Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets

Abstract

Triple negative breast cancers (TNBCs) have a relatively poor prognosis and cannot be effectively treated with current targeted therapies. We searched for genes that have the potential to be therapeutic targets by identifying genes consistently overexpressed when amplified. Fifty-six TNBCs were subjected to high-resolution microarray-based comparative genomic hybridization (aCGH), of which 24 were subjected to genome-wide gene expression analysis. TNBCs were genetically heterogeneous; no individual focal amplification was present at high frequency, although 78.6% of TNBCs harboured at least one focal amplification. Integration of aCGH and expression data revealed 40 genes significantly overexpressed when amplified, including the known oncogenes and potential therapeutic targets, FGFR2 (10q26.3), BUB3 (10q26.3), RAB20 (13q34), PKN1 (19p13.12) and NOTCH3 (19p13.12). We identified two TNBC cell lines with FGFR2 amplification, which both had constitutive activation of FGFR2. Amplified cell lines were highly sensitive to FGFR inhibitor PD173074, and to RNAi silencing of FGFR2. Treatment with PD173074 induced apoptosis resulting partly from inhibition of PI3K-AKT signalling. Independent validation using publicly available aCGH data sets revealed FGFR2 gene was amplified in 4% (6/165) of TNBC, but not in other subtypes (0/214, P=0.0065). Our analysis demonstrates that TNBCs are heterogeneous tumours with amplifications of FGFR2 in a subgroup of tumours.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adelaide J, Finetti P, Bekhouche I, Repellini L, Geneix J, Sircoulomb F et al. (2007). Integrated profiling of basal and luminal breast cancers. Cancer Res 67: 11565–11575.

    Article  CAS  PubMed  Google Scholar 

  • Agrawal G, Chen JH, Baick CH, Chen AE, Mehta RS, Nalcioglu O et al. (2007). Pathological complete response in triple negative poorly differentiated invasive ductal breast carcinoma detected during pregnancy. J Clin Oncol 25: 2618–2620.

    Article  PubMed  Google Scholar 

  • Andre F, Job B, Dessen P, Tordai A, Michiels S, Liedtke C et al. (2009). Molecular characterization of breast cancer with high-resolution oligonucleotide comparative genomic hybridization array. Clin Cancer Res 15: 441–451.

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y . (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc 57: 289–300.

    Google Scholar 

  • Bernard-Pierrot I, Gruel N, Stransky N, Vincent-Salomon A, Reyal F, Raynal V et al. (2008). Characterization of the recurrent 8p11-12 amplicon identifies PPAPDC1B, a phosphatase protein, as a new therapeutic target in breast cancer. Cancer Res 68: 7165–7175.

    Article  CAS  PubMed  Google Scholar 

  • Bertucci F, Finetti P, Cervera N, Esterni B, Hermitte F, Viens P et al. (2008). How basal are triple-negative breast cancers? Int J Cancer 123: 236–240.

    Article  CAS  PubMed  Google Scholar 

  • Byron SA, Gartside MG, Wellens CL, Mallon MA, Keenan JB, Powell MA et al. (2008). Inhibition of activated fibroblast growth factor receptor 2 in endometrial cancer cells induces cell death despite PTEN abrogation. Cancer Res 68: 6902–6907.

    Article  CAS  PubMed  Google Scholar 

  • Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F et al. (2007). The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13: 2329–2334.

    Article  CAS  PubMed  Google Scholar 

  • Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL et al. (2006). Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10: 529–541.

    Article  CAS  PubMed  Google Scholar 

  • Chou TC, Talalay P . (1984). Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22: 27–55.

    Article  CAS  PubMed  Google Scholar 

  • Coe BP, Ylstra B, Carvalho B, Meijer GA, Macaulay C, Lam WL . (2007). Resolving the resolution of array CGH. Genomics 89: 647–653.

    Article  CAS  PubMed  Google Scholar 

  • Dent R, Hanna WM, Trudeau M, Rawlinson E, Sun P, Narod SA . (2009). Pattern of metastatic spread in triple-negative breast cancer. Breast Cancer Res Treat 115: 423–428.

    Article  PubMed  Google Scholar 

  • Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA et al. (2007). Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13: 4429–4434.

    Article  PubMed  Google Scholar 

  • Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG et al. (2007). Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447: 1087–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Closas M, Hall P, Nevanlinna H, Pooley K, Morrison J, Richesson DA et al. (2008). Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genet 4: e1000054.

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G et al. (2007). Patterns of somatic mutation in human cancer genomes. Nature 446: 153–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunnarsson R, Staaf J, Jansson M, Ottesen AM, Goransson H, Liljedahl U et al. (2008). Screening for copy-number alterations and loss of heterozygosity in chronic lymphocytic leukemia--a comparative study of four differently designed, high resolution microarray platforms. Genes Chromosomes Cancer 47: 697–711.

    Article  CAS  PubMed  Google Scholar 

  • Han W, Jung EM, Cho J, Lee JW, Hwang KT, Yang SJ et al. (2008). DNA copy number alterations and expression of relevant genes in triple-negative breast cancer. Genes Chromosomes Cancer 47: 490–499.

    Article  CAS  PubMed  Google Scholar 

  • Hannemann J, Velds A, Halfwerk JB, Kreike B, Peterse JL, van de Vijver MJ . (2006). Classification of ductal carcinoma in situ by gene expression profiling. Breast Cancer Res 8: R61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris LN, Broadwater G, Lin NU, Miron A, Schnitt SJ, Cowan D et al. (2006). Molecular subtypes of breast cancer in relation to paclitaxel response and outcomes in women with metastatic disease: results from CALGB 9342. Breast Cancer Res 8: R66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hicks J, Krasnitz A, Lakshmi B, Navin NE, Riggs M, Leibu E et al. (2006). Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res 16: 1465–1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF et al. (2006). The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7: 96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes TR, Roberts CJ, Dai H, Jones AR, Meyer MR, Slade D et al. (2000). Widespread aneuploidy revealed by DNA microarray expression profiling. Nat Genet 25: 333–337.

    Article  CAS  PubMed  Google Scholar 

  • Jonsson G, Naylor TL, Vallon-Christersson J, Staaf J, Huang J, Ward MR et al. (2005). Distinct genomic profiles in hereditary breast tumors identified by array-based comparative genomic hybridization. Cancer Res 65: 7612–7621.

    Article  PubMed  Google Scholar 

  • Kreike B, van Kouwenhove M, Horlings H, Weigelt B, Peterse H, Bartelink H et al. (2007). Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res 9: R65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambros MB, Simpson PT, Jones C, Natrajan R, Westbury C, Steele D et al. (2006). Unlocking pathology archives for molecular genetic studies: a reliable method to generate probes for chromogenic and fluorescent in situ hybridization. Lab Invest 86: 398–408.

    Article  CAS  PubMed  Google Scholar 

  • Mackay A, Tamber N, Fenwick K, Iravani M, Grigoriadis A, Dexter T et al. (2009). A high-resolution integrated analysis of genetic and expression profiles of breast cancer cell lines. Breast Cancer Res Treat 118: 481–498.

    Article  CAS  PubMed  Google Scholar 

  • Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C et al. (2008). Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 7: 1851–1863.

    Article  CAS  PubMed  Google Scholar 

  • Marchio C, Natrajan R, Shiu KK, Lambros MB, Rodriguez-Pinilla SM, Tan DS et al. (2008). The genomic profile of HER2-amplified breast cancers: the influence of ER status. J Pathol 216: 399–407.

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi M, Froum S, Hamby JM, Schroeder MC, Panek RL, Lu GH et al. (1998). Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J 17: 5896–5904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natrajan R, Lambros MB, Rodriguez-Pinilla SM, Moreno-Bueno G, Tan DS, Marchio C et al. (2009a). Tiling path genomic profiling of grade 3 invasive ductal breast cancers. Clin Cancer Res 15: 2711–2722.

    Article  CAS  PubMed  Google Scholar 

  • Natrajan R, Weigelt B, Mackay A, Geyer FC, Grigoriadis A, Tan DS et al. (2009b). An integrative genomic and transcriptomic analysis reveals molecular pathways and networks regulated by copy number aberrations in basal-like, HER2 and luminal cancers. Breast Cancer Res Treat (e-pub ahead of print 18 August 2009).

  • Ng G, Huang J, Roberts I, Coleman N . (2006). Defining ploidy-specific thresholds in array comparative genomic hybridization to improve the sensitivity of detection of single copy alterations in cell lines. J Mol Diagn 8: 449–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orsetti B, Nugoli M, Cervera N, Lasorsa L, Chuchana P, Ursule L et al. (2004). Genomic and expression profiling of chromosome 17 in breast cancer reveals complex patterns of alterations and novel candidate genes. Cancer Res 64: 6453–6460.

    Article  CAS  PubMed  Google Scholar 

  • Reis-Filho JS, Drury S, Lambros MB, Marchio C, Johnson N, Natrajan R et al. (2008). ESR1 gene amplification in breast cancer: a common phenomenon? Nat Genet 40: 809–810; author reply 810–812.

    Article  CAS  PubMed  Google Scholar 

  • Reis-Filho JS, Simpson PT, Turner NC, Lambros MB, Jones C, Mackay A et al. (2006). FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas. Clin Cancer Res 12: 6652–6662.

    Article  CAS  PubMed  Google Scholar 

  • Reis-Filho JS, Tutt AN . (2008). Triple negative tumours: a critical review. Histopathology 52: 108–118.

    Article  CAS  PubMed  Google Scholar 

  • Schneider BP, Winer EP, Foulkes WD, Garber J, Perou CM, Richardson A et al. (2008). Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res 14: 8010–8018.

    Article  CAS  PubMed  Google Scholar 

  • Tan DS, Lambros MB, Natrajan R, Reis-Filho JS . (2007). Getting it right: designing microarray (and not ‘microawry’) comparative genomic hybridization studies for cancer research. Lab Invest 87: 737–754.

    Article  CAS  PubMed  Google Scholar 

  • Tannheimer SL, Rehemtulla A, Ethier SP . (2000). Characterization of fibroblast growth factor receptor 2 overexpression in the human breast cancer cell line SUM-52PE. Breast Cancer Res 2: 311–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tischkowitz MD, Foulkes WD . (2006). The basal phenotype of BRCA1-related breast cancer: past, present and future. Cell Cycle 5: 963–967.

    Article  CAS  PubMed  Google Scholar 

  • Turner N, Tutt A, Ashworth A . (2004). Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4: 814–819.

    Article  CAS  PubMed  Google Scholar 

  • Turner NC, Lord CJ, Iorns E, Brough R, Swift S, Elliott R et al. (2008). A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J 27: 1368–1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigelt B, Horlings HM, Kreike B, Hayes MM, Hauptmann M, Wessels LF et al. (2008). Refinement of breast cancer classification by molecular characterization of histological special types. J Pathol 216: 141–150.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi N, Oyama T, Ito E, Satoh H, Azuma S, Hayashi M et al. (2008). NOTCH3 signaling pathway plays crucial roles in the proliferation of ErbB2-negative human breast cancer cells. Cancer Res 68: 1881–1888.

    Article  CAS  PubMed  Google Scholar 

  • Yuan B, Xu Y, Woo JH, Wang Y, Bae YK, Yoon DS et al. (2006). Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability. Clin Cancer Res 12: 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Zhao JJ, Liu Z, Wang L, Shin E, Loda MF, Roberts TM . (2005). The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc Natl Acad Sci USA 102: 18443–18448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Cancer Research UK and Breakthrough Breast Cancer. Dr Nicholas Turner is a CRUK clinician scientist. We acknowledge NHS funding to the NIHR Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N Turner or J S Reis-Filho.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, N., Lambros, M., Horlings, H. et al. Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene 29, 2013–2023 (2010). https://doi.org/10.1038/onc.2009.489

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.489

Keywords

This article is cited by

Search

Quick links