Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

In vivo quantitative phosphoproteomic profiling identifies novel regulators of castration-resistant prostate cancer growth

Abstract

Prostate cancer remains a leading cause of cancer-related mortality worldwide owing to our inability to treat effectively castration-resistant tumors. To understand the signaling mechanisms sustaining castration-resistant growth, we implemented a mass spectrometry-based quantitative proteomic approach and use it to compare protein phosphorylation in orthotopic xenograft tumors grown in either intact or castrated mice. This investigation identified changes in phosphorylation of signaling proteins such as MEK, LYN, PRAS40, YAP1 and PAK2, indicating the concomitant activation of several oncogenic pathways in castration-resistant tumors, a notion that was confirmed by tumor transcriptome analysis. Further analysis demonstrated that the activation of mTORC1, PAK2 and the increased levels of YAP1 in castration-resistant tumors can be explained by the loss of androgen inhibitory actions. The analysis of clinical samples demonstrated elevated levels of PAK2 and YAP1 in castration-resistant tumors, whereas knockdown experiments in androgen-independent cells demonstrated that both YAP1 and PAK2 regulate cell colony formation and cell invasion activity. PAK2 also influenced cell proliferation and mitotic timing. Interestingly, these phenotypic changes occur in the absence of obvious alterations in the activity of AKT, MAPK or mTORC1 pathways, suggesting that PAK2 and YAP1 may represent novel targets for the treatment of castration-resistant prostate cancer. Pharmacologic inhibitors of PAK2 (PF-3758309) and YAP1 (Verteporfin) were able to inhibit the growth of androgen-independent PC3 xenografts. This work demonstrates the power of applying high-resolution mass spectrometry in the proteomic profiling of tumors grown in vivo for the identification of novel and clinically relevant regulatory proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Schroder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med 2009; 360: 1320–1328.

    Article  PubMed  Google Scholar 

  2. Crawford ED . Understanding the epidemiology, natural history, and key pathways involved in prostate cancer. Urology 2009; 73 (Suppl): S4–S10.

    Article  PubMed  Google Scholar 

  3. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18: 11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012; 487: 239–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R, Palmberg C et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 1995; 9: 401–406.

    Article  CAS  PubMed  Google Scholar 

  6. Sato K, Qian J, Slezak JM, Lieber MM, Bostwick DG, Bergstralh EJ et al. Clinical significance of alterations of chromosome 8 in high-grade, advanced, nonmetastatic prostate carcinoma. J Natl Cancer Inst 1999; 91: 1574–1580.

    Article  CAS  PubMed  Google Scholar 

  7. Saramaki O, Visakorpi T . Chromosomal aberrations in prostate cancer. Front Biosci 2007; 12: 3287–3301.

    Article  CAS  PubMed  Google Scholar 

  8. Mulholland DJ, Tran LM, Li Y, Cai H, Morim A, Wang S et al. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell 2011; 19: 792–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 2011; 19: 575–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blando J, Portis M, Benavides F, Alexander A, Mills G, Dave B et al. PTEN deficiency is fully penetrant for prostate adenocarcinoma in C57BL/6 mice via mTOR-dependent growth. Am J Pathol 2009; 174: 1869–1879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM et al. LNCaP model of human prostatic carcinoma. Cancer Res 1983; 43: 1809–1818.

    CAS  PubMed  Google Scholar 

  12. Schayowitz A, Sabnis G, Goloubeva O, Njar VC, Brodie AM . Prolonging hormone sensitivity in prostate cancer xenografts through dual inhibition of AR and mTOR. Br J Cancer 2010; 103: 1001–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakabayashi M, Werner L, Courtney KD, Buckle G, Oh WK, Bubley GJ et al. Phase II trial of RAD001 and bicalutamide for castration-resistant prostate cancer. BJU Int 2012; 110: 1729–1735.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang W, Zhu J, Efferson CL, Ware C, Tammam J, Angagaw M et al. Inhibition of tumor growth progression by antiandrogens and mTOR inhibitor in a Pten-deficient mouse model of prostate cancer. Cancer Res 2009; 69: 7466–7472.

    Article  CAS  PubMed  Google Scholar 

  15. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 2006; 127: 635–648.

    Article  CAS  PubMed  Google Scholar 

  16. Pan C, Olsen JV, Daub H, Mann M . Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteom 2009; 8: 2796–2808.

    Article  CAS  Google Scholar 

  17. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 2010: 3 ra3.

  18. Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, Hopwood VL et al. Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res 1994; 54: 2577–2581.

    CAS  PubMed  Google Scholar 

  19. Visakorpi T, Kylmala T, Tainio H, Koivula T, Tammela T, Isola J . High cell proliferation activity determined by DNA flow cytometry predicts poor prognosis after relapse in prostate cancer. Eur J Cancer 1994; 30A: 129–130.

    Article  CAS  PubMed  Google Scholar 

  20. Niu Y, Altuwaijri S, Lai KP, Wu CT, Ricke WA, Messing EM et al. Androgen receptor is a tumor suppressor and proliferator in prostate cancer. Proc Natl Acad Sci USA 2008; 105: 12182–12187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Geiger T, Cox J, Ostasiewicz P, Wisniewski JR, Mann M . Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 2010; 7: 383–385.

    Article  CAS  PubMed  Google Scholar 

  22. Lopez-Casillas F, Bai DH, Luo XC, Kong IS, Hermodson MA, Kim KH . Structure of the coding sequence and primary amino acid sequence of acetyl-coenzyme A carboxylase. Proc Natl Acad Sci USA 1988; 85: 5784–5788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roberts PJ, Der CJ . Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007; 26: 3291–3310.

    Article  CAS  PubMed  Google Scholar 

  24. Zoncu R, Efeyan A, Sabatini DM . mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12: 21–35.

    Article  CAS  PubMed  Google Scholar 

  25. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007; 25: 903–915.

    Article  CAS  PubMed  Google Scholar 

  26. Harvey KF, Zhang X, Thomas DM . The Hippo pathway and human cancer. Nat Rev Cancer 2013; 13: 246–257.

    Article  CAS  PubMed  Google Scholar 

  27. Ye DZ, Field J . PAK signaling in cancer. Cell Logist 2012; 2: 105–116.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Manning BD, Cantley LC . AKT/PKB signaling: navigating downstream. Cell 2007; 129: 1261–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ma L, Teruya-Feldstein J, Bonner P, Bernardi R, Franz DN, Witte D et al. Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer. Cancer Res 2007; 67: 7106–7112.

    Article  CAS  PubMed  Google Scholar 

  30. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13: 2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Merico D, Isserlin R, Stueker O, Emili A, Bader GD . Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 2010; 5: e13984.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mukherjee R, McGuinness DH, McCall P, Underwood MA, Seywright M, Orange C et al. Upregulation of MAPK pathway is associated with survival in castrate-resistant prostate cancer. Br J Cancer 2011; 104: 1920–1928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Drake JM, Graham NA, Lee JK, Stoyanova T, Faltermeier CM, Sud S et al. Metastatic castration-resistant prostate cancer reveals intrapatient similarity and interpatient heterogeneity of therapeutic kinase targets. Proc Natl Acad Sci USA 2013; 110: E4762–E4769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schaeffer EM, Marchionni L, Huang Z, Simons B, Blackman A, Yu W et al. Androgen-induced programs for prostate epithelial growth and invasion arise in embryogenesis and are reactivated in cancer. Oncogene 2008; 27: 7180–7191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nardella C, Chen Z, Salmena L, Carracedo A, Alimonti A, Egia A et al. Aberrant Rheb-mediated mTORC1 activation and Pten haploinsufficiency are cooperative oncogenic events. Genes Dev 2008; 22: 2172–2177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Balakumaran BS, Porrello A, Hsu DS, Glover W, Foye A, Leung JY et al. MYC activity mitigates response to rapamycin in prostate cancer through eukaryotic initiation factor 4E-binding protein 1-mediated inhibition of autophagy. Cancer Res 2009; 69: 7803–7810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin DL, Tarnowski CP, Zhang J, Dai J, Rohn E, Patel AH et al. Bone metastatic LNCaP-derivative C4-2B prostate cancer cell line mineralizes in vitro. Prostate 2001; 47: 212–221.

    Article  CAS  PubMed  Google Scholar 

  39. Murray BW, Guo C, Piraino J, Westwick JK, Zhang C, Lamerdin J et al. Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proc Natl Acad Sci USA 2010; 107: 9446–9451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Deacon SW, Beeser A, Fukui JA, Rennefahrt UE, Myers C, Chernoff J et al. An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol 2008; 15: 322–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 2012; 26: 1300–1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Laplante M, Sabatini DM . mTOR signaling in growth control and disease. Cell 2012; 149: 274–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. D'Antonio JM, Ma C, Monzon FA, Pflug BR . Longitudinal analysis of androgen deprivation of prostate cancer cells identifies pathways to androgen independence. Prostate 2008; 68: 698–714.

    Article  PubMed  Google Scholar 

  44. Zhao B, Li L, Wang L, Wang CY, Yu J, Guan KL . Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 2012; 26: 54–68.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM et al. Integrative molecular concept modeling of prostate cancer progression. Nat Genet 2007; 39: 41–51.

    Article  CAS  PubMed  Google Scholar 

  46. Das Thakur M, Feng Y, Jagannathan R, Seppa MJ, Skeath JB, Longmore GD . Ajuba LIM proteins are negative regulators of the Hippo signaling pathway. Curr Biol 2010; 20: 657–662.

    Article  CAS  PubMed  Google Scholar 

  47. Mann M, Kulak NA, Nagaraj N, Cox J . The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell 2013; 49: 583–590.

    Article  CAS  PubMed  Google Scholar 

  48. Lundby A, Secher A, Lage K, Nordsborg NB, Dmytriyev A, Lundby C et al. Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 2012; 3: 876.

    Article  PubMed  Google Scholar 

  49. Cox J, Mann M . MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 2008; 26: 1367–1372.

    Article  CAS  PubMed  Google Scholar 

  50. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M . Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 2011; 10: 1794–1805.

    Article  CAS  PubMed  Google Scholar 

  51. Olsen JV, Mann M et al. Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics 2013; 12: 3444–3452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hekmat O, Munk S, Fogh L, Yadav R, Francavilla C, Horn H et al. TIMP-1 increases expression and phosphorylation of proteins associated with drug resistance in breast cancer cells. J Proteome Res 2013; 12: 4136–4151.

    Article  CAS  PubMed  Google Scholar 

  53. Olsen JV, Schwartz JC, Griep-Raming J, Nielsen ML, Damoc E, Denisov E et al. A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Mol Cell Proteom 2009; 8: 2759–2769.

    Article  CAS  Google Scholar 

  54. Zhang G, Kelstrup CD, Hu XW, Kaas Hansen MJ, Singleton MR, Olsen JV et al. The Ndc80 internal loop is required for recruitment of the Ska complex to establish end-on microtubule attachment to kinetochores. J Cell Sci 2012; 125 (Part 13): 3243–3253.

    Article  CAS  PubMed  Google Scholar 

  55. Chuan YC, Iglesias-Gato D, Fernandez-Perez L, Cedazo-Minguez A, Pang ST, Norstedt G et al. Ezrin mediates c-Myc actions in prostate cancer cell invasion. Oncogene 2009; 29: 1531–1542.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to AF-M from the Novo Nordisk Foundation, Movember and the Danish Council for Independent Research. JN and NY are supported by the Science Foundation of Tianjin (No.: 11JCZDJC19700) and 09ZCZDSF04300 and the National Natural Science Foundation of China Grant numbers: 2012CB518304 and 2012DFG32220.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y Niu or A Flores-Morales.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, N., Hjorth-Jensen, K., Hekmat, O. et al. In vivo quantitative phosphoproteomic profiling identifies novel regulators of castration-resistant prostate cancer growth. Oncogene 34, 2764–2776 (2015). https://doi.org/10.1038/onc.2014.206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.206

This article is cited by

Search

Quick links