Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

MYC protein interactors in gene transcription and cancer

Abstract

The transcription factor and oncoprotein MYC is a potent driver of many human cancers and can regulate numerous biological activities that contribute to tumorigenesis. How a single transcription factor can regulate such a diverse set of biological programmes is central to the understanding of MYC function in cancer. In this Perspective, we highlight how multiple proteins that interact with MYC enable MYC to regulate several central control points of gene transcription. These include promoter binding, epigenetic modifications, initiation, elongation and post-transcriptional processes. Evidence shows that a combination of multiple protein interactions enables MYC to function as a potent oncoprotein, working together in a ‘coalition model’, as presented here. Moreover, as MYC depends on its protein interactome for function, we discuss recent research that emphasizes an unprecedented opportunity to target protein interactors to directly impede MYC oncogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MYC dysregulation in human cancers.
Fig. 2: MYC regulation of gene transcription is dependent on protein interactors.
Fig. 3: Structure of the MYC family of transforming oncoproteins.
Fig. 4: MYC protein–protein interactions during transcription.
Fig. 5: The coalition model: coordinating the MYC interactome to drive oncogenesis.

Similar content being viewed by others

References

  1. Meyer, N. & Penn, L. Z. Reflecting on 25 years with MYC. Nat. Rev. Cancer 8, 976–990 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Kalkat, M. et al. MYC deregulation in primary human cancers. Genes 8, 2–30 (2017).

    Article  CAS  Google Scholar 

  3. Dang, C. V., Reddy, E. P., Shokat, K. M. & Soucek, L. Drugging the “undruggable” cancer targets. Nat. Rev. Cancer 17, 502–508 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Patel, J. H., Loboda, A. P., Showe, M. K., Showe, L. C. & McMahon, S. B. Analysis of genomic targets reveals complex functions of MYC. Nat. Rev. Cancer 4, 562–568 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Lin, C. Y. et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151, 56–67 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nie, Z. et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151, 68–79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tansey, W. P. Mammalian MYC proteins and cancer. N. J. Sci. 2014, 1–27 (2014).

    Article  CAS  Google Scholar 

  8. SC, C. et al. The MYC oncogene is a global regulator of the immune response. Blood 131, 2007–2015 (2018).

    Article  CAS  Google Scholar 

  9. Di Giacomo, S., Sollazzo, M., Paglia, S. & Grifoni, D. MYC, cell competition, and cell death in cancer: the inseparable triad. Genes 8, 120 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  10. Stine, Z. E., Walton, Z. E., Altman, B. J., Hsieh, A. L. & Dang, C. V. MYC, metabolism, and cancer. Cancer Discov. 5, 1024–1039 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yoshida, G. J. Emerging roles of Myc in stem cell biology and novel tumor therapies. J. Exp. Clin. Cancer Res. 37, 173 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Dang, C. V. et al. The c-Myc target gene network. Semin. Cancer Biol. 16, 253–264 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Baluapuri, A., Wolf, E. & Eilers, M. Target gene-independent functions of MYC oncoproteins. Nat. Rev. Mol. Cell Biol. 21, 255–267 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wolf, E., Lin, C. Y., Eilers, M. & Levens, D. L. Taming of the beast: shaping Myc-dependent amplification. Trends Cell Biol. 25, 241–248 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Nie, Z. et al. Dissecting transcriptional amplification by MYC. eLife 9, e52483 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Richards, M. W. et al. Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors. Proc. Natl Acad. Sci. USA 113, 13726–13731 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nair, S. K. & Burley, S. K. X-ray structures of Myc-max and mad-max recognizing DNA. Cell 112, 193–205 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Thomas, L. R. et al. Interaction with WDR5 promotes target gene recognition and tumorigenesis by MYC. Mol. Cell 58, 440–452 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wei, Y. et al. Multiple direct interactions of TBP with the MYC oncoprotein. Nat. Struct. Mol. Biol. 26, 1035–1043 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Pineda-Lucena, A. et al. A structure-based model of the c-Myc/Bin1 protein interaction shows alternative splicing of Bin1 and c-Myc phosphorylation are key binding determinants. J. Mol. Biol. 351, 182–194 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Andresen, C. et al. Transient structure and dynamics in the disordered c-Myc transactivation domain affect Bin1 binding. Nucleic Acids Res. 40, 6353–6366 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bayliss, R., Burgess, S. G., Leen, E. & Richards, M. W. A moving target: structure and disorder in pursuit of Myc inhibitors. Biochem. Soc. Trans. 45, 709–717 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Blackwood, E. & Eisenman, R. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211–1217 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Amati, B. et al. Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 72, 233–245 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Helander, S. et al. Pre-anchoring of Pin1 to unphosphorylated c-Myc in a fuzzy complex regulates c-Myc activity. Structure 23, 2267–2279 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guarnaccia, A. & Tansey, W. Moonlighting with WDR5: a cellular multitasker. J. Clin. Med. 7, 21 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  27. Carugo, A. et al. In vivo functional platform targeting patient-derived xenografts identifies WDR5-Myc association as a critical determinant of pancreatic cancer. Cell Rep. 16, 133–147 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Sun, Y. et al. WDR5 supports an N-Myc transcriptional complex that drives a protumorigenic gene expression signature in neuroblastoma. Cancer Res. 75, 5143–5154 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Thomas, L. R. et al. Interaction of the oncoprotein transcription factor MYC with its chromatin cofactor WDR5 is essential for tumor maintenance. Proc. Natl Acad. Sci. USA 116, 25260–25268 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dingar, D. et al. MYC dephosphorylation by the PP1/PNUTS phosphatase complex regulates chromatin binding and protein stability. Nat. Commun. 9, 3502 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Richart, L. et al. BPTF is required for c-MYC transcriptional activity and in vivo tumorigenesis. Nat. Commun. 7, 10153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weissmiller, A. M. et al. Inhibition of MYC by the SMARCB1 tumor suppressor. Nat. Commun. 10, 2014 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Stojanova, A. et al. MYC interaction with the tumor suppressive SWI/SNF complex member INI1 regulates transcription and cellular transformation. Cell Cycle 15, 1693–1705 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carroll, P. A., Freie, B. W., Mathsyaraja, H. & Eisenman, R. N. The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis. Front. Med. 12, 412–425 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. McMahon, S. B., Van Buskirk, H. A., Dugan, K. A., Copeland, T. D. & Cole, M. D. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94, 363–374 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Doyon, Y., Selleck, W., Lane, W. S., Tan, S. & Côté, J. Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol. Cell. Biol. 24, 1884–1896 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McMahon, S. B., Wood, M. A. & Cole, M. D. The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol. Cell. Biol. 20, 556–562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Frank, S. R. et al. MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO Rep. 4, 575–580 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Knoepfler, P. S. et al. Myc influences global chromatin structure. EMBO J. 25, 2723–2734 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kalkat, M. et al. MYC protein interactome profiling reveals functionally distinct regions that cooperate to drive tumorigenesis. Mol. Cell 72, 836–848.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Ullius, A. et al. The interaction of MYC with the trithorax protein ASH2L promotes gene transcription by regulating H3K27 modification. Nucleic Acids Res. 42, 6901–6920 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Liang, G. et al. Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc. Natl Acad. Sci. USA 101, 7357–7362 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, N. et al. MYC interacts with the human STAGA coactivator complex via multivalent contacts with the GCN5 and TRRAP subunits. Biochim. Biophys. Acta Gene Regul. Mech. 1839, 395–405 (2014).

    Article  CAS  Google Scholar 

  45. Vervoorts, J. et al. Stimulation of c-MYC transcriptional activity and acetylation by recruitment of the cofactor CBP. EMBO Rep. 4, 484–490 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Martinato, F., Cesaroni, M., Amati, B. & Guccione, E. Analysis of Myc-induced histone modifications on target chromatin. PLoS ONE 3, e3650 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Jin, Q. et al. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J. 30, 249–262 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Tikhanovich, I. et al. Arginine methylation regulates c-Myc–dependent transcription by altering promoter recruitment of the acetyltransferase p300. J. Biol. Chem. 292, 13333–13344 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zargar, Z. U. & Tyagi, S. Role of host cell factor-1 in cell cycle regulation. Transcription 3, 187–192 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lundberg, S. M. et al. ChromNet: learning the human chromatin network from all ENCODE ChIP-seq data. Genome Biol. 17, 82 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Thomas, L. R. et al. Interaction of MYC with host cell factor-1 is mediated by the evolutionarily conserved Myc box IV motif. Oncogene 35, 3613–3618 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Popay, T. M. et al. MYC regulates ribosome biogenesis and mitochondrial gene expression programs through its interaction with host cell factor–1. eLife 10, e60191 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oskarsson, T. & Trumpp, A. The Myc trilogy: lord of RNA polymerases. Nat. Cell Biol. 7, 215–217 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Engel, C., Neyer, S. & Cramer, P. Distinct mechanisms of transcription initiation by RNA polymerases I and II. Annu. Rev. Biophys. 47, 425–446 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Gomez-Roman, N. et al. Activation by c-Myc of transcription by RNA polymerases I, II and III. Biochem. Soc. Symp. 73, 141–154 (2006).

