed  Google Scholar 

  279. Nijman, S. M. B. Functional genomics to uncover drug mechanism of action. Nat. Chem. Biol. 11, 942–948 (2015).

    Article  CAS  PubMed  Google Scholar 

  280. Jost, M. et al. Combined CRISPRi/a-based chemical genetic screens reveal that rigosertib is a microtubule-destabilizing agent. Mol. Cell 68, 210–223.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Neggers, J. E. et al. Target identification of small molecules using large-scale CRISPR–Cas mutagenesis scanning of essential genes. Nat. Commun. 9, 502 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Klein, I. A. et al. Partitioning of cancer therapeutics in nuclear condensates. Science 368, 1386–1392 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Siriwardena, S. U. et al. Phosphorylation-inducing chimeric small molecules. J. Am. Chem. Soc. 142, 14052–14057 (2020).

    Article  CAS  PubMed  Google Scholar 

  284. Erkizan, H. V. et al. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nat. Med. 15, 750–756 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Ponnusamy, S. et al. Novel selective agents for the degradation of androgen receptor variants to treat castration-resistant prostate cancer. Cancer Res. 77, 6282–6298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Hwang, D.-J. et al. New generation of selective androgen receptor degraders: our initial design, synthesis, and biological evaluation of new compounds with enzalutamide-resistant prostate cancer activity. J. Med. Chem. 62, 491–511 (2019).

    Article  CAS  PubMed  Google Scholar 

  287. Kent, L. N. & Leone, G. The broken cycle: E2F dysfunction in cancer. Nat. Rev. Cancer 19, 326–338 (2019).

    Article  CAS  PubMed  Google Scholar 

  288. Sanda, T. et al. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell 22, 209–221 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Gryder, B. E. et al. Miswired enhancer logic drives a cancer of the muscle lineage. iScience 23, 101103 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Sikorski, K., Czerwoniec, A., Bujnicki, J. M., Wesoly, J. & Bluyssen, H. A. R. STAT1 as a novel therapeutical target in pro-atherogenic signal integration of IFNγ, TLR4 and IL-6 in vascular disease. Cytokine Growth Factor Rev. 22, 211–219 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding received from the National Institutes of Health (NIH) (U54CA231630-01A1) and the Emerson Collective.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Madeleine J. Henley or Angela N. Koehler.

Ethics declarations

Competing interests

A.N.K. is a founder of Kronos Bio and is both a shareholder and a member of the Scientific Advisory Board.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Non-specific TF binding sites

Sequences of DNA that do not contain the consensus sequence for a transcription factor (TF) DNA-binding domain (DBD). Most DBDs have low affinity for non-specific sites, but because of the exceptionally high ratio of non-specific to specific sites, TFs often spend significant time at non-specific sites.

Specific TF binding sites

Sequences of DNA that contain the consensus sequence for a transcription factor (TF) DNA-binding domain.

Transcriptional condensates

Liquid–liquid phase-separated droplets containing transcription factors, co-activators, RNA polymerase II (Pol II) and other transcriptional machinery.

Pre-initiation complex

A large complex comprising general transcription factors, Mediator and other proteins that position and activate RNA polymerase II (Pol II) at the transcription start site.

Cooperativity

In transcription, a phenomenon where binding of one transcription factor and/or co-regulator at a regulatory element enhances the binding of other factors, and vice versa.

Core regulatory TFs

(Also known as master TFs). Self-regulated transcription factors (TFs) that control cell identity and fate.

Chromatin readers

Proteins, such as bromodomains, that bind to post-translationally modified histones.

Ubiquitin–proteasome system

A system of intracellular protein degradation that is mediated by transfer of ubiquitin to target proteins by ubiquitin E3 ligases to mark them for degradation by the proteasome.

Molecular glues

Small molecules that directly mediate a non-native protein–protein interaction.

Histone deacetylases

(HDACs). Enzymes that remove acetyl groups from acetylated Lys residues in histones. Generally associated with closed chromatin conformation and transcriptional repression.

Histone acetyltransferases

(HATs). Enzymes that transfer acetyl groups to the ε-amino group of Lys residues in histones. Generally associated with open chromatin conformation and increased transcription.

Chromatin remodellers

Protein complexes with a common ATPase domain that use ATP hydrolysis to move, reposition or eject nucleosomes.

Intrinsically disordered proteins

(IDPs; also known as intrinsically disordered regions (IDRs)). Proteins or regions of proteins that do not adopt a well-defined structure. Often characterized as ‘ensembles’ of many unrelated protein conformations, although many IDPs/IDRs can transiently form more defined structures.

NMR spectroscopy

A structural technique that utilizes the quantum-mechanical properties of nuclear spins in a magnetic field. Used in structural biology to determine protein structure, as well as to characterize conformational dynamics across a wide range of timescales (general range of picoseconds to hours/days).

Molecular dynamics

A computational technique that is used to characterize the structure and conformational dynamics of proteins by simulating the interactions between all the atoms of a protein and its surrounding solvent over time.

Occupancy-based modulators

Modulators of protein function in drug discovery where the overall change in protein activity from drug treatment is determined by the concentration of the drug in the cell and its affinity for its target. For complete inhibition of activity by an inhibitor, the drug must reach concentrations several times above its dissociation constant (Kd).

ARV7

A splice variant of the androgen receptor that lacks the ligand-binding domain.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henley, M.J., Koehler, A.N. Advances in targeting ‘undruggable’ transcription factors with small molecules. Nat Rev Drug Discov 20, 669–688 (2021). https://doi.org/10.1038/s41573-021-00199-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-021-00199-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer