Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

New wirings in the survivin networks

Abstract

A little over 10 years after its discovery in 1997, the small inhibitor of apoptosis (IAP) protein, survivin, continues to generate intense interest and keen attention from disparate segments of basic and disease-related research. Part of this interest reflects the intricate biology of this multifunctional protein that intersects fundamental networks of cellular homeostasis. Part is because of the role of survivin as a cancer gene, which touches nearly every aspect of the disease, from onset to outcome. And part is due to the potential value of survivin for novel cancer diagnostics and therapeutics, which have already reached the clinic, and with some promise. Grappling with emerging new signaling circuits in survivin biology, and their implications in cancer, will further our understanding of this nodal protein, and open fresh opportunities for translational oncology research.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  • Adida C, Crotty PL, McGrath J, Berrebi D, Diebold J, Altieri DC . (1998). Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am J Pathol 152: 43–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF . (2004). Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 14: 43–47.

    CAS  PubMed  Google Scholar 

  • Altieri DC . (2003). Validating survivin as a cancer therapeutic target. Nat Rev Cancer 3: 46–54.

    CAS  PubMed  Google Scholar 

  • Altieri DC . (2006). The case for survivin as a regulator of microtubule dynamics and cell-death decisions. Curr Opin Cell Biol 18: 609–615.

    Article  CAS  PubMed  Google Scholar 

  • Altieri DC . (2008). Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 8: 61–70.

    CAS  PubMed  Google Scholar 

  • Aoki Y, Feldman GM, Tosato G . (2003). Inhibition of STAT3 signaling induces apoptosis and decreases survivin expression in primary effusion lymphoma. Blood 101: 1535–1542.

    CAS  PubMed  Google Scholar 

  • Beverly LJ, Felsher DW, Capobianco AJ . (2005). Suppression of p53 by Notch in lymphomagenesis: implications for initiation and regression. Cancer Res 65: 7159–7168.

    CAS  PubMed  Google Scholar 

  • Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z . (2006). A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 38: 1043–1048.

    CAS  PubMed  Google Scholar 

  • Carvalho A, Carmena M, Sambade C, Earnshaw WC, Wheatley SP . (2003). Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J Cell Sci 116: 2987–2998.

    CAS  PubMed  Google Scholar 

  • Ceballos-Cancino G, Espinosa M, Maldonado V, Melendez-Zajgla J . (2007). Regulation of mitochondrial Smac/DIABLO-selective release by survivin. Oncogene 26: 7569–7575.

    CAS  PubMed  Google Scholar 

  • Chen MS, Woodward WA, Behbod F, Peddibhotla S, Alfaro MP, Buchholz TA et al. (2007). Wnt/beta-catenin mediates radiation resistance of Sca1+ progenitors in an immortalized mammary gland cell line. J Cell Sci 120: 468–477.

    CAS  PubMed  Google Scholar 

  • Connell CM, Colnaghi R, Wheatley SP . (2008). Nuclear survivin has reduced stability and is not cytoprotective. J Biol Chem 283: 3289–3296.

    CAS  PubMed  Google Scholar 

  • Dean M, Fojo T, Bates S . (2005). Tumour stem cells and drug resistance. Nat Rev Cancer 5: 275–284.

    CAS  PubMed  Google Scholar 

  • Delacour-Larose M, Thi MN, Dimitrov S, Molla A . (2007). Role of survivin phosphorylation by aurora B in mitosis. Cell Cycle 6: 1878–1885.

    CAS  PubMed  Google Scholar 

  • Dick JE . (2003). Breast cancer stem cells revealed. Proc Natl Acad Sci USA 100: 3547–3549.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dohi T, Beltrami E, Wall NR, Plescia J, Altieri DC . (2004a). Mitochondrial survivin inhibits apoptosis and promotes tumorigenesis. J Clin Invest 114: 1117–1127.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dohi T, Okada K, Xia F, Wilford CE, Samuel T, Welsh K et al. (2004b). An IAP–IAP complex inhibits apoptosis. J Biol Chem 279: 34087–34090.

    CAS  PubMed  Google Scholar 

  • Dohi T, Xia F, Altieri DC . (2007). Compartmentalized phosphorylation of IAP by protein kinase A regulates cytoprotection. Mol Cell 27: 17–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duhl DM, Renhowe PA . (2005). Inhibitors of kinesin motor proteins—research and clinical progress. Curr Opin Drug Discov Devel 8: 431–436.

    CAS  PubMed  Google Scholar 

  • Eckelman BP, Salvesen GS, Scott FL . (2006). Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7: 988–994.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engelsma D, Rodriguez JA, Fish A, Giaccone G, Fornerod M . (2007). Homodimerization antagonizes nuclear export of survivin. Traffic 8: 1495–1502.

    CAS  PubMed  Google Scholar 

  • Farnie G, Clarke RB, Spence K, Pinnock N, Brennan K, Anderson NG et al. (2007). Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst 99: 616–627.

    CAS  PubMed  Google Scholar 

  • Fesik SW . (2005). Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5: 876–885.

    CAS  PubMed  Google Scholar 

  • Fodde R, Brabletz T . (2007). Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 19: 150–158.

    CAS  PubMed  Google Scholar 

  • Fortugno P, Beltrami E, Plescia J, Fontana J, Pradhan D, Marchisio PC et al. (2003). Regulation of survivin function by Hsp90. Proc Natl Acad Sci USA 100: 13791–13796.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fortugno P, Wall NR, Giodini A, O'Connor DS, Plescia J, Padgett KM et al. (2002). Survivin exists in immunochemically distinct subcellular pools and is involved in spindle microtubule function. J Cell Sci 115: 575–585.

    CAS  PubMed  Google Scholar 

  • Fukuda S, Pelus LM . (2002). Elevation of survivin levels by hematopoietic growth factors occurs in quiescent CD34(+) hematopoietic stem and progenitor cells before cell cycle entry. Cell Cycle 1: 322–326.

    CAS  PubMed  Google Scholar 

  • Fukuda S, Pelus LM . (2006). Survivin, a cancer target with an emerging role in normal adult tissues. Mol Cancer Ther 5: 1087–1098.

    CAS  PubMed  Google Scholar 

  • Ghosh JC, Dohi T, Kang BH, Altieri DC . (2008). Hsp60 regulation of tumor cell apoptosis. J Biol Chem 283: 5188–5194.

    CAS  PubMed  Google Scholar 

  • Giet R, Petretti C, Prigent C . (2005). Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends Cell Biol 15: 241–250.

    CAS  PubMed  Google Scholar 

  • Green DR, Kroemer G . (2004). The pathophysiology of mitochondrial cell death. Science 305: 626–629.

    CAS  PubMed  Google Scholar 

  • Gu L, Chiang KY, Zhu N, Findley HW, Zhou M . (2007). Contribution of STAT3 to the activation of survivin by GM-CSF in CD34+ cell lines. Exp Hematol 35: 957–966.

    CAS  PubMed  Google Scholar 

  • Guo Y, Mantel C, Hromas RA, Broxmeyer HE . (2008). Oct-4 is critical for survival/antiapoptosis of murine embryonic stem cells subjected to stress: effects associated with Stat3/survivin. Stem Cells 26: 30–34.

    CAS  PubMed  Google Scholar 

  • Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T et al. (2004). VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 10: 262–267.

    CAS  PubMed  Google Scholar 

  • Hetzer M, Gruss OJ, Mattaj IW . (2002). The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nat Cell Biol 4: E177–E184.

    CAS  PubMed  Google Scholar 

  • Hopfer O, Komor M, Koehler IS, Schulze M, Hoelzer D, Thiel E et al. (2007). DNA methylation profiling of myelodysplastic syndrome hematopoietic progenitor cells during in vitro lineage-specific differentiation. Exp Hematol 35: 712–723.

    CAS  PubMed  Google Scholar 

  • Jeyaprakash AA, Klein UR, Lindner D, Ebert J, Nigg EA, Conti E . (2007). Structure of a Survivin–Borealin–INCENP core complex reveals how chromosomal passengers travel together. Cell 131: 271–285.

    CAS  PubMed  Google Scholar 

  • Jiang Y, de Bruin A, Caldas H, Fangusaro J, Hayes J, Conway EM et al. (2005). Essential role for survivin in early brain development. J Neurosci 25: 6962–6970.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones G, Jones D, Zhou L, Steller H, Chu Y . (2000). Deterin, a new inhibitor of apoptosis from Drosophila melanogaster. J Biol Chem 275: 22157–22165.