    Article  CAS  Google Scholar 

  56. Campbell, K. J. & White, R. J. MYC regulation of cell growth through control of transcription by RNA polymerases I and III. Cold Spring Harb. Perspect. Med. 4, a018408–a018408 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nogales, E., Louder, R. K. & He, Y. Cryo-EM in the study of challenging systems: the human transcription pre-initiation complex. Curr. Opin. Struct. Biol. 40, 120–127 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gupta, K., Sari-Ak, D., Haffke, M., Trowitzsch, S. & Berger, I. Zooming in on transcription preinitiation. J. Mol. Biol. 428, 2581–2591 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Greber, B. J. & Nogales, E. The structures of eukaryotic transcription pre-initiation complexes and their functional implications. Subcell. Biochem. https://doi.org/10.1007/978-3-030-28151-9_5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hateboer, G. et al. TATA-binding protein and the retinoblastoma gene product bind to overlapping epitopes on c-Myc and adenovirus E1A protein. Proc. Natl Acad. Sci. USA 90, 8489–8493 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Maheswaran, S., Lee, H. & Sonenshein, G. E. Intracellular association of the protein product of the c-myc oncogene with the TATA-binding protein. Mol. Cell. Biol. 14, 1147–1152 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. McEwan, I. J., Dahlman-Wright, K., Ford, J. & Wright, A. P. H. Functional interaction of the c-Myc transactivation domain with the TATA binding protein: evidence for an induced fit model of transactivation domain folding. Biochemistry 35, 9584–9593 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Core, L. J. & Adelman, K. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev. 33, 960–982 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fuda, N. J., Ardehali, M. B. & Lis, J. T. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461, 186–192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Glover-Cutter, K. et al. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol. Cell. Biol. 29, 5455–5464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cowling, V. H. & Cole, M. D. The Myc transactivation domain promotes global phosphorylation of the RNA polymerase II carboxy-terminal domain independently of direct DNA binding. Mol. Cell. Biol. 27, 2059–2073 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Posternak, V., Ung, M. H., Cheng, C. & Cole, M. D. MYC mediates mRNA cap methylation of canonical Wnt/β-catenin signaling transcripts by recruiting CDK7 and RNA methyltransferase. Mol. Cancer Res. 15, 213–224 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Jonkers, I. & Lis, J. T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 167–177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rasmussen, E. B. & Lis, J. T. In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. Proc. Natl Acad. Sci. USA 90, 7923–7927 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bentley, D. L. Coupling mRNA processing with transcription in time and space. Nat. Rev. Genet. 15, 163–175 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lombardi, O., Varshney, D., Phillips, N. M. & Cowling, V. H. c-Myc deregulation induces mRNA capping enzyme dependency. Oncotarget 7, 82273–82288 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cole, M. D. & Cowling, V. H. Specific regulation of mRNA cap methylation by the c-Myc and E2F1 transcription factors. Oncogene 28, 1169–1175 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cowling, V. H. Enhanced mRNA cap methylation increases cyclin D1 expression and promotes cell transformation. Oncogene 29, 930–936 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Eberhardy, S. R. & Farnham, P. J. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J. Biol. Chem. 277, 40156–40162 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Kanazawa, S., Soucek, L., Evan, G., Okamoto, T. & Peterlin, B. M. c-Myc recruits P-TEFb for transcription, cellular proliferation and apoptosis. Oncogene 22, 5707–5711 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Eberhardy, S. R. & Farnham, P. J. c-Myc mediates activation of the cad promoter via a Post-RNA polymerase II recruitment mechanism. J. Biol. Chem. 276, 48562–48571 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Gargano, B., Amente, S., Majello, B. & Lania, L. P-TEFb is a crucial co-factor for Myc transactivation. Cell Cycle 6, 2031–2037 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Rahl, P. B. et al. C-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jang, M. K. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19, 523–534 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19, 535–545 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Liang, K. et al. Targeting processive transcription elongation via SEC disruption for MYC-induced cancer therapy. Cell 175, 766–779.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Baluapuri, A. et al. MYC recruits SPT5 to RNA polymerase II to promote processive transcription elongation. Mol. Cell 74, 674–687.e11 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bywater, M. J. et al. Reactivation of Myc transcription in the mouse heart unlocks its proliferative capacity. Nat. Commun. 11, 1827 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cossa, G. et al. Localized inhibition of protein phosphatase 1 by NUAK1 promotes spliceosome activity and reveals a MYC-sensitive feedback control of transcription. Mol. Cell 77, 1322–1339.e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cortazar, M. A. et al. Control of RNA Pol II speed by PNUTS-PP1 and Spt5 dephosphorylation facilitates termination by a “sitting duck torpedo” mechanism. Mol. Cell 76, 896–908.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jerebtsova, M. et al. Mass spectrometry and biochemical analysis of RNA polymerase II: Targeting by protein phosphatase-1. Mol. Cell. Biochem. 347, 79–87 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Washington, K. et al. Protein phosphatase-1 dephosphorylates the C-terminal domain of RNA polymerase-II. J. Biol. Chem. 277, 40442–40448 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Staller, P. et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nat. Cell Biol. 3, 392–399 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Gartel, A. L. & Shchors, K. Mechanisms of c-myc-mediated transcriptional repression of growth arrest genes. Exp. Cell Res. 283, 17–21 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Marhin, W. W., Chen, S., Facchini, L. M., Fornace Jr, A. J. & Penn, L. Z. Myc represses the growth arrest gene gadd45. Oncogene 14, 2825–2834 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Gartel, A. L. et al. Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3. Proc. Natl Acad. Sci. USA 98, 4510–4515 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wanzel, M., Herold, S. & Eilers, M. Transcriptional repression by Myc. Trends Cell Biol. 13, 146–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Molander, C., Hackzell, A., Ohta, M., Izumi, H. & Funa, K. Sp1 is a key regulator of the PDGF beta-receptor transcription. Mol. Biol. Rep. 28, 223–233 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Gherardi, S., Valli, E., Erriquez, D. & Perini, G. MYCN-mediated transcriptional repression in neuroblastoma: the other side of the coin. Front. Oncol. 3, 42 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kurland, J. F. & Tansey, W. P. Myc-mediated transcriptional repression by recruitment of histone deacetylase. Cancer Res. 68, 3624–3629 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, X. et al. Myc represses miR-15a/miR-16-1 expression through recruitment of HDAC3 in mantle cell and other non-Hodgkin B-cell lymphomas. Oncogene 31, 3002–3008 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Tu, W. B. et al. MYC interacts with the G9a histone methyltransferase to drive transcriptional repression and tumorigenesis. Cancer Cell 34, 579–595.e8 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Moore, J. P., Hancock, D. C., Littlewood, T. D. & Evan, G. I. A sensitive and quantitative enzyme-linked immunosorbence assay for the c-myc and N-myc oncoproteins. Oncogene Res. 2, 65–80 (1987).

    CAS  PubMed  Google Scholar 

  99. Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855.e16 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Lu, H. et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558, 318–323 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Guo, C. et al. ENL initiates multivalent phase separation of the super elongation complex (SEC) in controlling rapid transcriptional activation. Sci. Adv. 6, eaay4858 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543–548 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zamudio, A. V. et al. Mediator condensates localize signaling factors to key cell identity genes. Mol. Cell 76, 753–766.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Guo, J. et al. Sequence specificity incompletely defines the genome-wide occupancy of Myc. Genome Biol. 15, 482 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Chacón Simon, S. et al. Discovery of WD repeat-containing protein 5 (WDR5)–MYC inhibitors using fragment-based methods and structure-based design. J. Med. Chem. 63, 4315–4333 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Han, H. et al. Small-molecule MYC inhibitors suppress tumor growth and enhance immunotherapy. Cancer Cell 36, 483–497.e15 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tu, W. B. et al. Myc and its interactors take shape. Biochim. Biophys. Acta 1849, 469–483 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Scott, D. E., Bayly, A. R., Abell, C. & Skidmore, J. Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nat. Rev. Drug Discov. 15, 533–550 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Cochran, A. G., Conery, A. R. & Sims, R. J. Bromodomains: a new target class for drug development. Nat. Rev. Drug Discov. 18, 609–628 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Lu, H. et al. Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials. Signal. Transduct. Target. Ther. 5, 213 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Cang, S., Iragavarapu, C., Savooji, J., Song, Y. & Liu, D. ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development. J. Hematol. Oncol. 8, 129 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Deeks, E. D. Venetoclax: first global approval. Drugs 76, 979–987 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Khurana, A. & Shafer, D. A. MDM2 antagonists as a novel treatment option for acute myeloid leukemia: perspectives on the therapeutic potential of idasanutlin (RG7388). Onco. Targets. Ther. 12, 2903–2910 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dingar, D. et al. BioID identifies novel c-MYC interacting partners in cultured cells and xenograft tumors. J. Proteom. 118, 95–111 (2015).

    Article  CAS  Google Scholar 

  116. Macdonald, J. D. et al. Discovery and optimization of salicylic acid-derived sulfonamide inhibitors of the WD repeat-containing protein 5-MYC protein-protein interaction. J. Med. Chem. 62, 11232–11259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Whitfield, J. R., Beaulieu, M.-E. & Soucek, L. Strategies to inhibit Myc and their clinical applicability. Front. Cell Dev. Biol. 5, 10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Allen-Petersen, B. L. & Sears, R. C. Mission possible: advances in MYC therapeutic targeting in cancer. BioDrugs 33, 539–553 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Seo, H. K. et al. Antitumor activity of the c-Myc inhibitor KSI-3716 in gemcitabine-resistant bladder cancer. Oncotarget 5, 326–337 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wang, H. et al. Improved low molecular weight Myc-Max inhibitors. Mol. Cancer Ther. 6, 2399–2408 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Stellas, D. et al. Therapeutic effects of an anti-Myc drug on mouse pancreatic cancer. JNCI J. Natl. Cancer Inst. 106, dju320 (2014).

    Article  PubMed  CAS  Google Scholar 

  122. Soucek, L. et al. Design and properties of a Myc derivative that efficiently homodimerizes. Oncogene 17, 2463–2472 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Jung, L. A. et al. OmoMYC blunts promoter invasion by oncogenic MYC to inhibit gene expression characteristic of MYC-dependent tumors. Oncogene 36, 1911–1924 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Galardi, S. et al. Resetting cancer stem cell regulatory nodes upon MYC inhibition. EMBO Rep. 17, 1872–1889 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Soucek, L. et al. Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes Dev. 27, 504–513 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Soucek, L. et al. Omomyc, a potential Myc dominant negative, enhances Myc-induced apoptosis. Cancer Res. 62, 3507–3510 (2002).

    CAS  PubMed  Google Scholar 

  127. Soucek, L., Nasi, S. & Evan, G. I. Omomyc expression in skin prevents Myc-induced papillomatosis. Cell Death Differ. 11, 1038–1045 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Annibali, D. et al. Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis. Nat. Commun. 5, 4632 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Beaulieu, M. E. et al. Intrinsic cell-penetrating activity propels Omomyc from proof of concept to viable anti-MYC therapy. Sci. Transl. Med. 11, 1–14 (2019).

    Article  CAS  Google Scholar 

  130. Xu, J., Chen, G., De Jong, A. T., Shahravan, S. H. & Shin, J. A. Max-E47, a designed minimalist protein that targets the E-box DNA site in vivo and in vitro. J. Am. Chem. Soc. 131, 7839–7848 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lustig, L. C. et al. Inhibiting MYC binding to the E-box DNA motif by ME47 decreases tumour xenograft growth. Oncogene 36, 6830–6837 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Massó-Vallés, D. & Soucek, L. Blocking Myc to treat cancer: reflecting on two decades of Omomyc. Cells 9, 883 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  133. Patel, M. C. et al. BRD4 coordinates recruitment of pause release factor P-TEFb and the pausing complex NELF/DSIF to regulate transcription elongation of interferon-stimulated genes. Mol. Cell. Biol. 33, 2497–2507 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lovén, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Singleton, K. R. et al. Melanoma therapeutic strategies that select against resistance by exploiting MYC-driven evolutionary convergence. Cell Rep. 21, 2796–2812 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Otto, C. et al. Targeting bromodomain-containing protein 4 (BRD4) inhibits MYC expression in colorectal cancer cells. Neoplasia 21, 1110–1120 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bandopadhayay, P. et al. Neuronal differentiation and cell-cycle programs mediate response to BET-bromodomain inhibition in MYC-driven medulloblastoma. Nat. Commun. 10, 2400 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Bagratuni, T. et al. JQ1 inhibits tumour growth in combination with cisplatin and suppresses JAK/STAT signalling pathway in ovarian cancer. Eur. J. Cancer 126, 125–135 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Alqahtani, A. et al. Bromodomain and extra-terminal motif inhibitors: a review of preclinical and clinical advances in cancer therapy. Future Sci. 5, FSO372 (2019).

    Article  CAS  Google Scholar 

  143. Andrieu, G., Belkina, A. C. & Denis, G. V. Clinical trials for BET inhibitors run ahead of the science. Drug Discov. Today Technol. 19, 45–50 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Feris, E. J., Hinds, J. W. & Cole, M. D. Formation of a structurally-stable conformation by the intrinsically disordered MYC:TRRAP complex. PLoS ONE 14, e0225784 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Huang, C. H. et al. CDK9-mediated transcription elongation is required for MYC addiction in hepatocellular carcinoma. Genes Dev. 28, 1800–1814 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chipumuro, E. et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 159, 1126–1139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Christensen, C. L. et al. Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell 26, 909–922 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lu, P. et al. THZ1 reveals CDK7-dependent transcriptional addictions in pancreatic cancer. Oncogene 38, 3932–3945 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Hashiguchi, T. et al. Cyclin-dependent kinase-9 is a therapeutic target in MYC-expressing diffuse large B-cell lymphoma. Mol. Cancer Ther. 18, 1520–1532 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Wang, Y. et al. CDK7-dependent transcriptional addiction in triple-negative breast cancer. Cell 163, 174–186 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Blake, D. R. et al. Application of a MYC degradation screen identifies sensitivity to CDK9 inhibitors in KRAS-mutant pancreatic cancer. Sci. Signal. 12, 549–562 (2019).

    Article  CAS  Google Scholar 

  152. Jeong, K.-C., Ahn, K.-O. & Yang, C.-H. Small-molecule inhibitors of c-Myc transcriptional factor suppress proliferation and induce apoptosis of promyelocytic leukemia cell via cell cycle arrest. Mol. Biosyst. 6, 1503 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Guo, J. et al. Efficacy, pharmacokinetics, tisssue distribution, and metabolism of the Myc–Max disruptor, 10058-F4 [Z,E]-5-[4-ethylbenzylidine]-2-thioxothiazolidin-4-one, in mice. Cancer Chemother. Pharmacol. 63, 615–625 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Lu, X., Vogt, P. K., Boger, D. L. & Lunec, J. Disruption of the MYC transcriptional function by a small-molecule antagonist of MYC/MAX dimerization. Oncol. Rep. 19, 825–830 (2008).

    CAS  PubMed  Google Scholar 

  155. Yap, J. L. et al. Pharmacophore identification of c-Myc inhibitor 10074-G5. Bioorg. Med. Chem. Lett. 23, 370–374 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Castell, A. et al. A selective high affinity MYC-binding compound inhibits MYC:MAX interaction and MYC-dependent tumor cell proliferation. Sci. Rep. 8, 10064 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Draeger, L. J. & Mullen, G. P. Interaction of the bHLH-zip domain of c-Myc with H1-type peptides. Characterization of helicity in the H1 peptides by NMR. J. Biol. Chem. 269, 1785–1793 (1994).

    Article  CAS  PubMed  Google Scholar 

  158. Ting, T. A., Chaumet, A. & Bard, F. A. Targeting c-Myc with a novel peptide nuclear delivery device. Sci. Rep. 10, 17762 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Soodgupta, D. et al. Small molecule MYC inhibitor conjugated to integrin-targeted nanoparticles extends survival in a mouse model of disseminated multiple myeloma. Mol. Cancer Ther. 14, 1286–1294 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hart, J. R. et al. Inhibitor of MYC identified in a Krohnke pyridine library. Proc. Natl Acad. Sci. USA 111, 12556–12561 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Carabet, L. A. et al. Computer-aided drug discovery of Myc-max inhibitors as potential therapeutics for prostate cancer. Eur. J. Med. Chem. 160, 108–119 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Bradner, J. E., Hnisz, D. & Young, R. A. Transcriptional addiction in cancer. Cell 168, 629–643 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Jung, M. et al. A Myc activity signature predicts poor clinical outcomes in Myc-associated cancers. Cancer Res. 77, 971–981 (2017).

    Article  CAS  PubMed  Google Scholar 

  164. Li, Y., Casey, S. C. & Felsher, D. W. Inactivation of MYC reverses tumorigenesis. J. Intern. Med. 276, 52–60 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all the members of the Penn laboratory for their feedback and helpful discussions, especially A. Tamachi, who was an important editor and contributor to the structure of the Perspective.

Author information

Authors and Affiliations

Authors

Contributions

C.L., D.R., C.R., P.L., A.S.M., R.C. and T.M.G.K. researched data for the article, substantially contributed to discussion of the content, wrote the article and reviewed or edited the article before submission. Y.W. researched data for the article, substantially contributed to discussion of the content and wrote the article. D.W.A., M.S., C.H.A. and B.R. reviewed or edited the article before submission. L.Z.P. researched data for the article, substantially contributed to discussion of the content and reviewed and edited the article before submission.

Corresponding author

Correspondence to Linda Z. Penn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cancer thanks E. Prochownik, L. Soucek and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lourenco, C., Resetca, D., Redel, C. et al. MYC protein interactors in gene transcription and cancer. Nat Rev Cancer 21, 579–591 (2021). https://doi.org/10.1038/s41568-021-00367-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-021-00367-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer