Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

EphB6 receptor significantly alters invasiveness and other phenotypic characteristics of human breast carcinoma cells

Abstract

Breast cancer mortality in women is largely attributed to the metastasis of primary breast tumors. We have analysed the function of EphB6, a kinase-deficient receptor, in the invasive phenotype of breast cancer cell lines. We have demonstrated the loss of EphB6 protein in invasive breast carcinoma cell lines and absence of EphB6 transcript in a metastatic breast tumor specimen. The function of EphB6 in invasiveness was confirmed by the ability of EphB6 protein to decrease the in vitro invasiveness of MDA-MB-231, MDA-MB-435 and BT549 cells transfected with an EphB6 expression construct. In MDA-MB-231 cells, the decreased invasiveness appeared to be mediated by decreased transcript levels of matrix metalloproteinase (MMP)7 and MMP19, and increased transcript levels of tissue inhibitors of metalloproteinase 2. In addition to affecting invasiveness phenotype, EphB6 overexpression was also responsible for altering the growth rate and colony-forming efficiency of MCF-7 and MDA-MB-231 cells in a cell-line-specific manner. We suggest that the significant decrease in the invasiveness of MDA-MB-231 and other cell lines transfected with EphB6 is likely occurring by the ability of EphB6 to transduce signals to the nucleus and altering relevant gene expression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adams RH . (2002). Vascular patterning by Eph receptor tyrosine kinases and ephrins. Semin Cell Dev Biol 13: 55–60.

    Article  CAS  Google Scholar 

  • Ahonen M, Poukkula M, Baker AH, Kashiwagi M, Nagase H, Eriksson JE et al. (2003). Tissue inhibitor of metalloproteinases-3 induces apoptosis in melanoma cells by stabilization of death receptors. Oncogene 22: 2121–2134.

    Article  CAS  Google Scholar 

  • Bashyam MD . (2002). Understanding cancer metastasis: an urgent need for using differential gene expression analysis. Cancer 94: 1821–1829.

    Article  CAS  Google Scholar 

  • Bond M, Murphy G, Bennett MR, Newby AC, Baker AH . (2002). Tissue inhibitor of metalloproteinase-3 induces a Fas-associated death domain-dependent type II apoptotic pathway. J Biol Chem 277: 13787–13795.

    Article  CAS  Google Scholar 

  • Bong YS, Lee HS, Carim-Todd L, Mood K, Nishanian TG, Tessarollo L et al. (2007). Ephrin B1 signals from the cell surface to the nucleus by recruitment of STAT3. Proc Natl Acad Sci USA 104: 17305–17310.

    Article  CAS  Google Scholar 

  • Cailleau R, Young R, Olivé M, Reeves Jr WJ . (1974). Breast tumor cell lines from pleural effusions. J Natl Cancer Inst 53: 661–674.

    Article  CAS  Google Scholar 

  • Campbell TN, Robbins SM . (2008). The Eph receptor/ephrin system: an emerging player in the invasion game. Curr Issues Mol Biol 10: 61–66.

    CAS  PubMed  Google Scholar 

  • Chambers AF, Groom AC, MacDonald IC . (2002). Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2: 563–572.

    Article  CAS  Google Scholar 

  • Drescher U . (1997). The Eph family in the patterning of neural development. Curr Biol 7: R799–R807.

    Article  CAS  Google Scholar 

  • Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE . (2004). Ligation of EphA2 by ephrinA1-Fc inhibits pancreatic adenocarcinoma cellular invasiveness. Biochem Biophys Res Commun 320: 1096–1102.

    Article  CAS  Google Scholar 

  • Elowe S, Holland SJ, Kulkarni S, Pawson T . (2001). Downregulation of the Ras-mitogen-activated protein kinase pathway by the EphB2 receptor tyrosine kinase is required for ephrin-induced neurite retraction. Mol Cell Biol 21: 7429–7441.

    Article  CAS  Google Scholar 

  • Fata JE, Leco KJ, Voura EB, Yu HY, Waterhouse P, Murphy G et al. (2001). Accelerated apoptosis in the Timp-3-deficient mammary gland. J Clin Invest 108: 831–841.

    Article  CAS  Google Scholar 

  • Fidler IJ . (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3: 453–458.

    Article  CAS  Google Scholar 

  • Fox BP, Kandpal RP . (2004). Invasiveness of breast carcinoma cells and transcript profile: Eph receptors and ephrin ligands as molecular markers of potential diagnostic and prognostic application. Biochem Biophys Res Commun 318: 882–892.

    Article  CAS  Google Scholar 

  • Freywald A, Sharfe N, Roifman CM . (2002). The kinase-null EphB6 receptor undergoes transphosphorylation in a complex with EphB1. J Biol Chem 277: 3823–3828.

    Article  CAS  Google Scholar 

  • Freywald A, Sharfe N, Rashotte C, Grunberger T, Roifman CM . (2003). The EphB6 receptor inhibits JNK activation in T lymphocytes and modulates T cell receptor-mediated responses. J Biol Chem 278: 10150–10156.

    Article  CAS  Google Scholar 

  • Hafner C, Bataille F, Meyer S, Becker B, Roesch A, Landthaler M et al. (2003). Loss of EphB6 expression in metastatic melanoma. Int J Oncol 23: 1553–1559.

    CAS  PubMed  Google Scholar 

  • Himanen JP, Nikolov DB . (2003). Molecules in focus. Eph receptors and ephrins. Int J Biochem Cell Biol 35: 130–134.

    Article  CAS  Google Scholar 

  • Himanen JP, Chumley MJ, Lackmann M, Li C, Barton WA, Jeffrey PD et al. (2004). Repelling class discrimination: ephrin A5 binds to and activates EphB2 receptor signaling. Nat Neurosci 7: 501–509.

    Article  CAS  Google Scholar 

  • Hojilla CV, Mohammed FF, Khokha R . (2003). Matrix metalloproteinases and their tissue inhibitors direct cell fate during cancer development. Br J Cancer 89: 1817–1821.

    Article  CAS  Google Scholar 

  • Holmberg J, Clarke DL, Frisén J . (2000). Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Nature 408: 203–206.

    Article  CAS  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al. (2008). Cancer statistics, 2008. CA Cancer J Clin 58: 71–96.

    Article  Google Scholar 

  • Kagara N, Tanaka N, Noguchi S, Hirano T . (2007). Zinc and its transporter ZIP10 are involved in invasive behavior of breast cancer cells. Cancer Sci 98: 692–697.

    Article  CAS  Google Scholar 

  • Kullander K, Klein R . (2002). Mechanisms and functions of Eph and ephrin signaling. Nat Rev Mol Cell Biol 3: 475–486.

    Article  CAS  Google Scholar 

  • Lai KO, Chen Y, Po HM, Lok KC, Gong K, Ip NY . (2004). Identification of the Jak/Stat proteins as novel downstream targets of EphA4 signaling in muscle: implications in the regulation of acetylcholinesterase expression. J Biol Chem 279: 13383–13392.

    Article  CAS  Google Scholar 

  • Luo H, Wan X, Wu Y, Wu J . (2001). Cross-linking of EphB6 resulting in signal transduction and apoptosis in Jurkat cells. J Immun 167: 1362–1370.

    Article  CAS  Google Scholar 

  • Madsen MW, Briand P . (1990). Relationship between tumorigenicity, in vitro invasiveness, and plasminogen activator production of human breast cell lines. Eur J Cancer 26: 793–797.

    Article  CAS  Google Scholar 

  • Malemud CJ . (2006). Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci 11: 1696–1701.

    Article  CAS  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S . (2002). The protein kinase complement of the human genome. Science 298: 1912–1934.

    Article  CAS  Google Scholar 

  • Matsuoka H, Iwata N, Ito M, Shimoyama M, Nagata A, Chihara K et al. (1997). Expression of a kinase-defective Eph-like receptor in the normal human brain. Biochem Biophys Res Commun 235: 487–492.

    Article  CAS  Google Scholar 

  • Matsuoka H, Obama H, Kelly ML, Matsui T, Nakamoto M . (2005). Biphasic function of the kinase-defective EphB6 receptor in cell adhesion and migration. J Biol Chem 280: 29355–29363.

    Article  CAS  Google Scholar 

  • Miao H, Wei BR, Peehl DM, Li Q, Alexandrou T, Schelling JR et al. (2001). Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nat Cell Biol 3: 527–530.

    Article  CAS  Google Scholar 

  • Mohammed FF, Smookler DS, Taylor SE, Fingleton B, Kassiri Z, Sanchez OH et al. (2004). Abnormal TNF activity in Timp3-/- mice leads to chronic hepatic inflammation and failure of liver regeneration. Nat Genet 36: 934–935.

    Article  Google Scholar 

  • Müller-Tidow C, Diederichs S, Bulk E, Pohle T, Steffen B, Schwäble J et al. (2005). Identification of metastasis-associated receptor tyrosine kinases in non-small cell lung cancer. Cancer Res 65: 1778–1782.

    Article  Google Scholar 

  • Munthe E, Rian E, Holien T, Rasmussen A, Levy FO, Aasheim H . (2000). Ephrin-B2 is a candidate ligand for the Eph receptor, EphB6. FEBS Lett 466: 169–174.

    Article  CAS  Google Scholar 

  • Nagaraja GM, Kandpal RP . (2004). Chromosome 13q12 encoded Rho GTPase activating protein suppresses growth of breast carcinoma cells, and yeast two-hybrid screen shows its interaction with several proteins. Biochem Biophys Res Commun 313: 654–665.

    Article  CAS  Google Scholar 

  • Nagaraja GM, Othman M, Fox BP, Alsabar R, Pellegrino CM, Zeng Y et al. (2006). Gene expression signatures and biomarkers of noninvasive and invasive breast cancer cells: comprehensive profile by representational difference analysis, microarrays and proteomics. Oncogene 25: 2328–2338.

    Article  CAS  Google Scholar 

  • Nakamoto M . (2000). Molecules in focus. Eph receptors and ephrins. Int J Biochem Cell Biol 32: 7–12.

    Article  CAS  Google Scholar 

  • Noren NK, Foos G, Hauser CA, Pasquale EB . (2006). The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl-Crk pathway. Nat Cell Biol 8: 815–825.

    Article  CAS  Google Scholar 

  • Pasquale EB . (2005). Eph receptor signalling casts a wide net on cell behavior. Nat Rev Mol Cell Biol 6: 462–475.

    Article  CAS  Google Scholar 

  • Pratt RL, Kinch MS . (2003). Ligand binding up-regulates EphA2 messenger RNA through the mitogen-activated protein/extracellular signal-regulated kinase pathway. Mol Cancer Res 1: 1070–1076.

    CAS  PubMed  Google Scholar 

  • Schagdarsurengin U, Pfeifer GP, Dammann R . (2007). Frequent epigenetic inactivation of cystatin M in breast carcinoma. Oncogene 26: 3089–3094.

    Article  CAS  Google Scholar 

  • Soule HD, Vazguez J, Long A, Albert S, Brennan M . (1973). A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst 51: 1409–1416.

    Article  CAS  Google Scholar 

  • Surawska H, Ma PC, Salgia R . (2004). The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev 15: 419–433.

    Article  CAS  Google Scholar 

  • Tanaka M, Sasaki K, Kamata R, Sakai R . (2007). The C-terminus of ephrin-B1 regulates metalloproteinase secretion and invasion of cancer cells. J Cell Sci 120: 2179–2189.

    Article  CAS  Google Scholar 

  • Tang XX, Zhao H, Robinson ME, Cnaan A, London W, Cohn SL et al. (2000). Prognostic significance of EPHB6, EFNB2, and EFNB3 expressions in neuroblastoma. Med Pediatr Oncol 35: 656–658.

    Article  CAS  Google Scholar 

  • Tang XX, Evans AE, Zhao H, Cnaan A, Brodeur GM, Ikegaki N . (2001). Association among EPHB2, TrkA, and MYCN expression in low-stage neuroblastomas. Med Pediatr Oncol 36: 80–82.

    Article  CAS  Google Scholar 

  • Tang XX, Robinson ME, Riceberg JS, Kim DY, Kung B, Titus TB et al. (2004). Favorable neuroblastoma genes and molecular therapeutics of neuroblastoma. Clin Cancer Res 10: 5837–5844.

    Article  CAS  Google Scholar 

  • Thompson EW, Paik S, Brünner N, Sommers CL, Zugmaier G, Clarke R et al. (1992). Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 150: 534–544.

    Article  CAS  Google Scholar 

  • Tong D, Czerwenka K, Sedlak J, Schneeberger C, Schiebel I, Concin N et al. (1999). Association of in vitro invasiveness and gene expression of estrogen receptor, progesterone receptor, pS2 and plasminogen activator inhibitor-1 in human breast cancer cell lines. Breast Cancer Res Treat 56: 91–97.

    Article  CAS  Google Scholar 

  • Xu Q, Wilkinson DG . (1997). Eph-related receptors and their ligands: mediators of contact dependent cell interactions. J Mol Med 75: 576–586.

    Article  CAS  Google Scholar 

  • Yu WH, Yu S, Meng Q, Brew K, Woessner Jr JF . (2000). TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. J Biol Chem 40: 31226–31232.

    Article  Google Scholar 

  • Zou JX, Wang B, Kalo MS, Zisch AH, Pasquale EB, Ruoslahti E . (1999). An Eph receptor regulates integrin activity through R-Ras. Proc Natl Acad Sci USA 96: 13813–13818.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R P Kandpal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, B., Kandpal, R. EphB6 receptor significantly alters invasiveness and other phenotypic characteristics of human breast carcinoma cells. Oncogene 28, 1706–1713 (2009). https://doi.org/10.1038/onc.2009.18

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.18

Keywords

This article is cited by

Search

Quick links