Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolution and progression of Barrett’s oesophagus to oesophageal cancer

Abstract

Cancer cells are shaped through an evolutionary process of DNA mutation, cell selection and population expansion. Early steps in this process are driven by a set of mutated driver genes and structural alterations to the genome through copy number gains or losses. Oesophageal adenocarcinoma (EAC) and the pre-invasive tissue, Barrett’s oesophagus (BE), provide an ideal example in which to observe and study this evolution. BE displays early genomic instability, specifically in copy number changes that may later be observed in EAC. Furthermore, these early changes result in patterns of progression (that is, ‘born bad’, gradual or catastrophic) that may help to describe the evolution of EAC. As only a small proportion of patients with BE will go on to develop cancer, a better understanding of these patterns and the resulting genomic changes should improve early detection in EAC and may provide clues for the evolution of cancer more broadly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Histopathological progression for BE.
Fig. 2: Histological and molecular BE progression.
Fig. 3: Interactive risk prediction.

Similar content being viewed by others

References

  1. Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020). This work, coming out of the largest pan-cancer analysis to date, establishes the concept of early and late mutations in the evolution of tumours, suggesting that early gene mutations might be detectable and offer the potential of earlier treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. & Stratton, M. R. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 3, 246–259 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ross-Innes, C. S. et al. Whole-genome sequencing provides new insights into the clonal architecture of Barrett’s esophagus and esophageal adenocarcinoma. Nat. Genet. 47, 1038–1046 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. ICGC/TCGA. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    Article  CAS  Google Scholar 

  7. Alexandrov, L. B., Kim, J., Haradhvala, N. J. & Huang, M. N. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martincorena, I. et al. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hoang, M. L. et al. Genome-wide quantification of rare somatic mutations in normal human tissues using massively parallel sequencing. Proc. Natl Acad. Sci. USA 113, 9846–9851 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brunner, S. F. et al. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature 574, 538–542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 561, 473–478 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yizhak, K. et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science 364, eaaw0726 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martincorena, I. & Campbell, P. J. Somatic mutation in cancer and normal cells. Science 349, 961–968 (2016).

    Google Scholar 

  15. Jakubek, Y. A. et al. Large-scale analysis of acquired chromosomal alterations in non-tumor samples from patients with cancer. Nat. Biotechnol. 38, 90–96 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Reid, B. J., Li, X., Galipeau, P. C. & Vaughan, T. L. Barrett’s oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nat. Rev. Cancer 10, 87–101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spechler, S. J. Carcinogenesis at the gastroesophageal junction: free radicals at the frontier. Gastroenterology 122, 1518–1520 (2002).

    Article  PubMed  Google Scholar 

  18. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Thrift, A. P. Global burden and epidemiology of Barrett oesophagus and oesophageal cancer. Nat. Rev. Gastroenterol. Hepatol. 18, 432–443 (2021).

    Article  PubMed  Google Scholar 

  20. Hvid-Jensen, F. et al. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N. Engl. J. Med. 365, 1375–1383 (2011). This work is one of the largest population-based studies to show that the risk of progression from non-dysplastic BE to EAC is very low (≤0.3% per year).

    Article  CAS  PubMed  Google Scholar 

  21. Smyth, E. C. et al. Oesophageal cancer. Nat. Rev. Dis. Prim. 3, 17048 (2017).

    Article  PubMed  Google Scholar 

  22. Wani, S., Rubenstein, J. H., Vieth, M. & Bergman, J. Diagnosis and management of low-grade dysplasia in Barrett’s esophagus: expert review from the clinical practice updates committee of the American Gastroenterological Association. Gastroenterology 151, 822–835 (2016).

    Article  PubMed  Google Scholar 

  23. Killcoyne, S. et al. Identification of prognostic phenotypes of esophageal adenocarcinoma in two independent cohorts. Gastroenterology 155, 1720–1728 (2018).

    Article  PubMed  Google Scholar 

  24. Bhat, S. K. et al. Oesophageal adenocarcinoma and prior diagnosis of Barrett’s oesophagus: a population-based study. Gut 64, 20–25 (2015).

