Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TR4 nuclear receptor promotes clear cell renal cell carcinoma (ccRCC) vasculogenic mimicry (VM) formation and metastasis via altering the miR490-3p/vimentin signals

Abstract

While TR4 nuclear receptor plays key roles to promote prostate cancer progression, its roles to alter the progression of clear cell renal cell carcinoma (ccRCC), remains unclear. Here, we demonstrate that TR4 can promote the ccRCC cell vasculogenic mimicry (VM) formation and its associated metastasis via modulating the miR490-3p/vimentin (VIM) signals. Mechanism dissection revealed that TR4 might increase the oncogene VIM expression via decreasing the miR-490-3p expression through direct binding to the TR4-response-elements (TR4REs) on the promoter region of miR-490-3p, which might then directly target the 3′ UTR of VIM-mRNA to increase its protein expression. Preclinical studies using the in vivo mouse model with xenografted RCC Caki-1 cells into the sub-renal capsule of nude mice also found that TR4 could promote the ccRCC VM and its associated metastasis via modulating the miR490-3p/VIM signals. Together, results from preclinical studies using multiple RCC cell lines and the in vivo mouse model all conclude that TR4 may play a key role to promote ccRCC VM formation and metastasis and targeting the newly identified TR4/miR-490-3p/VIM signals with small molecules may help us to develop a new therapeutic approach to better suppress the ccRCC metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA. 2013;63:11–30.

    PubMed  Google Scholar 

  2. Compérat E, Camparo P. Histological classification of malignant renal tumours at a time of major diagnostic and therapeutic changes. Diagn Interv Imaging. 2012;93:221–31.

    Article  Google Scholar 

  3. Stadler W. Targeted agents for the treatment of advanced renal cell carcinoma. Cancer. 2005;104:2323–33.

    Article  CAS  Google Scholar 

  4. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LMG, Pe’er J, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol. 1999;155:739–52.

    Article  CAS  Google Scholar 

  5. Zhou L, Chang Y, Xu L, Liu Z, Fu Q, Yang Y, et al. The presence of vascular mimicry predicts high risk of clear cell renal cell carcinoma after radical nephrectomy. J Urol. 2016;196:335–42.

    Article  Google Scholar 

  6. Chang C, Da Silva S, Ideta R, Lee Y, Yeh S, Burbach J. Human and rat TR4 orphan receptors specify a subclass of the steroid receptor superfamily. Proc Natl Acad Sci USA. 1994;91:6040–4.

    Article  CAS  Google Scholar 

  7. Hirose T, Fujimoto W, Tamaai T, Kim K, Matsuura H, Jetten A. TAK1: molecular cloning and characterization of a new member of the nuclear receptor superfamily. Mol Endocrinol. 1994;8:1667–80.

    CAS  PubMed  Google Scholar 

  8. Lee YF, Lee HJ, Chang C. Recent advances in the TR2 and TR4 orphan receptors of the nuclear receptor superfamily. J Steroid Biochem Mol Biol. 2002;81:291–308.

    Article  CAS  Google Scholar 

  9. Mu X, Lee Y, Liu N, Chen Y, Kim E, Shyr C, et al. Targeted inactivation of testicular nuclear orphan receptor 4 delays and disrupts late meiotic prophase and subsequent meiotic divisions of spermatogenesis. Mol Cell Biol. 2004;24:5887–99.

    Article  CAS  Google Scholar 

  10. Lin SJ, Ho HC, Lee YF, Liu NC, Liu S, Li G, et al. Reduced osteoblast activity in the mice lacking TR4 nuclear receptor leads to osteoporosis. Reprod Biol Endocrinol: RBamp;E. 2012;10:43.

    Article  CAS  Google Scholar 

  11. Chen Y-T, Collins LL, Uno H, Chou SM, Meshul CK, Chang S-S, et al. Abnormal cerebellar cytoarchitecture and impaired inhibitory signaling in adult mice lacking TR4 orphan nuclear receptor. Brain Res. 2007;1168:72–82.

    Article  CAS  Google Scholar 

  12. Collins LL, Lee YF, Heinlein CA, Liu NC, Chen YT, Shyr CR, et al. Growth retardation and abnormal maternal behavior in mice lacking testicular orphan nuclear receptor 4. Proc Natl Acad Sci. 2004;101:15058–63.

    Article  CAS  Google Scholar 

  13. Choi H, Kim S, Park S, Chang C, Kim E. TR4 activates FATP1 gene expression to promote lipid accumulation in 3T3-L1 adipocytes. FEBS Lett. 2011;585:2763–7.

    Article  CAS  Google Scholar 

  14. Lin S-J, Lee SO, Lee Y-F, Miyamoto H, Yang D-R, Li G, et al. TR4 nuclear receptor functions as a tumor suppressor for prostate tumorigenesis via modulation of DNA damage/repair system. Carcinogenesis. 2014;35:1399–406.

    Article  CAS  Google Scholar 

  15. Ding X, Yang D-R, Lee SO, Chen Y-L, Xia L, Lin S-J, et al. TR4 nuclear receptor promotes prostate cancer metastasisviaupregulation of CCL2/CCR2 signaling. Int J Cancer. 2015;136:955–64.

    Article  CAS  Google Scholar 

  16. Qiu X, Zhu J, Sun Y, Fan K, Yang D, Li G, et al. TR4 nuclear receptor increases prostate cancer invasion via decreasing the miR-373-3p expression to alter TGFβR2/p-Smad3 signals. Oncotarget. 2015;6:15397–409.

    PubMed  PubMed Central  Google Scholar 

  17. Zhu J, Yang DR, Sun Y, Qiu X, Chang HC, Li G, et al. TR4 nuclear receptor alters the prostate cancer CD133 + stem/progenitor cell invasion via modulating the EZH2-related metastasis gene expression. Mol Cancer Ther. 2015;14:1445–53.

    Article  CAS  Google Scholar 

  18. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5:275–84.

    Article  CAS  Google Scholar 

  19. Yang DR, Ding XF, Luo J, Shan YX, Wang R, Lin SJ, et al. Increased chemosensitivity via targeting testicular nuclear receptor 4 (TR4)-Oct4-Interleukin 1 receptor antagonist (IL1Ra) axis in prostate cancer CD133 + stem/progenitor cells to battle prostate cancer. J Biol Chem. 2013;288:16476–83.

    Article  CAS  Google Scholar 

  20. Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell. 2005;122:553–63.

    Article  CAS  Google Scholar 

  21. Place R, Li L, Pookot D, Noonan E, Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA. 2008;105:1608–13.

    Article  CAS  Google Scholar 

  22. Song Q, Xu Y, Yang C, Chen Z, Jia C, Chen J, et al. miR-483-5p promotes invasion and metastasis of lung adenocarcinoma by targeting RhoGDI1 and ALCAM. Cancer Res. 2014;74:3031–42.

    Article  CAS  Google Scholar 

  23. Cai J, Guan H, Fang L, Yang Y, Zhu X, Yuan J, et al. MicroRNA-374a activates Wnt/β-catenin signaling to promote breast cancer metastasis. J Clin Invest. 2013;123:566–79.

    Article  CAS  Google Scholar 

  24. Zoni E, van der Horst G, van de Merbel AF, Chen L, Rane JK, Pelger RC, et al. miR-25 modulates invasiveness and dissemination of human prostate cancer cells via regulation of alphav and alpha6-integrin expression. Cancer Res. 2015;75:2326–36.

    Article  CAS  Google Scholar 

  25. Chen X, Wang X, Ruan A, Han W, Zhao Y, Lu X, et al. miR-141 is a key regulator of renal cell carcinoma proliferation and metastasis by controlling EphA2 expression. Clin Cancer Res. 2014;20:2617–30.

    Article  CAS  Google Scholar 

  26. Majid S, Saini S, Dar A, Hirata H, Shahryari V, Tanaka Y, et al. MicroRNA-205 inhibits Src-mediated oncogenic pathways in renal cancer. Cancer Res. 2011;71:2611–21.

    Article  CAS  Google Scholar 

  27. Yamasaki T, Seki N, Yoshino H, Itesako T, Hidaka H, Yamada Y, et al. MicroRNA-218 inhibits cell migration and invasion in renal cell carcinoma through targeting caveolin-2 involved in focal adhesion pathway. J Urol. 2013;190:1059–68.

    Article  CAS  Google Scholar 

  28. Shen J, Xiao Z, Wu WK, Wang MH, To KF, Chen Y, et al. Epigenetic silencing of miR-490-3p reactivates the chromatin remodeler SMARCD1 to promote Helicobacter pylori-induced gastric carcinogenesis. Cancer Res. 2015;75:754–65.

    Article  CAS  Google Scholar 

  29. Gu H, Yang T, Fu S, Chen X, Guo L, Ni Y. MicroRNA-490-3p inhibits proliferation of A549 lung cancer cells by targeting CCND1. Biochem Biophys Res Commun. 2014;444:104–8.

    Article  CAS  Google Scholar 

  30. Chen S, Chen X, Xiu Y, Sun K, Zhao Y. MicroRNA-490-3P targets CDK1 and inhibits ovarian epithelial carcinoma tumorigenesis and progression. Cancer Lett. 2015;362:122–30.

    Article  CAS  Google Scholar 

  31. Liu W, Xu G, Liu H, Li T. MicroRNA-490-3p regulates cell proliferation and apoptosis by targeting HMGA2 in osteosarcoma. FEBS Lett. 2015;589:3148–53.

    Article  CAS  Google Scholar 

  32. Zhang LY, Liu M, Li X, Tang H. miR-490-3p modulates cell growth and epithelial to mesenchymal transition of hepatocellular carcinoma cells by targeting endoplasmic reticulum-Golgi intermediate compartment protein 3 (ERGIC3). J Biol Chem. 2013;288:4035–47.

    Article  CAS  Google Scholar 

  33. Chen K, Zeng J, Tang K, Xiao H, Hu J, Huang C, et al. miR-490-5p suppresses tumour growth in renal cell carcinoma through targeting PIK3CA. Biol Cell. 2016;108:41–50.

    Article  CAS  Google Scholar 

  34. Zhao Y, Yan Q, Long X, Chen X, Wang Y. Vimentin affects the mobility and invasiveness of prostate cancer cells. Cell Biochem Funct. 2008;26:571–7.

    Article  CAS  Google Scholar 

  35. Fuyuhiro Y, Yashiro M, Noda S, Kashiwagi S, Matsuoka J, Doi Y, et al. Clinical significance of vimentin-positive gastric cancer cells. Anticancer Res. 2010;30:5239–43.

    PubMed  Google Scholar 

  36. Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P, et al. Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res. 2003;63:2658–64.

    CAS  Google Scholar 

  37. Li M, Zhang B, Sun B, Wang X, Ban X, Sun T, et al. A novel function for vimentin: the potential biomarker for predicting melanoma hematogenous metastasis. J Exp Clin Cancer Res. 2010;29:109.

    Article  CAS  Google Scholar 

  38. Trog D, Yeghiazaryan K, Schild HH, Golubnitschaja O. Up-regulation of vimentin expression in low-density malignant glioma cells as immediate and late effects under irradiation and temozolomide treatment. Amino Acids. 2007;34:539–45.

    Article  Google Scholar 

  39. Upton MP, Hirohashi S, Tome Y, Miyazawa N, Suemasu K, Shimosato Y. Expression of vimentin in surgically resected adenocarcinomas and large cell carcinomas of lung. Am J Surg Pathol. 1986;10:560–7.

    Article  CAS  Google Scholar 

  40. Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci. 2011;68:3033–46.

    Article  CAS  Google Scholar 

  41. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  CAS  Google Scholar 

  42. Ciamporcero E, Miles KM, Adelaiye R, Ramakrishnan S, Shen L, Ku S, et al. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol Cancer Ther. 2015;14:101–10.

    Article  CAS  Google Scholar 

  43. Rini B, Atkins M. Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol. 2009;10:992–1000.

    Article  CAS  Google Scholar 

  44. Qiao L, Liang N, Zhang J, Xie J, Liu F, Xu D, et al. Advanced research on vasculogenic mimicry in cancer. J Cell Mol Med. 2015;19:315–26.

    Article  Google Scholar 

  45. Liu Q, Qiao L, Liang N, Xie J, Zhang J, Deng G, et al. The relationship between vasculogenic mimicry and epithelial-mesenchymal transitions. J Cell Mol Med. 2016;20:1761–9.

    Article  Google Scholar 

  46. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137:1005–17.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants (CA155477 and CA156700), George Whipple Professorship Endowment and Taiwan Department of Health Clinical Trial, Research Center of Excellence (DOH99-TD-B-111-004 to China Medical University, Taichung, Taiwan). We thank Karen Wolf for help preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guosheng Yang or Chawnshang Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, J., Yeh, S., Qiu, X. et al. TR4 nuclear receptor promotes clear cell renal cell carcinoma (ccRCC) vasculogenic mimicry (VM) formation and metastasis via altering the miR490-3p/vimentin signals. Oncogene 37, 5901–5912 (2018). https://doi.org/10.1038/s41388-018-0269-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0269-1

This article is cited by

Search

Quick links