Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

miR-100 antagonism triggers apoptosis by inhibiting ubiquitination-mediated p53 degradation

Abstract

During tumourigenesis, p53 functions as 'the guardian of the genome' because p53-dependent apoptosis strongly regulates the fate of cancer cells. Therefore, p53 regulation must be sensitive and accurate. p53 activity is regulated through its ubiquitination and deubiquitination. However, the role of microRNA in ubiquitin-mediated p53 degradation has not been previously studied. Our previous studies indicated that miR-100 is required for apoptosis. In the current study, the mechanism of p53 protein ubiquitination mediated by miR-100 was characterized. An analysis of primary tumour samples from gastric cancer patients showed a significant correlation between miR-100 upregulation and primary human gastric tumourigenesis and progression. The in vivo and in vitro data indicated that miR-100 antagonism specifically induced the apoptosis of poorly differentiated gastric cancer cells but not non-cancerous gastric cells, indicating that miR-100 has a crucial role in regulating the progression of gastric tumours. In the regulation of p53-dependent apoptosis, miR-100 antagonism inhibited ubiquitin-mediated p53 protein degradation by activating RNF144B, an E3 ubiquitination ligase. Consequently, the miR-100-RNF144B-pirh2-p53-dependent pathway was initiated. Our findings highlight a novel mechanism of ubiquitin-mediated p53 protein degradation in apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Taylor RC, Cullen SP, Martin SJ . Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Bio 2008; 9: 231–241.

    Article  CAS  Google Scholar 

  2. Medina-Ramirez CM, Goswami S, Smirnova T, Bamira D, Benson B, Ferrick N et al. Apoptosis inhibitor ARC promotes breast tumorigenesis, metastasis, and chemoresistance. Cancer Res 2011; 71: 7705–7715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zuckerman V, Wolyniec K, Sionov RV, Haupt S, Haupt Y . Tumour suppression by p53: the importance of apoptosis and cellular senescence. J Pathol 2009; 219: 3–15.

    CAS  PubMed  Google Scholar 

  4. Deng Y, Chan SS, Chang S . Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer 2008; 8: 450–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mercer J, Mahmoudi M, Bennett M . DNA damage, p53, apoptosis and vascular disease. Mutat Res 2007; 621: 75–86.

    Article  CAS  PubMed  Google Scholar 

  6. Donehower LA, Lozano G . 20 years studying p53 functions in genetically engineered mice. Nat Rev Cancer 2009; 9: 831–841.

    Article  CAS  PubMed  Google Scholar 

  7. Feki A, Irminger-Finger I . Mutational spectrum of p53 mutations in primary breast and ovarian tumors. Crit Rev Oncol Hematol 2004; 52: 103–116.

    Article  PubMed  Google Scholar 

  8. Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V et al. MicroRNA-125b is a novel negative regulator of p53. Gene Dev 2009; 23: 862–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang X . p53 regulation. Cell Cycle 2011; 10: 4225–4229.

    Article  CAS  PubMed  Google Scholar 

  10. Ravid T, Hochstrasser M . Diversity of degradation signals in the ubiquitin–proteasome system. Nat Rev Mol Cell Bio 2008; 9: 679–689.

    Article  CAS  Google Scholar 

  11. Shang F, Taylor A . Ubiquitin–proteasome pathway and cellular responses to oxidative stress. Free Radical Bio Med 2011; 51: 5–16.

    Article  CAS  Google Scholar 

  12. Adams J . The proteasome: structure, function, and role in the cell. Cancer Treat Rev 2003; 29: 3–9.

    Article  CAS  PubMed  Google Scholar 

  13. Bernassola F, Karin M, Ciechanover A, Melino G . The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 2008; 14: 10–21.

    Article  CAS  PubMed  Google Scholar 

  14. Motegi A, Murakawa Y, Takeda S . The vital link between the ubiquitin–proteasome pathway and DNA repair: Impact on cancer therapy. Cancer Lett 2009; 283: 1–9.

    Article  CAS  PubMed  Google Scholar 

  15. Allende-Vega N, Saville MK . Targeting the ubiquitin–proteasome system to activate wild-type p53 for cancer therapy. Semin Cancer Biol 2010; 20: 29–39.

    Article  CAS  PubMed  Google Scholar 

  16. Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S et al. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 2003; 112: 779–791.

    Article  CAS  PubMed  Google Scholar 

  17. Laine A, Ronai ZE . Regulation of p53 localization and transcription by the HECT domain E3 ligase WWP1. Oncogene 2006; 26: 1477–1483.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu Z, Miao D, Xia Q, Hermo L, Wing SS . Regulated expression of the ubiquitin protein ligase, E3Histone/LASU1/Mule/ARF‐BP1/HUWE1, during spermatogenesis. Dev Dyn 2007; 236: 2889–2898.

    Article  CAS  PubMed  Google Scholar 

  19. Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P et al. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 2004; 429: 86–92.

    Article  CAS  PubMed  Google Scholar 

  20. Tsvetkov P, Adamovich Y, Elliott E, Shaul Y . E3 ligase STUB1/CHIP regulates NAD (P) H: quinone oxidoreductase 1 (NQO1) accumulation in aged brain, a process impaired in certain Alzheimer disease patients. J Biol Chem 2011; 286: 8839–8845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ambros V . The functions of animal microRNAs. Nature 2004; 431: 350–355.

    Article  CAS  PubMed  Google Scholar 

  22. Bartel DP, Chen C-Z . Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 2004; 5: 396–400.

    Article  CAS  PubMed  Google Scholar 

  23. Esteller M . Non-coding RNAs in human disease. Nat Rev Genet 2011; 12: 861–874.

    Article  CAS  PubMed  Google Scholar 

  24. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    Article  CAS  PubMed  Google Scholar 

  25. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101: 2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866.

    Article  CAS  PubMed  Google Scholar 

  27. Yang G, Yang L, Zhao Z, Wang J, Zhang X . Signature miRNAs involved in the innate immunity of invertebrates. PLoS One 2012; 7: e39015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gong Y, He T, Yang L, Yang G, Chen Y, Zhang X . The role of miR-100 in regulating apoptosis of breast cancer cells. Sci Rep 2015; 5: e11650.

    Article  Google Scholar 

  29. Pietsch EC, Sykes SM, McMahon SB, Murphy ME . The p53 family and programmed cell death. Oncogene 2008; 27: 6507–6521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barboza JA, Iwakuma T, Terzian T, El-Naggar AK, Lozano G . Mdm2 and Mdm4 loss regulates distinct p53 activities. Mol Cancer Res 2008; 6: 947–954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Isaacson MK, Ploegh HL . Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection. Cell Host Microbe 2009; 5: 559–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen D, Zhang J, Li M, Rayburn ER, Wang H, Zhang R . RYBP stabilizes p53 by modulating MDM2. EMBO Rep 2009; 10: 166–172.

    Article  CAS  PubMed  Google Scholar 

  33. Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S et al. Ancient animal microRNAs and the evolution of tissue identity. Nature 2010; 463: 1084–1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E et al. MicroRNA expression in zebrafish embryonic development. Science 2005; 309: 310–311.

    Article  CAS  PubMed  Google Scholar 

  35. Shi W, Alajez NM, Bastianutto C, Hui AB, Mocanu JD, Ito E et al. Significance of Plk1 regulation by miR‐100 in human nasopharyngeal cancer. Int J Cancer 2010; 126: 2036–2048.

    CAS  PubMed  Google Scholar 

  36. Wong T-S, Liu X-B, BY-H Wong, RW-M Ng, AP-W Yuen, Wei WI . Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res 2008; 14: 2588–2592.

    Article  CAS  PubMed  Google Scholar 

  37. Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH et al. MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res 2008; 14: 2690–2695.

    Article  CAS  PubMed  Google Scholar 

  38. Cairo S, Wang Y, de Reyniès A, Duroure K, Dahan J, Redon M-J et al. Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proc Natl Acad Sci USA 2010; 107: 20471–20476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Henson BJ, Bhattacharjee S, O'Dee DM, Feingold E, Gollin SM . Decreased expression of miR‐125b and miR‐100 in oral cancer cells contributes to malignancy. Gene Chromosome Cancer 2009; 48: 569–582.

    Article  CAS  Google Scholar 

  40. Liu W, Gong Y-H, Chao T-F, Peng X-Z, Yuan J-G, Ma Z-Y et al. Identification of differentially expressed microRNAs by microarray: a possible role for microRNAs gene in medulloblastomas. Chinese Med J 2009; 122: 2405–2411.

    CAS  Google Scholar 

  41. Leite KR, Sousa-Canavez JM, Reis ST, Tomiyama AH, Camara-Lopes LH, Sañudo A et al. Change in expression of miR-let7c, miR-100, and miR-218 from high grade localized prostate cancer to metastasis. Urol Oncol 2011; 29: 265–269.

    Article  CAS  PubMed  Google Scholar 

  42. Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 2007; 120: 1046–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Conforti F, Yang AL, Piro MC, Mellone M, Terrinoni A, Candi E et al. PIR2/Rnf144B regulates epithelial homeostasis by mediating degradation of p21WAF1 and p63. Oncogene 2012; 32: 4758–4765.

    Article  PubMed  Google Scholar 

  44. Benard G, Neutzner A, Peng G, Wang C, Livak F, Youle RJ et al. IBRDC2, an IBR‐type E3 ubiquitin ligase, is a regulatory factor for Bax and apoptosis activation. EMBO J 2010; 29: 1458–1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41276152, 31430089) and the National Program on the Key Basic Research Project (2015CB755903).

Author contributions

GY, YG, QZW and LPW performed the experiments. XBZ, GY and YG designed the experiments and analysed the data. YG and XBZ wrote the manuscript. All authors read and approved the contents of the manuscript and its publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Zhang.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Gong, Y., Wang, Q. et al. miR-100 antagonism triggers apoptosis by inhibiting ubiquitination-mediated p53 degradation. Oncogene 36, 1023–1037 (2017). https://doi.org/10.1038/onc.2016.270

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.270

This article is cited by

Search

Quick links