    Article  PubMed  Google Scholar 

  25. The Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature 541, 169–175 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  26. Frankell, A. M. et al. The landscape of selection in 551 esophageal adenocarcinomas defines genomic biomarkers for the clinic. Nat. Genet. 51, 506–516 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Secrier, M. et al. Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance. Nat. Genet. 48, 1131–1141 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maley, C. C. et al. The combination of genetic instability and clonal expansion predicts progression to esophageal adenocarcinoma. Cancer Res. 64, 7629–7633 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Martinez, P. et al. Dynamic clonal equilibrium and predetermined cancer risk in Barrett’s oesophagus. Nat. Commun. 7, 12158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Killcoyne, S. et al. Genomic copy number predicts esophageal cancer years before transformation. Nat. Med. 26, 1726–1732 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013). This paper together with Alexandrov et al. (Cell Reports, 2013 and Nature, 2020) establishes the concept of mutational signatures, helping to study mutational processes active within the somatic genome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Newell, F. et al. Complex structural rearrangements are present in high-grade dysplastic Barrett’s oesophagus samples. BMC Med. Genomics 12, 31 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Maley, C. C. et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 38, 468–473 (2006). Together with Maley et al. (‘The combination …’, Cancer Research, 2004), this paper provides evidence that early genetic instability, rather than individual biomarkers, can be used to predict the risk of progression in a single patient.

    Article  CAS  PubMed  Google Scholar 

  35. Dulak, A. M. et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet. 45, 478–486 (2013). This paper from TCGA alongside Secrier et al. (2016) and Frankell et al. (2019), provides a comprehensive genomic characterization of EAC from the largest patient cohorts to date.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nones, K. et al. Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat. Commun. 5, 5224 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Weaver, J. M. J. et al. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. Nat. Genet. 46, 837–843 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stachler, M. D. et al. Paired exome analysis of Barrett’s esophagus and adenocarcinoma. Nat. Genet. 47, 1047–1055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Christensen, S. et al. 5-Fluorouracil treatment induces characteristic T > G mutations in human cancer. Nat. Commun. 10, 1–11 (2019).

    Article  CAS  Google Scholar 

  40. Tomkova, M., Tomek, J., Kriaucionis, S. & Schuster-Böckler, B. Mutational signature distribution varies with DNA replication timing and strand asymmetry. Genome Biol. 19, 129 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Pich, O. et al. Somatic and germline mutation periodicity follow the orientation of the DNA minor groove around nucleosomes. Cell 175, 1074–1087.e18 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Gonzalez-Perez, A., Sabarinathan, R. & Lopez-Bigas, N. Local determinants of the mutational landscape of the human genome. Cell 177, 101–114 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Bass, A. J. et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

    Article  CAS  Google Scholar 

  44. Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stachler, M. D. et al. Detection of mutations in Barrett’s esophagus before progression to high-grade dysplasia or adenocarcinoma. Gastroenterology 155, 156–167 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Ross-Innes, C. S. et al. Evaluation of a minimally invasive cell sampling device coupled with assessment of trefoil factor 3 expression for diagnosing barrett’s esophagus: a multi-center case–control study. PLoS Med. 12, e1001780 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Sottoriva, A. et al. A big bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Martinez, P. et al. Evolution of Barrett’s esophagus through space and time at single-crypt and whole-biopsy levels. Nat. Commun. 9, 794 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Liu, Y. et al. Comparative molecular analysis of gastrointestinal adenocarcinomas. Cancer Cell 33, 721–735.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Noorani, A. et al. Genomic evidence supports a clonal diaspora model for metastases of esophageal adenocarcinoma. Nat. Genet. 52, 74–83 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Saito, T. et al. A temporal shift of the evolutionary principle shaping intratumor heterogeneity in colorectal cancer. Nat. Commun. 9, 1–11 (2018).