    CAS  PubMed  Google Scholar 

  • Jonkers J, Berns A . (2004). Oncogene addiction; sometimes a temporary slavery. Cancer Cell 6: 535–538.

    CAS  PubMed  Google Scholar 

  • Joukov V, Groen AC, Prokhorova T, Gerson R, White E, Rodriguez A et al. (2006). The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell 127: 539–552.

    CAS  PubMed  Google Scholar 

  • Kang BH, Altieri DC . (2006). Regulation of survivin stability by the aryl hydrocarbon receptor-interacting protein. J Biol Chem 281: 24721–24727.

    CAS  PubMed  Google Scholar 

  • Kang BH, Plescia J, Dohi T, Rosa J, Doxsey SJ, Altieri DC . (2007). Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 131: 257–270.

    CAS  PubMed  Google Scholar 

  • Keith B, Simon MC . (2007). Hypoxia-inducible factors, stem cells, and cancer. Cell 129: 465–472.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A . (2007). Tumor growth need not be driven by rare cancer stem cells. Science 317: 337.

    CAS  PubMed  Google Scholar 

  • Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S et al. (2005). Identification of bronchoalveolar stem cells in normal lung and lung cancer. Cell 121: 823–835.

    CAS  PubMed  Google Scholar 

  • Kim PJ, Plescia J, Clevers H, Fearon ER, Altieri DC . (2003). Survivin and molecular pathogenesis of colorectal cancer. Lancet 362: 205–209.

    CAS  PubMed  Google Scholar 

  • Klein UR, Nigg EA, Gruneberg U . (2006). Centromere targeting of the chromosomal passenger complex requires a ternary subcomplex of Borealin, Survivin, and the N-terminal domain of INCENP. Mol Biol Cell 17: 2547–2558.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knauer SK, Bier C, Habtemichael N, Stauber RH . (2006). The Survivin–Crm1 interaction is essential for chromosomal passenger complex localization and function. EMBO Rep 7: 1259–1265.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knauer SK, Kramer OH, Knosel T, Engels K, Rodel F, Kovacs AF et al. (2007). Nuclear export is essential for the tumor-promoting activity of survivin. FASEB J 21: 207–216.

    CAS  PubMed  Google Scholar 

  • Koffa MD, Casanova CM, Santarella R, Kocher T, Wilm M, Mattaj IW . (2006). HURP is part of a Ran-dependent complex involved in spindle formation. Curr Biol 16: 743–754.

    CAS  PubMed  Google Scholar 

  • Kotwaliwale C, Biggins S . (2006). Microtubule capture: a concerted effort. Cell 127: 1105–1108.

    CAS  PubMed  Google Scholar 

  • Krause DS, Van Etten RA . (2007). Right on target: eradicating leukemic stem cells. Trends Mol Med 13: 470–481.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb J . (2007). The Connectivity map: a new tool for biomedical research. Nat Rev Cancer 7: 54–60.

    CAS  PubMed  Google Scholar 

  • Landis MW, Pawlyk BS, Li T, Sicinski P, Hinds PW . (2006). Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell 9: 13–22.

    CAS  PubMed  Google Scholar 

  • Lee CW, Raskett CM, Prudovsky I, Altieri DC . (2008). Molecular dependence of estrogen receptor-negative breast cancer on a Notch–survivin signaling axis. Cancer Res 68: 5273–5281.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lens SM, Vader G, Medema RH . (2006). The case for Survivin as mitotic regulator. Curr Opin Cell Biol 18: 616–622.

    CAS  PubMed  Google Scholar 

  • Leung CG, Xu Y, Mularski B, Liu H, Gurbuxani S, Crispino JD . (2007). Requirements for survivin in terminal differentiation of erythroid cells and maintenance of hematopoietic stem and progenitor cells. J Exp Med 204: 1603–1611.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Brattain MG . (2006). Role of the Survivin gene in pathophysiology. Am J Pathol 169: 1–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Dontu G, Wicha MS . (2005). Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res 7: 86–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WH, Hsiao HW, Tsou WI, Lai MZ . (2007). Notch inhibits apoptosis by direct interference with XIAP ubiquitination and degradation. EMBO J 26: 1660–1669.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Lei M, Erikson RL . (2006). Normal cells, but not cancer cells, survive severe Plk1 depletion. Mol Cell Biol 26: 2093–2108.

    PubMed  PubMed Central  Google Scholar 

  • Marconi A, Dallaglio K, Lotti R, Vaschieri C, Truzzi F, Fantini F et al. (2007). Survivin identifies keratinocyte stem cells and it is down-regulated by anti- {beta}1 integrin during anoikis. Stem Cells 25: 149–155.

    CAS  PubMed  Google Scholar 

  • Morgan-Lappe SE, Tucker LA, Huang X, Zhang Q, Sarthy AV, Zakula D et al. (2007). Identification of Ras-related nuclear protein, targeting protein for Xenopus kinesin-like protein 2, and stearoyl-CoA desaturase 1 as promising cancer targets from an RNAi-based screen. Cancer Res 67: 4390–4398.

    CAS  PubMed  Google Scholar 

  • Nakahara T, Takeuchi M, Kinoyama I, Minematsu T, Shirasuna K, Matsuhisa A et al. (2007). YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts. Cancer Res 67: 8014–8021.

    CAS  PubMed  Google Scholar 

  • Nam S, Buettner R, Turkson J, Kim D, Cheng JQ, Muehlbeyer S et al. (2005). Indirubin derivatives inhibit Stat3 signaling and induce apoptosis in human cancer cells. Proc Natl Acad Sci USA 102: 5998–6003.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O'Connor DS, Wall NR, Porter AC, Altieri DC . (2002). A p34(cdc2) survival checkpoint in cancer. Cancer Cell 2: 43–54.

    CAS  PubMed  Google Scholar 

  • Oh SH, Jin Q, Kim ES, Khuri FR, Lee HY . (2008). Insulin-like growth factor-I receptor signaling pathway induces resistance to the apoptotic activities of SCH66336 (lonafarnib) through Akt/mammalian target of rapamycin-mediated increases in survivin expression. Clin Cancer Res 14: 1581–1589.

    CAS  PubMed  Google Scholar 

  • Okada H, Bakal C, Shahinian A, Elia A, Wakeham A, Suh WK et al. (2004). Survivin loss in thymocytes triggers p53-mediated growth arrest and p53-independent cell death. J Exp Med 199: 399–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M et al. (2004). A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351: 2817–2826.

    CAS  PubMed  Google Scholar 

  • Pennartz S, Belvindrah R, Tomiuk S, Zimmer C, Hofmann K, Conradt M et al. (2004). Purification of neuronal precursors from the adult mouse brain: comprehensive gene expression analysis provides new insights into the control of cell migration, differentiation, and homeostasis. Mol Cell Neurosci 25: 692–706.

    CAS  PubMed  Google Scholar 

  • Pohl C, Jentsch S . (2008). Final stages of cytokinesis and midbody ring formation are controlled by BRUCE. Cell 132: 832–845.

    CAS  PubMed  Google Scholar 

  • Quimby BB, Dasso M . (2003). The small GTPase Ran: interpreting the signs. Curr Opin Cell Biol 15: 338–344.

    CAS  PubMed  Google Scholar 

  • Radtke F, Clevers H . (2005). Self-renewal and cancer of the gut: two sides of a coin. Science 307: 1904–1909.

    CAS  PubMed  Google Scholar 

  • Rajalingam K, Sharma M, Paland N, Hurwitz R, Thieck O, Oswald M et al. (2006). IAP–IAP complexes required for apoptosis resistance of C. trachomatis-infected cells. PLoS Pathog 2: e114.

    PubMed  PubMed Central  Google Scholar 

  • Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR et al. (2005). High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65: 8530–8537.

    CAS  PubMed  Google Scholar 

  • Ren J, Shi M, Liu R, Yang QH, Johnson T, Skarnes WC et al. (2005). The Birc6 (Bruce) gene regulates p53 and the mitochondrial pathway of apoptosis and is essential for mouse embryonic development. Proc Natl Acad Sci USA 102: 565–570.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423: 409–414.

    CAS  PubMed  Google Scholar 

  • Ronchini C, Capobianco AJ . (2001). Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol 21: 5925–5934.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salvesen GS, Duckett CS . (2002). Apoptosis: IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 3: 401–410.

    CAS  PubMed  Google Scholar 

  • Sampath J, Pelus LM . (2007). Alternative splice variants of survivin as potential targets in cancer. Curr Drug Discov Technol 4: 174–191.

    CAS  PubMed  Google Scholar 

  • Sampath SC, Ohi R, Leismann O, Salic A, Pozniakovski A, Funabiki H . (2004). The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell 118: 187–202.

    CAS  PubMed  Google Scholar 

  • Sandall S, Severin F, McLeod IX, Yates III JR, Oegema K, Hyman A et al. (2006). A Bir1–Sli15 complex connects centromeres to microtubules and is required to sense kinetochore tension. Cell 127: 1179–1191.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SV, Bell DW, Settleman J, Haber DA . (2007). Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7: 169–181.

    CAS  PubMed  Google Scholar 

  • Sharma VM, Calvo JA, Draheim KM, Cunningham LA, Hermance N, Beverly L et al. (2006). Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc. Mol Cell Biol 26: 8022–8031.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiquee K, Zhang S, Guida WC, Blaskovich MA, Greedy B, Lawrence HR et al. (2007). Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci USA 104: 7391–7396.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skokowa J, Welte K . (2007). LEF-1 is a decisive transcription factor in neutrophil granulopoiesis. Ann NY Acad Sci 1106: 143–151.

    CAS  PubMed  Google Scholar 

  • Song Z, Yao X, Wu M . (2003). Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxol-induced apoptosis. J Biol Chem 278: 23130–23140.

    CAS  PubMed  Google Scholar 

  • Speliotes EK, Uren A, Vaux D, Horvitz HR . (2000). The survivin-like C. elegans BIR-1 protein acts with the Aurora-like kinase AIR-2 to affect chromosomes and the spindle midzone. Mol Cell 6: 211–223.

    CAS  PubMed  Google Scholar 

  • Srinivasula SM, Ashwell JD . (2008). IAPs: what's in a name? Mol Cell 30: 123–135.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stauber RH, Mann W, Knauer SK . (2007). Nuclear and cytoplasmic survivin: molecular mechanism, prognostic, and therapeutic potential. Cancer Res 67: 5999–6002.

    CAS  PubMed  Google Scholar 

  • Stylianou S, Clarke RB, Brennan K . (2006). Aberrant activation of notch signaling in human breast cancer. Cancer Res 66: 1517–1525.

    CAS  PubMed  Google Scholar 

  • Sun C, Nettesheim D, Liu Z, Olejniczak ET . (2005). Solution structure of human survivin and its binding interface with Smac/Diablo. Biochemistry 44: 11–17.

    CAS  PubMed  Google Scholar 

  • Taubert H, Wurl P, Greither T, Kappler M, Bache M, Bartel F et al. (2007). Stem cell-associated genes are extremely poor prognostic factors for soft-tissue sarcoma patients. Oncogene 26: 7170–7174.

    CAS  PubMed  Google Scholar 

  • Tolcher AW, Antonia S, Lewis LD, Mita A, Mahany J, Reddy NJ et al. (2006). ASCO Annual Meeting, 3014.

  • Tulu US, Fagerstrom C, Ferenz NP, Wadsworth P . (2006). Molecular requirements for kinetochore-associated microtubule formation in mammalian cells. Curr Biol 16: 536–541.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uren AG, Wong L, Pakusch M, Fowler KJ, Burrows FJ, Vaux DL et al. (2000). Survivin and the inner centromere protein INCENP show similar cell- cycle localization and gene knockout phenotype. Curr Biol 10: 1319–1328.

    CAS  PubMed  Google Scholar 

  • Vader G, Kauw JJ, Medema RH, Lens SM . (2006). Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody. EMBO Rep 7: 85–92.

    CAS  PubMed  Google Scholar 

  • Vaira V, Lee CW, Goel HL, Bosari S, Languino LR, Altieri DC . (2007). Regulation of survivin expression by IGF-1/mTOR signaling. Oncogene 26: 2678–2684.

    CAS  PubMed  Google Scholar 

  • van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536.

    PubMed  Google Scholar 

  • van der Greef J, McBurney RN . (2005). Innovation: rescuing drug discovery: in vivo systems pathology and systems pharmacology. Nat Rev Drug Discov 4: 961–967.

    CAS  PubMed  Google Scholar 

  • van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H et al. (2005). Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435: 959–963.

    CAS  PubMed  Google Scholar 

  • Verdecia MA, Huang H, Dutil E, Kaiser DA, Hunter T, Noel JP . (2000). Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nat Struct Biol 7: 602–608.

    CAS  PubMed  Google Scholar 

  • Vong QP, Cao K, Li HY, Iglesias PA, Zheng Y . (2005). Chromosome alignment and segregation regulated by ubiquitination of survivin. Science 310: 1499–1504.

    CAS  PubMed  Google Scholar 

  • Walter D, Wissing S, Madeo F, Fahrenkrog B . (2006). The inhibitor-of-apoptosis protein Bir1p protects against apoptosis in S. cerevisiae and is a substrate for the yeast homologue of Omi/HtrA2. J Cell Sci 119: 1843–1851.

    CAS  PubMed  Google Scholar 

  • Weinstein IB, Joe AK . (2006). Mechanisms of disease: oncogene addiction—a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 3: 448–457.

    CAS  PubMed  Google Scholar 

  • Weng AP, Ferrando AA, Lee W, Morris IV JP, Silverman LB, Sanchez-Irizarry C et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306: 269–271.

    CAS  PubMed  Google Scholar 

  • Wheatley SP, Barrett RM, Andrews PD, Medema RH, Morley SJ, Swedlow JR et al. (2007). Phosphorylation by aurora-B negatively regulates survivin function during mitosis. Cell Cycle 6: 1220–1230.

    CAS  PubMed  Google Scholar 

  • Wheatley SP, Henzing AJ, Dodson H, Khaled W, Earnshaw WC . (2004). Aurora-B phosphorylation in vitro identifies a residue of survivin that is essential for its localization and binding to inner centromere protein (INCENP) in vivo. J Biol Chem 279: 5655–5660.

    CAS  PubMed  Google Scholar 

  • Whitesell L, Lindquist SL . (2005). HSP90 and the chaperoning of cancer. Nat Rev Cancer 5: 761–772.

    CAS  PubMed  Google Scholar 

  • Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM . (2007). WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA 104: 618–623.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia F, Altieri DC . (2006). Mitosis-independent survivin gene expression in vivo and regulation by p53. Cancer Res 66: 3392–3395.

    CAS  PubMed  Google Scholar 

  • Xia F, Lee CW, Altieri DC . (2008). Tumor cell dependence on Ran-GTP-directed mitosis. Cancer Res 68: 1826–1833.

    CAS  PubMed  Google Scholar 

  • Xing Z, Conway EM, Kang C, Winoto A . (2004). Essential role of survivin, an inhibitor of apoptosis protein, in T cell development, maturation, and homeostasis. J Exp Med 199: 69–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yano M, Terada K, Mori M . (2003). AIP is a mitochondrial import mediator that binds to both import receptor Tom20 and preproteins. J Cell Biol 163: 45–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  • You L, He B, Xu Z, Uematsu K, Mazieres J, Fujii N et al. (2004). An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res 64: 5385–5389.

    CAS  PubMed  Google Scholar 

  • Young JC, Hoogenraad NJ, Hartl FU . (2003). Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112: 41–50.

    CAS  PubMed  Google Scholar 

  • Zhang T, Otevrel T, Gao Z, Ehrlich SM, Fields JZ, Boman BM . (2001). Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res 61: 8664–8667.

    CAS  PubMed  Google Scholar 

  • Zhao J, Tenev T, Martins LM, Downward J, Lemoine NR . (2000). The ubiquitin–proteasome pathway regulates survivin degradation in a cell cycle-dependent manner. J Cell Sci 113 (Part 23): 4363–4371.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I apologize to all the colleagues whose work could not be cited for reasons of space. This work was supported by NIH Grants CA78810, CA90917 and HL54131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D C Altieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altieri, D. New wirings in the survivin networks. Oncogene 27, 6276–6284 (2008). https://doi.org/10.1038/onc.2008.303

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.303

Keywords

This article is cited by

Search

Quick links