Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CircHIF1A regulated by FUS accelerates triple-negative breast cancer progression by modulating NFIB expression and translocation

Abstract

Emerging evidence has demonstrated that circular RNAs (circRNAs) play critical roles in the development and progression of human cancer. However, the biological functions and underlying mechanisms of circRNAs in triple-negative breast cancer (TNBC) remain to be investigated. In our present study, we found that the novel circRNA circHIF1A was significantly overexpressed in breast cancer tissues and that it was associated with metastasis, poor prognosis, and the TNBC subtype. Gain- and loss-of-function experiments were conducted to investigate the biological roles of circHIF1A in TNBC. Overexpression of circHIF1A significantly promoted TNBC growth and metastasis in vitro and in vivo, while knockdown of circHIF1A exerted the opposite effects. Mechanistically, circHIF1A modulated the expression and translocation of NFIB through posttranscriptional and posttranslational modifications, resulting in the activation of the AKT/STAT3 signaling pathway and inhibition of P21. The RNA binding protein FUS could regulate the biogenesis of circHIF1A by interacting with the flanking intron, and FUS was transcriptionally regulated by NFIB, thus forming the circHIF1A/NFIB/FUS positive feedback loop. Moreover, circHIF1A could be packaged into exosomes and was upregulated in the plasma of breast cancer patients. Our findings indicated that circHIF1A played a critical role in the growth and metastasis of TNBC via a positive feedback loop and that circHIF1A could be a promising biomarker for breast cancer diagnosis and a potential therapeutic target for TNBC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification and characteristics of circHIF1A in breast cancer.
Fig. 2: CircHIF1A promoted TNBC progression both in vitro and in vivo.
Fig. 3: CircHIF1A promoted NFIB expression and nuclear translocation via post-transcriptional and post-translational modulation.
Fig. 4: CircHIF1A promoted TNBC progression through modulation of miR-149-5p and NFIB.
Fig. 5: FUS promoted circHIF1A biogenesis and NFIB enhanced transcription of FUS.
Fig. 6: FUS acted as an oncogene in TNBC cells.
Fig. 7: CircHIF1A could be packaged into exosomes and detected in plasma.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: a cancer J clinicians. 2020;70:7–30.

    Google Scholar 

  2. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N. Engl J Med. 2010;363:1938–48.

    Article  CAS  PubMed  Google Scholar 

  3. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13:4429–34.

    Article  PubMed  Google Scholar 

  4. Hentze MW, Preiss T. Circular RNAs: splicing’s enigma variations. EMBO J. 2013;32:923–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liang HF, Zhang XZ, Liu BG, Jia GT, Li WL. Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271. Am J cancer Res. 2017;7:1566–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu Z, Zhou Y, Liang G, Ling Y, Tan W, Tan L, et al. Circular RNA hsa_circ_001783 regulates breast cancer progression via sponging miR-200c-3p. Cell death Dis. 2019;10:55.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dong Y, He D, Peng Z, Peng W, Shi W, Wang J, et al. Circular RNAs in cancer: an emerging key player. J Hematol Oncol. 2017;10:2.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 2016;26:1277–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160:1125–34.

    Article  CAS  PubMed  Google Scholar 

  10. Errichelli L, Dini Modigliani S, Laneve P, Colantoni A, Legnini I, Capauto D, et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun. 2017;8:14741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol cell. 2014;56:55–66.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Z, Yang T, Xiao J. Circular RNAs: promising biomarkers for human diseases. EBioMedicine. 2018;34:267–74.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yang R, Xing L, Zheng X, Sun Y, Wang X, Chen J. The circRNA circAGFG1 acts as a sponge of miR-195-5p to promote triple-negative breast cancer progression through regulating CCNE1 expression. Mol cancer. 2019;18:4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xie M, Yu T, Jing X, Ma L, Fan Y, Yang F, et al. Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol cancer. 2020;19:112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–8.

    Article  CAS  PubMed  Google Scholar 

  16. Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic acids Res. 2016;44:2846–58.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur heart J. 2017;38:1402–12.

    CAS  PubMed  Google Scholar 

  18. Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol cancer. 2019;18:20.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang PF, Gao C, Huang XY, Lu JC, Guo XJ, Shi GM, et al. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol cancer. 2020;19:110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xue D, Wang H, Chen Y, Shen D, Lu J, Wang M, et al. Circ-AKT3 inhibits clear cell renal cell carcinoma metastasis via altering miR-296-3p/E-cadherin signals. Mol cancer. 2019;18:151.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang S, Tang D, Wang W, Yang Y, Wu X, Wang L, et al. circLMTK2 acts as a sponge of miR-150-5p and promotes proliferation and metastasis in gastric cancer. Mol cancer. 2019;18:162.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kobayashi H, Tomari Y. RISC assembly: coordination between small RNAs and Argonaute proteins. Biochimica et biophysica acta. 2016;1859:71–81.

    Article  CAS  PubMed  Google Scholar 

  23. de Rinaldis E, Gazinska P, Mera A, Modrusan Z, Fedorowicz GM, Burford B, et al. Integrated genomic analysis of triple-negative breast cancers reveals novel microRNAs associated with clinical and molecular phenotypes and sheds light on the pathways they control. BMC genomics. 2013;14:643.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu RZ, Vo TM, Jain S, Choi WS, Garcia E, Monckton EA, et al. NFIB promotes cell survival by directly suppressing p21 transcription in TP53-mutated triple-negative breast cancer. J Pathol. 2019;247:186–98.

    Article  CAS  PubMed  Google Scholar 

  25. Moon HG, Hwang KT, Kim JA, Kim HS, Lee MJ, Jung EM, et al. NFIB is a potential target for estrogen receptor-negative breast cancers. Mol Oncol. 2011;5:538–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang ZG, Awan FM, Du WW, Zeng Y, Lyu J,Wu, et al. The circular RNA interacts with STAT3, increasing its nuclear translocation and wound repair by modulating Dnmt3a and miR-17 function. Mol Ther: J Am Soc Gene Ther. 2017;25:2062–74.

    Article  CAS  Google Scholar 

  27. Chan SH, Huang WC, Chang JW, Chang KJ, Kuo WH, Wang MY, et al. MicroRNA-149 targets GIT1 to suppress integrin signaling and breast cancer metastasis. Oncogene. 2014;33:4496–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ji D, Wang Y, Li H, Sun B, Luo X. Long non-coding RNA LINC00461/miR-149-5p/LRIG2 axis regulates hepatocellular carcinoma progression. Biochem biophys Res Commun. 2019;512:176–81.

    Article  CAS  PubMed  Google Scholar 

  29. Wu C, Zhu X, Liu W, Ruan T, Wan W, Tao K. NFIB promotes cell growth, aggressiveness, metastasis and EMT of gastric cancer through the Akt/Stat3 signaling pathway. Oncol Rep. 2018;40:1565–73.

    CAS  PubMed  Google Scholar 

  30. Yasuda K, Clatterbuck-Soper SF, Jackrel ME, Shorter J, Mili S. FUS inclusions disrupt RNA localization by sequestering kinesin-1 and inhibiting microtubule detyrosination. J cell Biol. 2017;216:1015–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sato S, Idogawa M, Honda K, Fujii G, Kawashima H, Takekuma K, et al. Beta-catenin interacts with the FUS proto-oncogene product and regulates pre-mRNA splicing. Gastroenterology. 2005;129:1225–36.

    Article  CAS  PubMed  Google Scholar 

  32. Li J, Yang J, Zhou P, Le Y, Zhou C, Wang S, et al. Circular RNAs in cancer: novel insights into origins, properties, functions and implications. Am J cancer Res. 2015;5:472–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu T, Wang Y, Fan Y, Fang N, Wang T, Xu T, et al. CircRNAs in cancer metabolism: a review. J Hematol Oncol. 2019;12:90.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zheng X, Huang M, Xing L, Yang R, Wang X, Jiang R, et al. The circRNA circSEPT9 mediated by E2F1 and EIF4A3 facilitates the carcinogenesis and development of triple-negative breast cancer. Mol cancer. 2020;19:73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pan B, Qin J, Liu X, He B, Wang X, Pan Y, et al. Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front Genet. 2019;10:1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fanale D, Taverna S, Russo A, Bazan V. Circular RNA in exosomes. Adv Exp Med Biol. 2018;1087:109–17.

    Article  CAS  PubMed  Google Scholar 

  37. Li Z, Yanfang W, Li J, Jiang P, Peng T, Chen K, et al. Tumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/MET pathway in pancreatic cancer. Cancer Lett. 2018;432:237–50.

    Article  CAS  PubMed  Google Scholar 

  38. Hu Y, Zhao Y, Shi C, Ren P, Wei B, Guo Y, et al. A circular RNA from APC inhibits the proliferation of diffuse large B-cell lymphoma by inactivating Wnt/beta-catenin signaling via interacting with TET1 and miR-888. Aging. 2019;11:8068–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hong H, Zhu H, Zhao S, Wang K, Zhang N, Tian Y, et al. The novel circCLK3/miR-320a/FoxM1 axis promotes cervical cancer progression. Cell death Dis. 2019;10:950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shao S, Wang C, Wang S, Zhang H, Zhang Y. Hsa_circ_0075341 is up-regulated and exerts oncogenic properties by sponging miR-149-5p in cervical cancer. Biomed Pharmacother. 2020;121:109582.

    Article  CAS  PubMed  Google Scholar 

  41. Wang AH, Fan WJ, Fu L, Wang XT. LncRNA PCAT-1 regulated cell proliferation, invasion, migration and apoptosis in colorectal cancer through targeting miR-149-5p. Eur Rev Med Pharmacol Sci. 2019;23:8310–20.

    PubMed  Google Scholar 

  42. Li J, Li Y, Wang B, Ma Y, Chen P. LncRNA-PCAT-1 promotes non-small cell lung cancer progression by regulating miR-149-5p/LRIG2 axis. J of cell biochem. 2019;120:7725–33.

  43. Gronostajski RM. Roles of the NFI/CTF gene family in transcription and development. Gene. 2000;249:31–45.

    Article  CAS  PubMed  Google Scholar 

  44. Liu Z, Chen J, Yuan W, Ruan H, Shu Y, Ji J, et al. Nuclear factor I/B promotes colorectal cancer cell proliferation, epithelial-mesenchymal transition and 5-fluorouracil resistance. Cancer Sci. 2019;110:86–98.

    Article  CAS  PubMed  Google Scholar 

  45. Lagier-Tourenne C, Polymenidou M, Cleveland DW. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet. 2010;19:R46–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sang Y, Chen B, Song X, Li Y, Liang Y, Han D., et al. circRNA_0025202 regulates tamoxifen sensitivity and tumor progression via regulating the miR-182-5p/FOXO3a axis in breast cancer. Mol Ther. 2019;27:1638–52.

  47. Yang Z, Dong X, Pu M, Yang H, Chang W, Ji F, et al. LBX2-AS1/miR-219a-2-3p/FUS/LBX2 positive feedback loop contributes to the proliferation of gastric cancer. Gastric Cancer. 2020;23:449–63.

    Article  CAS  PubMed  Google Scholar 

  48. Gronostajski RM. Analysis of nuclear factor I binding to DNA using degenerate oligonucleotides. Nucleic acids Res. 1986;14:9117–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gronostajski RM. Site-specific DNA binding of nuclear factor I: effect of the spacer region. Nucleic acids Res. 1987;15:5545–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program (No. 2020YFA0712400; No. 2018YFC0114705), Special Foundation for Taishan Scholars (No. ts20190971), National Natural Science Foundation of China (No. 81672613; No. 81874119; No. 82072912; No. 82004122), Shandong Provincial Natural Science Foundation, China (No. ZR2019LZL003, No. ZR201911010260, No. ZR201911050391), Special Support Plan for National High Level Talents (Ten Thousand Talents Program W01020103), Foundation from Clinical Research Center of Shandong University (No.2020SDUCRCA015), Qilu Hospital Clinical New Technology Developing Foundation (No. 2018-7; No. 2019-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qifeng Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Wang, X., Li, C. et al. CircHIF1A regulated by FUS accelerates triple-negative breast cancer progression by modulating NFIB expression and translocation. Oncogene 40, 2756–2771 (2021). https://doi.org/10.1038/s41388-021-01739-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01739-z

This article is cited by

Search

Quick links