    Article  CAS  Google Scholar 

  52. Wu, H. et al. Evolution and heterogeneity of non-hereditary colorectal cancer revealed by single-cell exome sequencing. Oncogene 36, 2857–2867 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Dulak, A. M. et al. Gastrointestinal adenocarcinomas of the esophagus, stomach, and colon exhibit distinct patterns of genome instability and oncogenesis. Cancer Res. 72, 4383–4394 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Hadi, K. et al. Distinct classes of complex structural variation uncovered across thousands of cancer genome graphs. Cell 183, 197–210.e32 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jakubek, Y. et al. Genomic landscape established by allelic imbalance in the cancerization field of a normal appearing airway. Cancer Res. 76, 3676–3683 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Conconi, D. et al. Unexpected frequency of genomic alterations in histologically normal colonic tissue from colon cancer patients. Tumor Biol. 37, 13831–13842 (2016).

    Article  CAS  Google Scholar 

  57. Burrell, R. A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Galipeau, P. C. et al. 17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett’s esophagus. Proc. Natl Acad. Sci. USA 93, 7081–7084 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Barrett, M., Galipeau, P., Sanchez, C., Emond, M. & Reid, B. Determination of the frequency of loss of heterozygosity in esophageal adenocarcinoma by cell sorting, whole genome amplification and microsatellite polymorphisms. Oncogene 12, 1873–1878 (1996).

    CAS  PubMed  Google Scholar 

  60. Barrett, M. T. et al. Allelic loss of 9p21 and mutation of the CDKN2/p16 gene develop as early lesions during neoplastic progression in Barrett’s esophagus. Oncogene 13, 1867–1873 (1996).

    CAS  PubMed  Google Scholar 

  61. Galipeau, P. C., Prevo, L. J., Sanchez, C. A., Longton, G. M. & Reid, B. J. Clonal expansion and loss of heterozygosity at chromosomes 9p and 17p in premalignant esophageal (Barrett’s) tissue. JNCI 91, 2087–2095 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Maley, C. C. et al. Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett’s esophagus. Cancer Res. 64, 3414–3427 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Li, X. et al. Temporal and spatial evolution of somatic chromosomal alterations: a case–cohort study of Barrett’s esophagus. Cancer Prev. Res. 7, 114–127 (2014).

    Article  Google Scholar 

  64. Levine, D. S., Reid, B. J., Haggitt, R. C., Rubin, C. E. & Rabinovitch, P. S. Correlation of ultrastructural aberrations with dysplasia and flow cytometric abnormalities in Barrett’s epithelium. Gastroenterology 96, 355–367 (1989).

    Article  CAS  PubMed  Google Scholar 

  65. Reid, B. et al. Flow-cytometric and histological progression to malignancy in Barrett’s esophagus: prospective endoscopic surveillance of a cohort. Gastroenterology 102, 1212–1219 (1992).

    Article  CAS  PubMed  Google Scholar 

  66. Reid, B. J. et al. Predictors of progression in Barrett’s esophagus II: baseline 17p (p53) loss of heterozygosity identifies a patient subset at increased risk for neoplastic progression. Am. J. Gastroenterol. 96, 2839–2848 (2001). Together with Galipeau et al. (1996), Galipeau et al. (1999) and Reid et al. (2001), this paper provides evidence that early copy number changes occur in BE and confer increased risk of cancer to patients with BE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rabinovitch, P. S., Longton, G., Blount, P. L., Levine, D. S. & Reid, B. J. Predictors of progression in Barrett’s esophagus III: baseline flow cytometric variables. Am. J. Gastroenterol. 96, 3071–3083 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Curtius, K. et al. A molecular clock infers heterogeneous tissue age among patients with Barrett’s esophagus. PLoS Comput. Biol. 12, e1004919 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gao, R. et al. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat. Genet. 48, 1119–1130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bonnington, S. N. & Rutter, M. D. Surveillance of colonic polyps: are we getting it right? World J. Gastroenterol. 22, 1925–1934 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cheng, Y.-W. et al. CpG island methylator phenotype associates with low-degree chromosomal abnormalities in colorectal cancer. Clin. Cancer Res. 14, 6005–6013 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

    Article  CAS  Google Scholar 

  75. Baca, S. C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ly, P. & Cleveland, D. W. Rebuilding chromosomes after catastrophe: emerging mechanisms of chromothripsis. Trends Cell Biol. 27, 917–930 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Killcoyne, S. & Fitzgerald, R. C. Practical early cancer detection: distinguishing stable from unstable genomes in pre-cancerous tissues. Br. J. Cancer 124, 683–685 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Shaheen, N. J., Falk, G. W., Iyer, P. G. & Gerson, L. B. ACG clinical guideline: diagnosis and management of Barrett’s esophagus. Am. J. Gastroenterol. 111, 30–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Fitzgerald, R. C. et al. British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s oesophagus. Gut 63, 7–42 (2014).

