Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Profilin-1 downregulation has contrasting effects on early vs late steps of breast cancer metastasis

Abstract

Profilin1 (Pfn1), a ubiquitously expressed actin-binding protein, has an indispensable role in migration and proliferation of normal cells. Seemingly contrary to its essential cellular functions, Pfn1’s expression is downregulated in breast cancer, the significance of which is unclear. In this study, expression profiling of Pfn1 in human breast cancer specimens correlates lower Pfn1 expression levels with propensity to metastasize. Xenograft experiments further establish a causal relationship between loss of Pfn1 expression and increased dissemination of breast cancer cells (BCCs) from the primary mammary tumor. BCCs exhibit a hyperinvasive phenotype (marked by matrix metalloproteinase-9 upregulation, faster invasion through collagen matrix) and acquire increased proficiency to transmigrate through endothelial barrier (an obligatory step for vascular dissemination) when Pfn1 expression is suppressed. In Pfn1-deficient cells, hyperinvasiveness involves a phosphatidylinositol 3-kinase-PI(3,4)P2 signaling axis while augmented transendothelial migration occurs in a vascular endothelial growth factor-dependent manner. Contrasting these dissemination promoting activities, loss of Pfn1, however, dramatically inhibits metastatic outgrowth of disseminated BCCs, suggesting that Pfn1 has a key role in the metastatic colonization process. In summary, this study shows that Pfn1 has a dichotomous role in early vs late steps of breast cancer metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gronborg M, Kristiansen TZ, Iwahori A, Chang R, Reddy R, Sato N et al. Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol Cell Proteomics 2006; 5: 157–171.

    Article  CAS  Google Scholar 

  2. Janke J, Schluter K, Jandrig B, Theile M, Kolble K, Arnold W et al. Suppression of tumorigeniciy in breast cancer cells by the microfilament protein profilin 1. J Exp Med 2000; 191: 1675–1685.

    Article  CAS  Google Scholar 

  3. Wu N, Zhang W, Yang Y, Liang YL, Wang LY, Jin JW et al. Profilin 1 obtained by proteomic analysis in all-trans retinoic acid-treated hepatocarcinoma cell lines is involved in inhibition of cell proliferation and migration. Proteomics 2006; 6: 6095–6106.

    Article  CAS  Google Scholar 

  4. Zoidakis J, Makridakis M, Zerefos PG, Bitsika V, Esteban S, Frantzi M et al. Profilin 1 is a potential biomarker for bladder cancer aggressiveness. Mol Cell Proteomics 2012; 11: M111 009449.

    Article  Google Scholar 

  5. Jockusch BM, Murk K, Rothkegel M . The profile of profilins. Rev Physiol Biochem Pharmacol 2007; 159: 131–149.

    Article  CAS  Google Scholar 

  6. Karlsson R, Lindberg U . Profilin, an essential control element for actin polymerization. In: Lapplainen P (ed). Actin Monomer Binding Proteins. Landes Biosciences and Springer,, Georgetown, USA 2006; Chapter 3: 29–44.

    Google Scholar 

  7. Witke W . The role of profilin complexes in cell motility and other cellular processes. Trends Cell Biol 2004; 14: 461–469.

    Article  CAS  Google Scholar 

  8. Bottcher RT, Wiesner S, Braun A, Wimmer R, Berna A, Elad N et al. Profilin 1 is required for abscission during late cytokinesis of chondrocytes. EMBO J 2009; 28: 1157–1169.

    Article  Google Scholar 

  9. Ding Z, Gau D, Deasy B, Wells A, Roy P . Both actin and polyproline interactions of profilin-1 are required for migration, invasion and capillary morphogenesis of vascular endothelial cells. Exp Cell Res 2009; 315: 2963–2973.

    Article  CAS  Google Scholar 

  10. Ding Z, Lambrechts A, Parepally M, Roy P . Silencing profilin-1 inhibits endothelial cell proliferation, migration and cord morphogenesis. J Cell Sci 2006; 119 (Pt 19): 4127–4137.

    Article  CAS  Google Scholar 

  11. Haugwitz M, Noegel AA, Karakesisoglou J, Schleicher M . Dictyostelium amoebae that lack G-actin-sequestering profilins show defects in F-actin content, cytokinesis, and development. Cell 1994; 79: 303–314.

    Article  CAS  Google Scholar 

  12. Khadka DK, Liu W, Habas R . Non-redundant roles for Profilin2 and Profilin1 during vertebrate gastrulation. Dev Biol 2009; 332: 396–406.

    Article  CAS  Google Scholar 

  13. Kullmann JA, Neumeyer A, Gurniak CB, Friauf E, Witke W, Rust MB . Profilin1 is required for glial cell adhesion and radial migration of cerebellar granule neurons. EMBO Rep 2011; 13: 75–82.

    Article  Google Scholar 

  14. Sato A, Khadka DK, Liu W, Bharti R, Runnels LW, Dawid IB et al. Profilin is an effector for Daam1 in non-canonical Wnt signaling and is required for vertebrate gastrulation. Development 2006; 133: 4219–4231.

    Article  CAS  Google Scholar 

  15. Severson AF, Baillie DL, Bowerman BA . Formin homology protein and a profilin are required for cytokinesis and Arp2/3-independent assembly of cortical microfilaments in C. elegans. Curr Biol 2002; 12: 2066–2075.

    Article  CAS  Google Scholar 

  16. Verheyen EM, Cooley L . Profilin mutations disrupt multiple actin-dependent processes during drosophila development. Development 1994; 120: 717–728.

    CAS  PubMed  Google Scholar 

  17. Bae YH, Ding Z, Das T, Wells A, Gertler F, Roy P . Profilin1 regulates PI(3,4)P2 and lamellipodin accumulation at the leading edge thus influencing motility of MDA-MB-231 cells. Proc Natl Acad Sci USA 2010; 107: 21547–21552.

    Article  CAS  Google Scholar 

  18. Bae YH, Ding Z, Zou L, Wells A, Gertler F, Roy P . Loss of profilin-1 expression enhances breast cancer cell motility by Ena/VASP proteins. J Cell Physiol 2009; 219: 354–364.

    Article  CAS  Google Scholar 

  19. Poincloux R, Collin O, Lizarraga F, Romao M, Debray M, Piel M et al. Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel. Proc Natl Acad Sci USA 2011; 108: 1943–1948.

    Article  CAS  Google Scholar 

  20. Zou L, Jaramillo M, Whaley D, Wells A, Panchapakesa V, Das T et al. Profilin-1 is a negative regulator of mammary carcinoma aggressiveness. Br J Cancer 2007; 97: 1361–1371.

    Article  CAS  Google Scholar 

  21. Ho MY, Tang SJ, Chuang MJ, Cha TL, Li JY, Sun GH et al. TNF-alpha induces epithelial-mesenchymal transition of renal cell carcinoma cells via a GSK3beta-dependent mechanism. Mol Cancer Res 2012; 10: 1109–1119.

    Article  CAS  Google Scholar 

  22. Krause M, Leslie JD, Stewart M, Lafuente EM, Valderrama F, Jagannathan R et al. Lamellipodin, an Ena/VASP ligand, is implicated in the regulation of lamellipodial dynamics. Dev Cell 2004; 7: 571–583.

    Article  CAS  Google Scholar 

  23. Smith K, Humphreys D, Hume PJ, Koronakis V . Enteropathogenic Escherichia coli recruits the cellular inositol phosphatase SHIP2 to regulate actin-pedestal formation. Cell Host Microbe 2010; 7: 13–24.

    Article  CAS  Google Scholar 

  24. Fedele CG, Ooms LM, Ho M, Vieusseux J, O'Toole SA, Millar EK et al. Inositol polyphosphate 4-phosphatase II regulates PI3K/Akt signaling and is lost in human basal-like breast cancers. Proc Natl Acad Sci USA 2010; 107: 22231–22236.

    Article  CAS  Google Scholar 

  25. Gewinner C, Wang ZC, Richardson A, Teruya-Feldstein J, Etemadmoghadam D, Bowtell D et al. Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 2009; 16: 115–125.

    Article  CAS  Google Scholar 

  26. Gorges TM, Tinhofer I, Drosch M, Rose L, Zollner TM, Krahn T et al. Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer 2012; 12: 178.

    Article  CAS  Google Scholar 

  27. Chao Y, Wu Q, Acquafondata M, Dhir R, Wells A . Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenviron 2012; 5: 19–28.

    Article  CAS  Google Scholar 

  28. Chao YL, Shepard CR, Wells A . Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer 2010; 9: 179.

    Article  Google Scholar 

  29. Goldschmidt-Clermont PJ, Kim JW, Machesky LM, Rhee SG, Pollard TD . Regulation of phospholipase C-gamma 1 by profilin and tyrosine phosphorylation. Science 1991; 251: 1231–1233.

    Article  CAS  Google Scholar 

  30. Goldschmidt-Clermont PJ, Machesky LM, Baldassare JJ, Pollard TD . The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science 1990; 247: 1575–1578.

    Article  CAS  Google Scholar 

  31. Lederer M, Jockusch BM, Rothkegel M . Profilin regulates the activity of p42POP, a novel Myb-related transcription factor. J Cell Sci 2005; 118 (Pt 2): 331–341.

    Article  CAS  Google Scholar 

  32. Barkan D, Kleinman H, Simmons JL, Asmussen H, Kamaraju AK, Hoenorhoff MJ et al. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res 2008; 68: 6241–6250.

    Article  CAS  Google Scholar 

  33. Shibue T, Weinberg RA . Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci USA 2009; 106: 10290–10295.

    Article  CAS  Google Scholar 

  34. Roy P, Jacobson K . Overexpression of profilin reduces the migration of invasive breast cancer cells. Cell Motil Cytoskeleton 2004; 57: 84–95.

    Article  CAS  Google Scholar 

  35. Gau D, Ding Z, Baty C, Roy P . Fluorescence resonance energy transfer (FRET)-based detection of profilin-VASP interaction. Cell Mol Bioeng 2011; 4: 1–8.

    Article  Google Scholar 

  36. Zou L, Hazan R, Roy P . Profilin-1 overexpression restores adherens junctions in MDA-MB-231 breast cancer cells in R-cadherin-dependent manner. Cell Motil Cytoskeleton 2009; 66: 1048–1056.

    Article  CAS  Google Scholar 

  37. Kim A, Lakshman N, Karamichos D, Petroll WM . Growth factor regulation of corneal keratocyte differentiation and migration in compressed collagen matrices. Invest Ophthalmol Vis Sci 2010; 51: 864–875.

    Article  Google Scholar 

  38. Artym VV, Yamada KM, Mueller SC . ECM degradation assays for analyzing local cell invasion. Methods Mol Biol 2009; 522: 211–219.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Cancer Institute of the National Institute of Health (2R01CA108607-07) and the Magee Women’s Research Institute to PR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Roy.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Z., Joy, M., Bhargava, R. et al. Profilin-1 downregulation has contrasting effects on early vs late steps of breast cancer metastasis. Oncogene 33, 2065–2074 (2014). https://doi.org/10.1038/onc.2013.166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.166

Keywords

This article is cited by

Search

Quick links