Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IFIT1 and IFIT3 promote oral squamous cell carcinoma metastasis and contribute to the anti-tumor effect of gefitinib via enhancing p-EGFR recycling

Abstract

IFIT1 and IFIT3 are abundant products of interferon-stimulating genes. While the importance of IFIT1 and IFIT3 in the prognosis of cancer has been reported, the molecular basis of IFIT1 and IFIT3 in cancer progression remains unexplored. In the present study, we investigated the modes of action and the clinical significance of IFIT1 and IFIT3 in oral squamous cell carcinoma (OSCC). Ectopic expression of IFIT1 or IFIT3 induced OSCC cell invasion by promoting the epithelial-mesenchymal transition, whereas IFIT1 or IFIT3 knockdown exhibited opposite effects. Overexpression of IFIT1 or IFIT3 promoted tumor growth, regional and distant metastasis in xenograft and orthotopic nude mice models. Most importantly, IFIT1 or IFIT3 overexpression increased the levels of p-EGFRY1068 and p-AKTS473 in OSCC cells and also enhanced tumor inhibitory effect of gefitinib. By immunoprecipitation and LC-MS/MS analysis, we found that IFIT1 and IFIT3 interacted with ANXA2 that enhanced p-EGFRY1068 endosomal recycling. Depletion of ANXA2 using siRNA therefore abolished p-EGFRY1068 and p-AKTS473 expression in IFIT1- or IFIT3-overexpressed cells. Furthermore, a significant positive association of increased IFIT1 and IFIT3 expression with advanced T-stage, lymph node metastasis, perineural invasion, lymphovascular invasion, extranodal extension, and poor overall survival rate was confirmed in OSCC patients. We also found a statistically positive correlation of p-EGFRY1068 expression with IFIT1 and IFIT3 in OSCC tumors and poor clinical outcome in patients. Collectively, we demonstrated a novel role of IFIT1 and IFIT3 in driving OSCC progression and metastasis by interacting with ANXA2 and hence enhancing p-EGFR recycling and its downstream signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, et al. Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov. 2007;6:975–90.

    Article  CAS  Google Scholar 

  2. Parker BS, Rautela J, Hertzog PJ. Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer. 2016;16:131–44.

    Article  Google Scholar 

  3. Yang JL, Qu XJ, Hayes VM, Brenner PC, Russell PJ, Goldstein D. Erlotinib (OSI-774)-induced inhibition of transitional cell carcinoma of bladder cell line growth is enhanced by interferon-alpha. BJU Int. 2007;99:1539–45.

    Article  CAS  Google Scholar 

  4. Yang JL, Qu XJ, Russell PJ, Goldstein D. Interferon-alpha promotes the anti-proliferative effect of Erlotinib (OSI-774) on human colon cancer cell lines. Cancer Lett. 2005;225:61–74.

    Article  CAS  Google Scholar 

  5. Bruzzese F, Di Gennaro E, Avallone A, Pepe S, Arra C, Caraglia M, et al. Synergistic antitumor activity of epidermal growth factor receptor tyrosine kinase inhibitor gefitinib and IFN-alpha in head and neck cancer cells in vitro and in vivo. Clin Cancer Res. 2006;12:617–25.

    Article  CAS  Google Scholar 

  6. Cheon H, Borden EC, Stark GR. Interferons and their stimulated genes in the tumor microenvironment. Semin Oncol. 2014;41:156–73.

    Article  CAS  Google Scholar 

  7. Fensterl V, Sen GC. The ISG56/IFIT1 gene family. J Interferon Cytokine Res. 2011;31:71–8.

    Article  CAS  Google Scholar 

  8. Diamond MS. IFIT1: A dual sensor and effector molecule that detects non-2′-O methylated viral RNA and inhibits its translation. Cytokine Growth Factor Rev. 2014;25:543–50.

    Article  CAS  Google Scholar 

  9. Fensterl V, Sen GC. Interferon-induced Ifit proteins: their role in viral pathogenesis. J Virol. 2015;89:2462–8.

    Article  Google Scholar 

  10. Zhang JF, Chen Y, Lin GS, Zhang JD, Tang WL, Huang JH, et al. High IFIT1 expression predicts improved clinical outcome, and IFIT1 along with MGMT more accurately predicts prognosis in newly diagnosed glioblastoma. Hum Pathol. 2016;52:136–44.

    Article  CAS  Google Scholar 

  11. Zhao Y, Altendorf-Hofmann A, Pozios I, Camaj P, Daberitz T, Wang X, et al. Elevated interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) is a poor prognostic marker in pancreatic ductal adenocarcinoma. J Cancer Res Clin Oncol. 2017;143:1061–8.