    Article  PubMed  Google Scholar 

  80. Bhat, S. et al. Risk of malignant progression in Barrett’s Esophagus patients: results from a large population-based study. J. Natl. Cancer Inst. 103, 1049–1057 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  81. Shaheen, N. J. et al. Radiofrequency ablation in Barrett’s esophagus with dysplasia. N. Engl. J. Med. 360, 2277–2288 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Phoa, K. N. et al. Radiofrequency ablation vs endoscopic surveillance for patients with Barrett esophagus and low-grade dysplasia: a randomized clinical trial. JAMA 311, 1209–1217 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Fitzgerald, R. C. et al. Cytosponge-trefoil factor 3 versus usual care to identify Barrett’s oesophagus in a primary care setting: a multicentre, pragmatic, randomised controlled trial. Lancet 396, 333–344 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Davidson, M. et al. Detecting and tracking circulating tumour DNA copy number profiles during first line chemotherapy in oesophagogastric adenocarcinoma. Cancers 11, 736 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  85. Babayan, A. & Pantel, K. Advances in liquid biopsy approaches for early detection and monitoring of cancer. Genome Med. 10, 21 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. van der Wel, M. J. et al. Improved diagnostic stratification of digitised Barrett’s oesophagus biopsies by p53 immunohistochemical staining. Histopathology 72, 1015–1023 (2018).

    Article  PubMed  Google Scholar 

  87. Hamelin, R. et al. TP53 gene mutations and p53 protein immunoreactivity in malignant and premalignant Barrett’s esophagus. Gastroenterology 107, 1012–1018 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Bang, Y. J. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Davelaar, A. L. et al. Aberrant TP53 detected by combining immunohistochemistry and DNA-FISH improves Barrett’s esophagus progression prediction: a prospective follow-up study. Genes Chromosom. Cancer 54, 82–90 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Reid, B. J., Levine, D. S., Longton, G., Blount, P. L. & Rabinovitch, P. S. Predictors of progression to cancer in Barrett’s esophagus: baseline histology and flow cytometry identify low- and high-risk patient subsets. Am. J. Gastroenterol. 95, 1669–1676 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hadjinicolaou, A. V. et al. Aneuploidy in targeted endoscopic biopsies outperforms other tissue biomarkers in the prediction of histologic progression of Barrett’s oesophagus: a multi-centre prospective cohort study. Ebiomedicine 56, 102765 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Li, X. et al. Assessment of esophageal adenocarcinoma risk using somatic chromosome alterations in longitudinal samples in Barrett’s esophagus. Cancer Prev. Res. 8, 845–856 (2015).

    Article  CAS  Google Scholar 

  93. Douville, C. et al. Massively parallel sequencing of esophageal brushings enables an aneuploidy-based classification of patients with Barrett’s esophagus. Gastroenterology 160, 2043–2054 (2021).

    Article  PubMed  Google Scholar 

  94. Vaughan, T. L. & Fitzgerald, R. C. Precision prevention of oesophageal adenocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 12, 243–248 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Parasa, S. et al. Development and validation of a model to determine risk of progression of Barrett’s esophagus to neoplasia. Gastroenterology 154, 1282–1289.e2 (2018).

    Article  PubMed  Google Scholar 

  96. Hardikar, S. et al. The role of tobacco, alcohol, and obesity in neoplastic progression to esophageal adenocarcinoma: a prospective study of Barrett’s esophagus. PLoS ONE 8, e52192 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zagari, R. M. et al. Gastro-oesophageal reflux symptoms, oesophagitis and Barrett’s oesophagus in the general population: the Loiano-Monghidoro study. Gut 57, 1354–1359 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Ronkainen, J. et al. Prevalence of Barrett’s esophagus in the general population: an endoscopic study. Gastroenterology 129, 1825–1831 (2005).

    Article  PubMed  Google Scholar 

  99. Hamade, N. et al. Lower annual rate of progression of short-segment vs long-segment Barrett’s esophagus to esophageal adenocarcinoma. Clin. Gastroenterol. Hepatol. 17, 864–868 (2019).

    Article  PubMed  Google Scholar 

  100. Papaemmanuil, E. et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374, 2209–2221 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gerstung, M. et al. Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat. Genet. 49, 332–340 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cook, M. B. et al. Cigarette smoking increases risk of Barrett’s esophagus: an analysis of the Barrett’s and esophageal adenocarcinoma consortium. Gastroenterology 142, 744–753 (2012).

    Article  PubMed  Google Scholar 

  103. Vaughan, T. L., Onstad, L. & Dai, J. Y. Interactive decision support for esophageal adenocarcinoma screening and surveillance. BMC Gastroenterol. 19, 109 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Keswani, R. N., Noffsinger, A., Waxman, I. & Bissonnette, M. Clinical use of p53 in Barrett’s esophagus. Cancer Epidemiol. Biomarkers Prev. 15, 1243–1249 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Jin, Z. et al. A multicenter, double-blinded validation study of methylation biomarkers for progression prediction in Barrett’s esophagus. Cancer Res. 69, 4112–4115 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sato, F. et al. Three-tiered risk stratification model to predict progression in Barrett’s esophagus using epigenetic and clinical features. PLoS ONE 3, e1890 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Souza, R. F. Reflux esophagitis and its role in the pathogenesis of Barrett’s metaplasia. J. Gastroenterol. 52, 767–776 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang, D. H. The esophageal squamous epithelial cell — still a reasonable candidate for the Barrett’s esophagus cell of origin? Cell. Mol. Gastroenterol. Hepatol. 4, 157–160 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kong, J., Crissey, M. A., Funakoshi, S., Kreindler, J. L. & Lynch, J. P. Ectopic Cdx2 expression in murine esophagus models an intermediate stage in the emergence of Barrett’s esophagus. PLoS ONE 6, 18280 (2011).

    Article  CAS  Google Scholar 

  110. Clemons, N. J. et al. Sox9 drives columnar differentiation of esophageal squamous epithelium: a possible role in the pathogenesis of Barrett’s esophagus. Am. J. Physiol. Gastrointest. Liver Physiol. 303, 1335–1346 (2012).

    Article  CAS  Google Scholar 

  111. Owen, R. P. et al. Single cell RNA-seq reveals profound transcriptional similarity between Barrett’s oesophagus and oesophageal submucosal glands. Nat. Commun. 9, 4261 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Leedham, S. J. et al. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett’s oesophagus. Gut 57, 1041–1048 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Jiang, M. et al. Transitional basal cells at the squamous-columnar junction generate Barrett’s oesophagus. Nature 550, 529–533 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang, X. et al. Residual embryonic cells as precursors of a Barrett’s-like metaplasia. Cell 145, 1023–1035 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. McQuaid, K. R., Laine, L., Fennerty, M. B., Souza, R. & Spechler, S. J. Systematic review: The role of bile acids in the pathogenesis of gastro-oesophageal reflux disease and related neoplasia. Aliment. Pharmacol. Ther. 34, 146–165 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Gokon, Y. et al. Immune microenvironment in Barrett’s esophagus adjacent to esophageal adenocarcinoma: possible influence of adjacent mucosa on cancer development and progression. Virchows Arch. 477, 825–834 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Fitzgerald, R. C. et al. Diversity in the oesophageal phenotypic response to gastro-oesophageal reflux: Immunological determinants. Gut 50, 451–459 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kavanagh, M. E. et al. Impact of the inflammatory microenvironment on T-cell phenotype in the progression from reflux oesophagitis to Barrett oesophagus and oesophageal adenocarcinoma. Cancer Lett. 370, 117–124 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Lagisetty, K. H. et al. Immune determinants of Barrett’s progression to esophageal adenocarcinoma. JCI Insight 6, e143888 (2021). This paper provides an overview of the changes within the immune environment between BE and EAC.

    Article  PubMed Central  Google Scholar 

  120. Wagener-Ryczek, S. et al. Immune profile and immunosurveillance in treatment-naive and neoadjuvantly treated esophageal adenocarcinoma. Cancer Immunol. Immunother. 69, 523–533 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Galipeau, P. C. et al. NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma. PLoS Med. 4, e67 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Galipeau, P. C. et al. NSAID use and somatic exomic mutations in Barrett’s esophagus. Genome Med. 10, 17 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Liao, L. M. et al. Nonsteroidal anti-inflammatory drug use reduces risk of adenocarcinomas of the esophagus and esophagogastric junction in a pooled analysis. Gastroenterology 142, 442–452.e5; quiz e22–e23 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Jankowski, J. A. Z. et al. Esomeprazole and aspirin in Barrett’s oesophagus (AspECT): a randomised factorial trial. Lancet 392, 400–408 (2018). This paper presents AspECT, the largest clinical trial to date investigating the real effect of aspirin and proton-pump inhibitors to delay or inhibit EAC in patients with BE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The laboratory of R.C.F. is funded by a Programme Grant from the Medical Research Council (MRC) (RG84369), and Cancer Research UK provided funding for the Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS)/International Cancer Genome Consortium (ICGC) oesophageal cancer programme (RG66287).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this article.

Corresponding author

Correspondence to Rebecca C. Fitzgerald.

Ethics declarations

Competing interests

R.C.F. is named on patents for Cytosponge and related assays that have been licensed by the Medical Research Council (MRC) to Covidien GI Solutions (now Medtronic). R.C.F is a co-founder and shareholder of Cyted Ltd, an Early Detection company. S.K. declares no competing interests.

Additional information

Peer review information

Nature Reviews Cancer thanks M. Stachler, T. Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Acute myeloid leukaemia multistage predictions: https://cancer.sanger.ac.uk/aml-multistage/

GitHub — gerstung-lab/BarrettsProgressionRisk: https://github.com/gerstung-lab/BarrettsProgressionRisk

Interactive and Contextual RISk Calculator (IC-RISC): https://ic-risc.fredhutch.org/

Glossary

Kataegis

Localized hypermutation often several hundred base pairs in length.

Mutational signature

A combination of mutations (specifically single base-pair substitutions) that generates a specific pattern, or signature, relating to specific mutational processes.

Minor-in groove

DNA facing in to the histone core (minor-in).

Chromothripsis

Hundreds of clustered breaks occurring in a single catastrophic event affecting a limited number of chromosomes.

Breakage–fusion–bridge processes

Mechanisms of genomic instability initiated by telomeric end fusions following double-stranded breaks, which can result in repetitive cycles of fusions and breaks.

Extrachromosomal DNA

(Often extrachromosomal circular DNA). DNA found separate to the chromosomes and often contributing to higher copy numbers and altered gene expression in cancer.

Chromoplexy

Chains of rearrangements that result from the repair of double-stranded breakages.

Cytosponge

A non-endoscopic device for sampling cells within the oesophagus consisting of a pill with a sponge on a string that can be swallowed by the patient.

AUC ROC

(Area under the receiver operating characteristic curve). A performance metric for classification at various thresholds by plotting the true positive rate against the false positive rate.

Elastic-net regression model

A regularized regression method that combines the penalties of LASSO and ridge methods.

Long-segment BE

Barrett’s oesophagus (BE) replaces normal squamous epithelium along measurable lengths of the oesophagus from <1 cm to ≥3 cm extending from the junction of the stomach and the oesophagus.

Hiatal hernia

The upper part of the stomach bulges through the opening of the diaphragm (hiatus) into the oesophagus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Killcoyne, S., Fitzgerald, R.C. Evolution and progression of Barrett’s oesophagus to oesophageal cancer. Nat Rev Cancer 21, 731–741 (2021). https://doi.org/10.1038/s41568-021-00400-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-021-00400-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer