Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Conditional deletion of p53 and Rb in the renin-expressing compartment of the pancreas leads to a highly penetrant metastatic pancreatic neuroendocrine carcinoma

Abstract

Efforts to model human pancreatic neuroendocrine tumors (PanNETs) in animals have been moderately successful, with minimal evidence for glucagonomas or metastatic spread. The renin gene, although classically associated with expression in the kidney, is also expressed in many other extrarenal tissues including the pancreas. To induce tumorigenesis within rennin-specific tissues, floxed alleles of p53 and Rb were selectively abrogated using Cre-recombinase driven by the renin promoter. The primary neoplasm generated is a highly metastatic islet cell carcinoma of the pancreas. Lineage tracing identifies descendants of renin-expressing cells as pancreatic alpha cells despite a lack of active renin expression in the mature pancreas. Both primary and metastatic tumors express high levels of glucagon; furthermore, an increased level of glucagon is found in the serum, identifying the pancreatic cancer as a functional glucagonoma. This new model is highly penetrant and exhibits robust frequency of metastases to the lymph nodes and the liver, mimicking human disease, and provides a useful platform for better understanding pancreatic endocrine differentiation and development, as well as islet cell carcinogenesis. The use of fluorescent reporters for lineage tracing of the cells contributing to disease initiation and progression provides an unique opportunity to dissect the timeline of disease, examining mechanisms of the metastatic process, as well as recovering primary and metastatic cells for identifying cooperating mutations that are necessary for progression of disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Gomez RA . Role of angiotensin in renal vascular development. Kidney Int Suppl 1998; 67: S12–S16.

    Article  CAS  PubMed  Google Scholar 

  2. Nishimura H, Ichikawa I . What have we learned from gene targeting studies for the renin angiotensin system of the kidney? Intern Med 1999; 38: 315–323.

    Article  CAS  PubMed  Google Scholar 

  3. Jones CA, Hurley MI, Black TA, Kane CM, Pan L, Pruitt SC et al. Expression of a renin/GFP transgene in mouse embryonic, extra-embryonic, and adult tissues. Physiol Genomics 2000; 4: 75–81.

    Article  CAS  PubMed  Google Scholar 

  4. Sequeira Lopez ML, Pentz ES, Nomasa T, Smithies O, Gomez RA . Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened. Dev Cell 2004; 6: 719–728.

    Article  PubMed  Google Scholar 

  5. Lau T, Carlsson PO, Leung PS . Evidence for a local angiotensin-generating system and dose-dependent inhibition of glucose-stimulated insulin release by angiotensin II in isolated pancreatic islets. Diabetologia 2004; 47: 240–248.

    Article  CAS  PubMed  Google Scholar 

  6. Leung KK, Liang J, Ma MT, Leung PS . Angiotensin II type 2 receptor is critical for the development of human fetal pancreatic progenitor cells into islet-like cell clusters and their potential for transplantation. Stem Cells 2012; 30: 525–536.

    Article  CAS  PubMed  Google Scholar 

  7. Leung PS . The physiology of a local renin-angiotensin system in the pancreas. J Physiol 2007; 580: 31–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tahmasebi M, Puddefoot JR, Inwang ER, Vinson GP . The tissue renin-angiotensin system in human pancreas. J Endocrinol 1999; 161: 317–322.

    Article  CAS  PubMed  Google Scholar 

  9. Lam KY . The pancreatic renin-angiotensin system: does it play a role in endocrine oncology? JOP 2001; 2: 40–42.

    CAS  PubMed  Google Scholar 

  10. Lam KY, Leung PS . Regulation and expression of a renin-angiotensin system in human pancreas and pancreatic endocrine tumours. Eur J Endocrinol 2002; 146: 567–572.

    Article  CAS  PubMed  Google Scholar 

  11. Carlsson PO . The renin-angiotensin system in the endocrine pancreas. JOP 2001; 2: 26–32.

    CAS  PubMed  Google Scholar 

  12. Leung PS, Carlsson PO . Tissue renin-angiotensin system: its expression, localization, regulation and potential role in the pancreas. J Mol Endocrinol 2001; 26: 155–164.

    Article  CAS  PubMed  Google Scholar 

  13. Leung PS, Carlsson PO . Pancreatic islet renin angiotensin system: its novel roles in islet function and in diabetes mellitus. Pancreas 2005; 30: 293–298.

    Article  CAS  PubMed  Google Scholar 

  14. Leung PS, Chappell MC . A local pancreatic renin-angiotensin system: endocrine and exocrine roles. Int J Biochem Cell Biol 2003; 35: 838–846.

    Article  CAS  PubMed  Google Scholar 

  15. Tikellis C, Cooper ME, Thomas MC . Role of the renin-angiotensin system in the endocrine pancreas: implications for the development of diabetes. Int J Biochem Cell Biol 2006; 38: 737–751.

    Article  CAS  PubMed  Google Scholar 

  16. Schwitzgebel VM, Scheel DW, Conners JR, Kalamaras J, Lee JE, Anderson DJ et al. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 2000; 127: 3533–3542.

    CAS  PubMed  Google Scholar 

  17. Desgraz R, Herrera PL . Pancreatic neurogenin 3-expressing cells are unipotent islet precursors. Development 2009; 136: 3567–3574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lammert E, Cleaver O, Melton D . Role of endothelial cells in early pancreas and liver development. Mech Dev 2003; 120: 59–64.

    Article  CAS  PubMed  Google Scholar 

  19. Haumaitre C, Lenoir O, Scharfmann R . Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors. Mol Cellular Biol 2008; 28: 6373–6383.

    Article  CAS  Google Scholar 

  20. Johansson KA, Dursun U, Jordan N, Gu G, Beermann F, Gradwohl G et al. Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev cell 2007; 12: 457–465.

    Article  CAS  PubMed  Google Scholar 

  21. Gromada J, Franklin I, Wollheim CB . Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev 2007; 28: 84–116.

    Article  CAS  PubMed  Google Scholar 

  22. Ehehalt F, Saeger HD, Schmidt CM, Grutzmann R . Neuroendocrine tumors of the pancreas. Oncologist 2009; 14: 456–467.

    Article  CAS  PubMed  Google Scholar 

  23. Ruttman E, Kloppel G, Bommer G, Kiehn M, Heitz PU . Pancreatic glucagonoma with and without syndrome. Immunocytochemical study of 5 tumour cases and review of the literature. Virchows Archiv A Pathol Anat Histol 1980; 388: 51–67.

    Article  CAS  Google Scholar 

  24. Hu W, Feng Z, Modica I, Klimstra DS, Song L, Allen PJ et al. Gene amplifications in well-differentiated pancreatic neuroendocrine tumors inactivate the p53 pathway. Genes Cancer 2010; 1: 360–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tang LH, Contractor T, Clausen R, Klimstra DS, Du YC, Allen PJ et al. Attenuation of the retinoblastoma pathway in pancreatic neuroendocrine tumors due to increased cdk4/cdk6. Clin Cancer Res 2012; 18: 4612–4620.

    Article  CAS  PubMed  Google Scholar 

  26. Benson C, Kaye S, Workman P, Garrett M, Walton M, de Bono J . Clinical anticancer drug development: targeting the cyclin-dependent kinases. Br J Cancer 2005; 92: 7–12.

    Article  CAS  PubMed  Google Scholar 

  27. Liu L, Broaddus RR, Yao JC, Xie S, White JA, Wu TT et al. Epigenetic alterations in neuroendocrine tumors: methylation of RAS-association domain family 1, isoform A and p16 genes are associated with metastasis. Mod Pathol 2005; 18: 1632–1640.

    Article  CAS  PubMed  Google Scholar 

  28. Harvey M, Vogel H, Lee EY, Bradley A, Donehower LA . Mice deficient in both p53 and Rb develop tumors primarily of endocrine origin. Cancer Res 1995; 55: 1146–1151.

    CAS  PubMed  Google Scholar 

  29. Williams BO, Remington L, Albert DM, Mukai S, Bronson RT, Jacks T . Cooperative tumorigenic effects of germline mutations in Rb and p53. Nat Genet 1994; 7: 480–484.

    Article  CAS  PubMed  Google Scholar 

  30. Bertolino P, Tong WM, Galendo D, Wang ZQ, Zhang CX . Heterozygous Men1 mutant mice develop a range of endocrine tumors mimicking multiple endocrine neoplasia type 1. Mol Endocrinol 2003; 17: 1880–1892.

    Article  CAS  PubMed  Google Scholar 

  31. Loffler KA, Biondi CA, Gartside M, Waring P, Stark M, Serewko-Auret MM et al. Broad tumor spectrum in a mouse model of multiple endocrine neoplasia type 1. Int J Cancer 2007; 120: 259–267.

    Article  CAS  PubMed  Google Scholar 

  32. Crabtree JS, Scacheri PC, Ward JM, Garrett-Beal L, Emmert-Buck MR, Edgemon KA et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. ProcNatl Acad Sci USA 2001; 98: 1118–1123.

    Article  CAS  Google Scholar 

  33. Crabtree JS, Scacheri PC, Ward JM, McNally SR, Swain GP, Montagna C et al. Of mice and MEN1: insulinomas in a conditional mouse knockout. Mol Cellular Biol 2003; 23: 6075–6085.

    Article  CAS  Google Scholar 

  34. Bertolino P, Tong WM, Herrera PL, Casse H, Zhang CX, Wang ZQ . Pancreatic beta-cell-specific ablation of the multiple endocrine neoplasia type 1 (MEN1) gene causes full penetrance of insulinoma development in mice. Cancer Res 2003; 63: 4836–4841.

    CAS  PubMed  Google Scholar 

  35. Shen HC, He M, Powell A, Adem A, Lorang D, Heller C et al. Recapitulation of pancreatic neuroendocrine tumors in human multiple endocrine neoplasia type I syndrome via Pdx1-directed inactivation of Men1. Cancer Res 2009; 69: 1858–1866.

    Article  CAS  PubMed  Google Scholar 

  36. Lu J, Herrera PL, Carreira C, Bonnavion R, Seigne C, Calender A et al. Alpha cell-specific Men1 ablation triggers the transdifferentiation of glucagon-expressing cells and insulinoma development. Gastroenterology 2010; 138: 1954–1965.

    Article  CAS  PubMed  Google Scholar 

  37. Shen HC, Ylaya K, Pechhold K, Wilson A, Adem A, Hewitt SM et al. Multiple endocrine neoplasia type 1 deletion in pancreatic alpha-cells leads to development of insulinomas in mice. Endocrinology 2010; 151: 4024–4030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shen HC, Adem A, Ylaya K, Wilson A, He M, Lorang D et al. Deciphering von Hippel-Lindau (VHL/Vhl)-associated pancreatic manifestations by inactivating Vhl in specific pancreatic cell populations. PLoS One 2009; 4: e4897.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hanahan D, Folkman J . Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353–364.

    Article  CAS  PubMed  Google Scholar 

  40. Rindi G, Efrat S, Ghatei MA, Bloom SR, Solcia E, Polak JM . Glucagonomas of transgenic mice express a wide range of general neuroendocrine markers and bioactive peptides. Virchows Archiv A Pathol Anat Histopathol 1991; 419: 115–129.

    Article  CAS  Google Scholar 

  41. Sigmund CD, Jones CA, Mullins JJ, Kim U, Gross KW . Expression of murine renin genes in subcutaneous connective tissue. ProcNatl Acad Sci USA 1990; 87: 7993–7997.

    Article  CAS  Google Scholar 

  42. Sigmund CD, Okuyama K, Ingelfinger J, Jones CA, Mullins JJ, Kane C et al. Isolation and characterization of renin-expressing cell lines from transgenic mice containing a renin-promoter viral oncogene fusion construct. J Biol Chem 1990; 265: 19916–19922.

    CAS  PubMed  Google Scholar 

  43. Hanahan D . Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 1985; 315: 115–122.

    Article  CAS  PubMed  Google Scholar 

  44. Franklin DS, Godfrey VL, O'Brien DA, Deng C, Xiong Y . Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol Cell Biol 2000; 20: 6147–6158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rane SG, Dubus P, Mettus RV, Galbreath EJ, Boden G, Reddy EP et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet 1999; 22: 44–52.

    Article  CAS  PubMed  Google Scholar 

  46. Sotillo R, Dubus P, Martin J, de la Cueva E, Ortega S, Malumbres M et al. Wide spectrum of tumors in knock-in mice carrying a Cdk4 protein insensitive to INK4 inhibitors. EMBO J 2001; 20: 6637–6647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Glenn ST, Jones CA, Pan L, Gross KW . In vivo analysis of key elements within the renin regulatory region. Physiol Genomics 2008; 35: 243–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sparwasser T, Gong S, Li JY, Eberl G . General method for the modification of different BAC types and the rapid generation of BAC transgenic mice. Genesis 2004; 38: 39–50.

    Article  CAS  PubMed  Google Scholar 

  49. Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A . Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 2000; 14: 994–1004.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A . Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 2001; 29: 418–425.

    Article  CAS  PubMed  Google Scholar 

  51. Flesken-Nikitin A, Choi KC, Eng JP, Shmidt EN, Nikitin AY . Induction of carcinogenesis by concurrent inactivation of p53 and Rb1 in the mouse ovarian surface epithelium. Cancer Res 2003; 63: 3459–3463.

    CAS  PubMed  Google Scholar 

  52. Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 2010; 143: 134–144.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the NIH grants 5R01HL048459, R21CA164795 and R21CA169717. We would like to thank the CCSG funded (CA016056) Roswell Park Gene Targeting and Transgenic Resource and the Genomics Shared Resource (GSR). Confocal Microscopy was performed at the University at Buffalo North Campus Imaging Facility using a Zeiss LSM 710 purchased through National Science Foundation Major Research Instrumentation grant DBI 0923133. We would also like to thank MK Ellsworth and Caretta Reese for maintenance of the mouse colonies, as well as Dominic Smiraglia and Elizabeth Repasky for critical reading and discussion of work. A special thank you to Dr George Deeb for his insightful observations on anatomy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K W Gross.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glenn, S., Jones, C., Sexton, S. et al. Conditional deletion of p53 and Rb in the renin-expressing compartment of the pancreas leads to a highly penetrant metastatic pancreatic neuroendocrine carcinoma. Oncogene 33, 5706–5715 (2014). https://doi.org/10.1038/onc.2013.514

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.514

Keywords

This article is cited by

Search

Quick links