    Article  CAS  Google Scholar 

  12. Niess H, Camaj P, Mair R, Renner A, Zhao Y, Jackel C, et al. Overexpression of IFN-induced protein with tetratricopeptide repeats 3 (IFIT3) in pancreatic cancer: cellular “pseudoinflammation” contributing to an aggressive phenotype. Oncotarget. 2015;6:3306–18.

    Article  Google Scholar 

  13. Lai KC, Chang KW, Liu CJ, Kao SY, Lee TC. IFN-induced protein with tetratricopeptide repeats 2 inhibits migration activity and increases survival of oral squamous cell carcinoma. Mol Cancer Res. 2008;6:1431–9.

    Article  CAS  Google Scholar 

  14. Lai KC, Liu CJ, Chang KW, Lee TC. Depleting IFIT2 mediates atypical PKC signaling to enhance the migration and metastatic activity of oral squamous cell carcinoma cells. Oncogene. 2013;32:3686–97.

    Article  CAS  Google Scholar 

  15. Danish HH, Goyal S, Taunk NK, Wu H, Moran MS, Haffty BG. Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) as a prognostic marker for local control in T1-2 N0 breast cancer treated with breast-conserving surgery and radiation therapy (BCS+RT). Breast J. 2013;19:231–9.

    Article  CAS  Google Scholar 

  16. Yang Y, Zhou Y, Hou J, Bai C, Li Z, Fan J. et al. Hepatic IFIT3 predicts interferon-alpha therapeutic response in patients of hepatocellular carcinoma. Hepatology. 2017;66:152–66.

    Article  CAS  Google Scholar 

  17. Shield KD, Ferlay J, Jemal A, Sankaranarayanan R, Chaturvedi AK, Bray F, et al. The global incidence of lip, oral cavity, and pharyngeal cancers by subsite in 2012. CA Cancer J Clin. 2017;67:51–64.

    Article  Google Scholar 

  18. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  CAS  Google Scholar 

  19. Krishna Rao SV, Mejia G, Roberts-Thomson K, Logan R. Epidemiology of oral cancer in Asia in the past decade—an update (2000-12). Asian Pac J Cancer Prev. 2013;14:5567–77.

    Article  Google Scholar 

  20. Chiang CJ, Lo WC, Yang YW, You SL, Chen CJ, Lai MS. Incidence and survival of adult cancer patients in Taiwan, 2002–2012. J Formos Med Assoc. 2016;115:1076–88.

    Article  Google Scholar 

  21. Rivera C, Venegas B. Histological and molecular aspects of oral squamous cell carcinoma (Review). Oncol Lett. 2014;8:7–11.

    Article  Google Scholar 

  22. Shingaki S, Takada M, Sasai K, Bibi R, Kobayashi T, Nomura T, et al. Impact of lymph node metastasis on the pattern of failure and survival in oral carcinomas. Am J Surg. 2003;185:278–84.

    Article  Google Scholar 

  23. Lang J, Gao L, Guo Y, Zhao C, Zhang C. Comprehensive treatment of squamous cell cancer of head and neck: Chinese expert consensus 2013. Future Oncol. 2014;10:1635–48.

    Article  CAS  Google Scholar 

  24. Bagan J, Sarrion G, Jimenez Y. Oral cancer: clinical features. Oral Oncol. 2010;46:414–7.

    Article  Google Scholar 

  25. Chen IH, Chang JT, Liao CT, Wang HM, Hsieh LL, Cheng AJ. Prognostic significance of EGFR and Her-2 in oral cavity cancer in betel quid prevalent area cancer prognosis. Br J Cancer. 2003;89:681–6.

    Article  CAS  Google Scholar 

  26. Bossi P, Resteghini C, Paielli N, Licitra L, Pilotti S, Perrone F. Prognostic and predictive value of EGFR in head and neck squamous cell carcinoma. Oncotarget. 2016;7:74362–79.

    Article  Google Scholar 

  27. Jimenez L, Jayakar SK, Ow TJ, Segall JE. Mechanisms of invasion in head and neck cancer. Arch Pathol Lab Med. 2015;139:1334–48.

    Article  CAS  Google Scholar 

  28. Vermorken JB, Trigo J, Hitt R, Koralewski P, Diaz-Rubio E, Rolland F, et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J Clin Oncol. 2007;25:2171–7.

    Article  CAS  Google Scholar 

  29. Moreira J, Tobias A, O’Brien MP, Agulnik M. Targeted therapy in head and neck cancer: an update on current clinical developments in epidermal growth factor receptor-targeted therapy and immunotherapies. Drugs. 2017;77:843–57.

    Article  CAS  Google Scholar 

  30. Huang S-F, Chien H-T, Cheng S-D, Chuang W-Y, Liao C-T, Wang H-M. EGFR copy number alterations in primary tumors, metastatic lymph nodes, and recurrent and multiple primary tumors in oral cavity squamous cell carcinoma. BMC Cancer. 2017;17:592.

    Article  Google Scholar 

  31. Kirby AM, A’Hern RP, D’Ambrosio C, Tanay M, Syrigos KN, Rogers SJ, et al. Gefitinib (ZD1839, Iressa™) as palliative treatment in recurrent or metastatic head and neck cancer. Br J Cancer. 2006;94:631–6.

    Article  CAS  Google Scholar 

  32. Grandal MV, Madshus IH. Epidermal growth factor receptor and cancer: control of oncogenic signalling by endocytosis. J Cell Mol Med. 2008;12:1527–34.

    Article  CAS  Google Scholar 

  33. Murphy JE, Padilla BE, Hasdemir B, Cottrell GS, Bunnett NW. Endosomes: a legitimate platform for the signaling train. Proc Natl Acad Sci USA. 2009;106:17615–22.

    Article  CAS  Google Scholar 

  34. Mosesson Y, Mills GB, Yarden Y. Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer. 2008;8:835.

    Article  CAS  Google Scholar 

  35. Schmid SL. Reciprocal regulation of signaling and endocytosis: implications for the evolving cancer cell. J Cell Biol. 2017;216:2623–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. D’Andrea LD, Regan L. TPR proteins: the versatile helix. Trends Biochem Sci. 2003;28:655–62.

    Article  Google Scholar 

  37. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–8.

    Article  CAS  Google Scholar 

  38. de Graauw M, Cao L, Winkel L, van Miltenburg MH, le Devedec SE, Klop M, et al. Annexin A2 depletion delays EGFR endocytic trafficking via cofilin activation and enhances EGFR signaling and metastasis formation. Oncogene. 2014;33:2610–9.

    Article  Google Scholar 

  39. Staquicini DI, Rangel R, Guzman-Rojas L, Staquicini FI, Dobroff AS, Tarleton CA, et al. Intracellular targeting of annexin A2 inhibits tumor cell adhesion, migration, and in vivo grafting. Sci Rep. 2017;7:4243.

    Article  Google Scholar 

  40. Christiansen JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 2006;66:8319–26.

    Article  CAS  Google Scholar 

  41. Zuo JH, Zhu W, Li MY, Li XH, Yi H, Zeng GQ, et al. Activation of EGFR promotes squamous carcinoma SCC10A cell migration and invasion via inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin. J Cell Biochem. 2011;112:2508–17.

    Article  CAS  Google Scholar 

  42. Hong KO, Kim JH, Hong JS, Yoon HJ, Lee JI, Hong SP, et al. Inhibition of Akt activity induces the mesenchymal-to-epithelial reverting transition with restoring E-cadherin expression in KB and KOSCC-25B oral squamous cell carcinoma cells. J Exp Clin Cancer Res. 2009;28:28.

    Article  Google Scholar 

  43. Yoon H, Dehart JP, Murphy JM, Lim, S-TS. Understanding the roles of FAK in cancer: inhibitors, genetic models, and new insights. J Histochem Cytochem. 2015;63:114–28.

    Article  Google Scholar 

  44. Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol. 2000;2:249–56.

    Article  CAS  Google Scholar 

  45. Krisanaprakornkit S, Iamaroon A. Epithelial-mesenchymal transition in oral squamous cell carcinoma. ISRN Oncol. 2012;2012:10.

    Google Scholar 

  46. Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastas Rev. 2009;28:15–33.

    Article  Google Scholar 

  47. Moon C, Chae YK, Lee J. Targeting epidermal growth factor receptor in head and neck cancer: lessons learned from cetuximab. Exp Biol Med. 2010;235:907–20.

    Article  CAS  Google Scholar 

  48. Mehra R, Serebriiskii IG, Dunbrack RL Jr., Robinson MK, Burtness B, et al. Protein-intrinsic and signaling network-based sources of resistance to EGFR- and ErbB family-targeted therapies in head and neck cancer. Drug Resist Updat. 2011;14:260–79.

    Article  CAS  Google Scholar 

  49. Ribeiro FA, Noguti J, Oshima CT, Ribeiro DA. Effective targeting of the epidermal growth factor receptor (EGFR) for treating oral cancer: a promising approach. Anticancer Res. 2014;34:1547–52.

    CAS  PubMed  Google Scholar 

  50. Perea S, Oppenheimer D, Amador M, Cusati G, Baker S, Takimoto C, et al. Genotypic bases of EGFR inhibitors pharmacological actions. J Clin Oncol. 2004;22:3005–3005.

    Article  Google Scholar 

  51. Ono M, Kuwano M. Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs. Clin Cancer Res. 2006;12:7242–51.

    Article  CAS  Google Scholar 

  52. Grewal T, Enrich C. Annexins—modulators of EGF receptor signalling and trafficking. Cell Signal. 2009;21:847–58.

    Article  CAS  Google Scholar 

  53. Shetty PK, Thamake SI, Biswas S, Johansson SL, Vishwanatha JK. Reciprocal regulation of annexin A2 and EGFR with Her-2 in Her-2 negative and herceptin-resistant breast cancer. PLoS ONE. 2012;7:e44299.

    Article  CAS  Google Scholar 

  54. Blatch GL, Lassle M. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessay News Rev Mol Cell Dev Biol. 1999;21:932–9.

    Article  CAS  Google Scholar 

  55. Gerke V, Creutz CE, Moss SE. Annexins: linking Ca2+signalling to membrane dynamics. Nat Rev Mol Cell Biol. 2005;6:449–61.

    Article  CAS  Google Scholar 

  56. Bharadwaj A, Bydoun M, Holloway R, Waisman D. Annexin A2 heterotetramer: structure and function. Int J Mol Sci. 2013;14:6259–305.

    Article  CAS  Google Scholar 

  57. Futter CE, White IJ. Annexins and endocytosis. Traffic. 2007;8:951–8.

    Article  CAS  Google Scholar 

  58. Fang YT, Lin CF, Wang CY, Anderson R, Lin YS. Interferon-gamma stimulates p11-dependent surface expression of annexin A2 in lung epithelial cells to enhance phagocytosis. J Cell Physiol. 2012;227:2775–87.

    Article  CAS  Google Scholar 

  59. Hayes MJ, Shao D, Bailly M, Moss SE. Regulation of actin dynamics by annexin 2. EMBO J. 2006;25:1816–26.

    Article  CAS  Google Scholar 

  60. Lorusso A, Covino C, Priori G, Bachi A, Meldolesi J, Chieregatti E. Annexin2 coating the surface of enlargeosomes is needed for their regulated exocytosis. EMBO J. 2006;25:5443–56.

    Article  CAS  Google Scholar 

  61. Morel E, Gruenberg J. Annexin A2 binding to endosomes and functions in endosomal transport are regulated by tyrosine 23 phosphorylation. J Biol Chem. 2009;284:1604–11.

    Article  CAS  Google Scholar 

  62. Kapoor C, Vaidya S, Wadhwan V, Malik S. Lymph node metastasis: a bearing on prognosis in squamous cell carcinoma. Indian J Cancer. 2015;52:417–24.

    Article  CAS  Google Scholar 

  63. Matsushita Y, Yanamoto S, Takahashi H, Yamada S, Naruse T, Sakamoto Y, et al. A clinicopathological study of perineural invasion and vascular invasion in oral tongue squamous cell carcinoma. Int J Oral Maxillofac Surg. 2015;44:543–8.

    Article  CAS  Google Scholar 

  64. Zhou X, Temam S, Oh M, Pungpravat N, Huang B-L, Mao L, et al. Global expression-based classification of lymph node metastasis and extracapsular spread of oral tongue squamous cell carcinoma. Neoplasia. 2006;8:925–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Fann Cathy S.-J, and Ms. Jenny Chang, Institute of Biomedical Sciences, for their help in clinical data analysis. We are grateful for the excellent technical services provided by Dr. Fu-An Li, Proteomic Core Laboratories, Taiwan Mouse Clinic, and Pathology Core laboratories, and Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.

Funding

This work was supported by grants from the Ministry of Science and Technology (NSC 101-2321-B-001-044, NSC 102-2321-B-001-032, MOST 103-2321-B-001-019, and MOST 104-2320-B-001-008), Taiwan (T.C. Lee).

Author contributions

VKP and TCL designed the research. VKP performed cellular, molecular, and biochemical experiments. VKP and HBP performed animal experiments. VKP, AHY and HBP performed immunohistochemical assays. VKP, MMW, HBP, KWC and CJL analyzed the data. CJL provided the patient’s information and tumor samples. VKP wrote the manuscript. VKP, HBP and TCL revised the manuscript. CJL and TCL supervised the study. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chung-Ji Liu or Te-Chang Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pidugu, V.K., Wu, MM., Yen, AH. et al. IFIT1 and IFIT3 promote oral squamous cell carcinoma metastasis and contribute to the anti-tumor effect of gefitinib via enhancing p-EGFR recycling. Oncogene 38, 3232–3247 (2019). https://doi.org/10.1038/s41388-018-0662-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0662-9

This article is cited by

Search

Quick links