Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms of proteasome assembly

Key Points

  • The 26S proteasome is a eukaryotic large protein complex that is essential for regulated protein degradation in collaboration with the ubiquitin system. It consists of the catalytic 20S proteasome and the 19S regulatory particle, but how this large complex is assembled has been a mystery.

  • Recent studies have unveiled several proteasome-dedicated chaperones that are involved in efficient and correct assembly of the eukaryotic proteasome.

  • The mammalian proteasome assembling chaperone 1 (PAC1)–PAC2 heterodimer is suggested to be involved in the formation of α-rings, the earliest assembly intermediates to be observed during 20S proteasome biogenesis. At the same time, it prevents aberrant dimerization of α-rings.

  • The yeast proteasome biogenesis-associated 3 (Pba3)–Pba4 heterodimer (and presumably the mammalian PAC3–PAC4 complex) is also involved in α-ring formation by catalysing correct subunit orientation of the α-ring.

  • Yeast ubquitin-mediated proteolysis 1 (Ump1) and its human orthologue UMP1 have an important role in the dimerization of half-proteasomes. UMP1 is also shown to be required for β-ring formation on the α-ring in cooperation with the propeptides and carboxy-terminal extensions of β-subunits.

  • Compared with the 20S proteasome, the assembly of the 19S RP is largely unknown, but several molecules that affect the integrity of the 19S RP have been reported.

Abstract

The 26S proteasome is a highly conserved protein degradation machine that consists of the 20S proteasome and 19S regulatory particles, which include 14 and 19 different polypeptides, respectively. How the proteasome components are assembled is a fundamental question towards understanding the process of protein degradation and its functions in diverse biological processes. Several proteasome-dedicated chaperones are involved in the efficient and correct assembly of the 20S proteasome. These chaperones help the initiation and progression of the assembly process by transiently associating with proteasome precursors. By contrast, little is known about the assembly of the 19S regulatory particles, but several hints have emerged.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the 26S proteasome.
Figure 2: Molecular structures of eukaryotic 20S proteasomes.
Figure 3: Model for proteasome assembly.
Figure 4: Structural basis of Pba3–Pba4 and PAC3.

Similar content being viewed by others

References

  1. Coux, O., Tanaka, K. & Goldberg, A. L. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65, 801–847 (1996).

    CAS  PubMed  Google Scholar 

  2. Baumeister, W., Walz, J., Zuhl, F. & Seemuller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380 (1998).

    CAS  PubMed  Google Scholar 

  3. Schmidt, M., Hanna, J., Elsasser, S. & Finley, D. Proteasome-associated proteins: regulation of a proteolytic machine. Biol. Chem. 386, 725–737 (2005).

    CAS  PubMed  Google Scholar 

  4. Arendt, C. S. & Hochstrasser, M. Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc. Natl Acad. Sci. USA 94, 7156–7161 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Heinemeyer, W., Ramos, P. C. & Dohmen, R. J. The ultimate nanoscale mincer: assembly, structure and active sites of the 20S proteasome core. Cell. Mol. Life Sci. 61, 1562–1578 (2004).

    CAS  PubMed  Google Scholar 

  6. Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–471 (1997).

    CAS  PubMed  Google Scholar 

  7. Unno, M. et al. The structure of the mammalian 20S proteasome at 2.75 Å resolution. Structure 10, 609–618 (2002).

    CAS  PubMed  Google Scholar 

  8. Glickman, M. H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615–623 (1998).

    CAS  PubMed  Google Scholar 

  9. Glickman, M. H. & Ciechanover, A. The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373–428 (2002).

    CAS  PubMed  Google Scholar 

  10. Finley, D. et al. Unified nomenclature for subunits of the Saccharomyces cerevisiae proteasome regulatory particle. Trends Biochem. Sci. 23, 244–245 (1998).

    CAS  PubMed  Google Scholar 

  11. Yao, T. et al. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nature Cell Biol. 8, 994–1002 (2006).

    CAS  PubMed  Google Scholar 

  12. Jorgensen, J. P. et al. Adrm1, a putative cell adhesion regulating protein, is a novel proteasome-associated factor. J. Mol. Biol. 360, 1043–1052 (2006).

    CAS  PubMed  Google Scholar 

  13. Hamazaki, J. et al. A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J. 25, 4524–4536 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Qiu, X. B. et al. hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J. 25, 5742–5753 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Elsasser, S. et al. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nature Cell Biol. 4, 725–730 (2002).

    CAS  PubMed  Google Scholar 

  16. Saeki, Y., Sone, T., Toh-e, A. & Yokosawa, H. Identification of ubiquitin-like protein-binding subunits of the 26S proteasome. Biochem. Biophys. Res. Commun. 296, 813–819 (2002).

    CAS  PubMed  Google Scholar 

  17. Schreiner, P. et al. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 453, 548–552 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Husnjak, K. et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453, 481–488 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Deveraux, Q., Jensen, C. & Rechsteiner, M. Molecular cloning and expression of a 26 S protease subunit enriched in dileucine repeats. J. Biol. Chem. 270, 23726–23729 (1995).

    CAS  PubMed  Google Scholar 

  20. Lam, Y. A., Lawson, T. G., Velayutham, M., Zweier, J. L. & Pickart, C. M. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416, 763–767 (2002).

    CAS  PubMed  Google Scholar 

  21. Funakoshi, M., Li, X., Velichutina, I., Hochstrasser, M. & Kobayashi, H. Sem1, the yeast ortholog of a human BRCA2-binding protein, is a component of the proteasome regulatory particle that enhances proteasome stability. J. Cell Sci. 117, 6447–6454 (2004).

    CAS  PubMed  Google Scholar 

  22. Sone, T., Saeki, Y., Toh-e, A. & Yokosawa, H. Sem1p is a novel subunit of the 26 S proteasome from Saccharomyces cerevisiae. J. Biol. Chem. 279, 28807–28816 (2004).

    CAS  PubMed  Google Scholar 

  23. Verma, R. et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611–615 (2002).

    CAS  PubMed  Google Scholar 

  24. Yao, T. & Cohen, R. E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403–407 (2002).

    CAS  PubMed  Google Scholar 

  25. Cope, G. A. et al. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298, 608–611 (2002).

    CAS  PubMed  Google Scholar 

  26. Ramos, P. C. & Dohmen, R. J. PACemakers of proteasome core particle assembly. Structure 16, 1296–1304 (2008).

    CAS  PubMed  Google Scholar 

  27. Kusmierczyk, A. R. & Hochstrasser, M. Some assembly required: dedicated chaperones in eukaryotic proteasome biogenesis. Biol. Chem. 389, 1143–1151 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rosenzweig, R. & Glickman, M. H. Chaperone-driven proteasome assembly. Biochem. Soc. Trans. 36, 807–812 (2008).

    CAS  PubMed  Google Scholar 

  29. Ellis, R. J. Molecular chaperones: assisting assembly in addition to folding. Trends Biochem. Sci. 31, 395–401 (2006).

    CAS  PubMed  Google Scholar 

  30. Williamson, J. R. Cooperativity in macromolecular assembly. Nature Chem. Biol. 4, 458–465 (2008).

    CAS  Google Scholar 

  31. Volker, C. & Lupas, A. N. Molecular evolution of proteasomes. Curr. Top. Microbiol Immunol. 268, 1–22 (2002).

    CAS  PubMed  Google Scholar 

  32. Zwickl, P. et al. Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry 31, 964–972 (1992).

    CAS  PubMed  Google Scholar 

  33. Lowe, J. et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268, 533–539 (1995).

    CAS  PubMed  Google Scholar 

  34. Zwickl, P., Ng, D., Woo, K. M., Klenk, H. P. & Goldberg, A. L. An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J. Biol. Chem. 274, 26008–26014 (1999).

    CAS  PubMed  Google Scholar 

  35. Yoo, S. J. et al. Purification and characterization of the heat shock proteins HslV and HslU that form a new ATP-dependent protease in Escherichia coli. J. Biol. Chem. 271, 14035–14040 (1996).

    CAS  PubMed  Google Scholar 

  36. Rohrwild, M. et al. HslV–HslU: a novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome. Proc. Natl Acad. Sci. USA 93, 5808–5813 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tamura, T. et al. The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus. Curr. Biol. 5, 766–774 (1995).

    CAS  PubMed  Google Scholar 

  38. Zuhl, F., Seemuller, E., Golbik, R. & Baumeister, W. Dissecting the assembly pathway of the 20S proteasome. FEBS Lett. 418, 189–194 (1997).

    CAS  PubMed  Google Scholar 

  39. Kwon, Y. D., Nagy, I., Adams, P. D., Baumeister, W. & Jap, B. K. Crystal structures of the Rhodococcus proteasome with and without its pro-peptides: implications for the role of the pro-peptide in proteasome assembly. J. Mol. Biol. 335, 233–245 (2004).

    CAS  PubMed  Google Scholar 

  40. Yao, Y. et al. α5 subunit in Trypanosoma brucei proteasome can self-assemble to form a cylinder of four stacked heptamer rings. Biochem. J. 344, 349–358 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gerards, W. L. et al. The human α-type proteasomal subunit HsC8 forms a double ringlike structure, but does not assemble into proteasome-like particles with the β-type subunits HsDelta or HsBPROS26. J. Biol. Chem. 272, 10080–10086 (1997).

    CAS  PubMed  Google Scholar 

  42. Hirano, Y. et al. A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 437, 1381–1385 (2005). Discovery of the PAC1–PAC2 heterodimer as a proteasome assembly-dedicated chaperone.

    CAS  PubMed  Google Scholar 

  43. Hirano, Y. et al. Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes. Mol. Cell 24, 977–984 (2006). Discovery of PAC3 as a proteasome-assembly-dedicated chaperone.

    CAS  PubMed  Google Scholar 

  44. Le Tallec, B. et al. 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol. Cell 27, 660–674 (2007). References 44–46 and 49 show that Pba3–Pba4 helps to assemble the yeast 20S proteasome. In reference 44, PAC4 was identified by a homology search of Pba4.

    CAS  PubMed  Google Scholar 

  45. Kusmierczyk, A. R., Kunjappu, M. J., Funakoshi, M. & Hochstrasser, M. A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nature Struct. Biol. 15, 237–244 (2008).

    CAS  Google Scholar 

  46. Yashiroda, H. et al. Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nature Struct. Biol. 15, 228–236 (2008). Shows the crystal structure of Pba3–Pba4–α5.

    CAS  Google Scholar 

  47. Scott, C. M. et al. ADD66, a gene involved in the endoplasmic reticulum-associated degradation of α-1-antitrypsin-Z in yeast, facilitates proteasome activity and assembly. Mol. Biol. Cell 18, 3776–3787 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, X., Kusmierczyk, A. R., Wong, P., Emili, A. & Hochstrasser, M. β-subunit appendages promote 20S proteasome assembly by overcoming an Ump1-dependent checkpoint. EMBO J. 26, 2339–2349 (2007). References 48 and 55 provide evidence that β7 incorporation is a late limiting step in dimerization of precursor complexes. Reference 55 also shows that Blm10 and the 19S RP have a redundant function in the 20S proteasome maturation.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hoyt, M. A. et al. A genetic screen for Saccharomyces cerevisiae mutants affecting proteasome function, using a ubiquitin-independent substrate. Yeast 25, 199–217 (2008).

    CAS  PubMed  Google Scholar 

  50. Yang, Y., Fruh, K., Ahn, K. & Peterson, P. A. In vivo assembly of the proteasomal complexes, implications for antigen processing. J. Biol. Chem. 270, 27687–27694 (1995).

    CAS  PubMed  Google Scholar 

  51. Palmer, E. A. et al. Differential requirements of novel A1PiZ degradation deficient (ADD) genes in ER-associated protein degradation. J. Cell Sci. 116, 2361–2373 (2003).

    CAS  PubMed  Google Scholar 

  52. Ramos, P. C., Hockendorff, J., Johnson, E. S., Varshavsky, A. & Dohmen, R. J. Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 92, 489–499 (1998). The identification of the first proteasome-dedicated chaperone for the efficient assembly and maturation of the 20S proteasome.

    CAS  PubMed  Google Scholar 

  53. Frentzel, S., Pesold-Hurt, B., Seelig, A. & Kloetzel, P. M. 20 S proteasomes are assembled via distinct precursor complexes. Processing of LMP2 and LMP7 proproteins takes place in 13–16 S preproteasome complexes. J. Mol. Biol. 236, 975–981 (1994).

    CAS  PubMed  Google Scholar 

  54. Nandi, D., Woodward, E., Ginsburg, D. B. & Monaco, J. J. Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor β subunits. EMBO J. 16, 5363–5375 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Marques, A. J., Glanemann, C., Ramos, P. C. & Dohmen, R. J. The C-terminal extension of the β 7 subunit and activator complexes stabilize nascent 20s proteasomes and promote their maturation. J. Biol. Chem. 282, 34869–34876 (2007).

    CAS  PubMed  Google Scholar 

  56. Hirano, Y. et al. Dissecting β-ring assembly pathway of the mammalian 20S proteasome. EMBO J. 27, 2204–2213 (2008). Shows the order of association of β subunits and UMP1 on α-ring.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Whitby, F. G. et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408, 115–120 (2000).

    CAS  PubMed  Google Scholar 

  58. Strehl, B. et al. Interferon-γ, the functional plasticity of the ubiquitin–proteasome system, and MHC class I antigen processing. Immunol. Rev. 207, 19–30 (2005).

    CAS  PubMed  Google Scholar 

  59. Burri, L. et al. Identification and characterization of a mammalian protein interacting with 20S proteasome precursors. Proc. Natl Acad. Sci. USA 97, 10348–10353 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Griffin, T. A., Slack, J. P., McCluskey, T. S., Monaco, J. J. & Colbert, R. A. Identification of proteassemblin, a mammalian homologue of the yeast protein, Ump1p, that is required for normal proteasome assembly. Mol. Cell Biol. Res. Commun. 3, 212–217 (2000).

    CAS  PubMed  Google Scholar 

  61. Witt, E. et al. Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7(β5i) incorporation into 20 S proteasomes. J. Mol. Biol. 301, 1–9 (2000).

    CAS  PubMed  Google Scholar 

  62. Heink, S., Ludwig, D., Kloetzel, P. M. & Kruger, E. IFN-γ-induced immune adaptation of the proteasome system is an accelerated and transient response. Proc. Natl Acad. Sci. USA 102, 9241–9246 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Fricke, B., Heink, S., Steffen, J., Kloetzel, P. M. & Kruger, E. The proteasome maturation protein POMP facilitates major steps of 20S proteasome formation at the endoplasmic reticulum. EMBO Rep. 8, 1170–1175 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Shinde, U. & Inouye, M. Intramolecular chaperones: polypeptide extensions that modulate protein folding. Semin. Cell Dev. Biol. 11, 35–44 (2000).

    CAS  PubMed  Google Scholar 

  65. Chen, P. & Hochstrasser, M. Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell 86, 961–972 (1996).

    CAS  PubMed  Google Scholar 

  66. Arendt, C. S. & Hochstrasser, M. Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. EMBO J. 18, 3575–3585 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ramos, P. C., Marques, A. J., London, M. K. & Dohmen, R. J. Role of C-terminal extensions of subunits β2 and β7 in assembly and activity of eukaryotic proteasomes. J. Biol. Chem. 279, 14323–14330 (2004).

    CAS  PubMed  Google Scholar 

  68. Fehlker, M., Wendler, P., Lehmann, A. & Enenkel, C. Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly. EMBO Rep. 4, 959–963 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ustrell, V., Hoffman, L., Pratt, G. & Rechsteiner, M. PA200, a nuclear proteasome activator involved in DNA repair. EMBO J. 21, 3516–3525 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kajava, A. V., Gorbea, C., Ortega, J., Rechsteiner, M. & Steven, A. C. New HEAT-like repeat motifs in proteins regulating proteasome structure and function. J. Struct. Biol. 146, 425–430 (2004).

    CAS  PubMed  Google Scholar 

  71. Ortega, J. et al. The axial channel of the 20S proteasome opens upon binding of the PA200 activator. J. Mol. Biol. 346, 1221–1227 (2005).

    CAS  PubMed  Google Scholar 

  72. Schmidt, M. et al. The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nature Struct. Biol. 12, 294–303 (2005).

    CAS  Google Scholar 

  73. Iwanczyk, J. et al. Structure of the Blm10–20 S proteasome complex by cryo-electron microscopy. Insights into the mechanism of activation of mature yeast proteasomes. J. Mol. Biol. 363, 648–659 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Blickwedehl, J. et al. Role for proteasome activator PA200 and postglutamyl proteasome activity in genomic stability. Proc. Natl Acad. Sci. USA 105, 16165–16170 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Tanaka, K. & Kasahara, M. The MHC class I ligand-generating system: roles of immunoproteasomes and the interferon-γ-inducible proteasome activator PA28. Immunol. Rev. 163, 161–176 (1998).

    CAS  PubMed  Google Scholar 

  76. Kloetzel, P. M. Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nature Immunol. 5, 661–669 (2004).

    CAS  Google Scholar 

  77. Murata, S. et al. Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316, 1349–1353 (2007).

    CAS  PubMed  Google Scholar 

  78. Rock, K. L., York, I. A. & Goldberg, A. L. Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nature Immunol. 5, 670–677 (2004).

    CAS  Google Scholar 

  79. Murata, S., Takahama, Y. & Tanaka, K. Thymoproteasome: probable role in generating positively selecting peptides. Curr. Opin. Immunol. 20, 192–196 (2008).

    CAS  PubMed  Google Scholar 

  80. Takahama, Y., Tanaka, K. & Murata, S. Modest cortex and promiscuous medulla for thymic repertoire formation. Trends Immunol. 29, 251–255 (2008).

    CAS  PubMed  Google Scholar 

  81. Yuan, X., Miller, M. & Belote, J. M. Duplicated proteasome subunit genes in Drosophila melanogaster encoding testes-specific isoforms. Genetics 144, 147–157 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhong, L. & Belote, J. M. The testis-specific proteasome subunit Prosα6T of D. melanogaster is required for individualization and nuclear maturation during spermatogenesis. Development 134, 3517–3525 (2007).

    CAS  PubMed  Google Scholar 

  83. Groettrup, M., Standera, S., Stohwasser, R. & Kloetzel, P. M. The subunits MECL-1 and LMP2 are mutually required for incorporation into the 20S proteasome. Proc. Natl Acad. Sci. USA 94, 8970–8975 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Griffin, T. A. et al. Immunoproteasome assembly: cooperative incorporation of interferon γ (IFN-γ)-inducible subunits. J. Exp. Med. 187, 97–104 (1998). Shows that interdependence of β1i, β2i and β5i for their incorporation into the 20S proteasome.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kingsbury, D. J., Griffin, T. A. & Colbert, R. A. Novel propeptide function in 20 S proteasome assembly influences β subunit composition. J. Biol. Chem. 275, 24156–24162 (2000).

    CAS  PubMed  Google Scholar 

  86. De, M. et al. β2 subunit propeptides influence cooperative proteasome assembly. J. Biol. Chem. 278, 6153–6159 (2003).

    CAS  PubMed  Google Scholar 

  87. Basler, M., Moebius, J., Elenich, L., Groettrup, M. & Monaco, J. J. An altered T cell repertoire in MECL-1-deficient mice. J. Immunol. 176, 6665–6672 (2006).

    CAS  PubMed  Google Scholar 

  88. Isono, E. et al. The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome. Mol. Biol. Cell 18, 569–580 (2007). Shows that the 20S proteasome, the base and the lid can be formed and imported into the nucleus independently.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. DeLaBarre, B. & Brunger, A. T. Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. Nature Struct. Biol. 10, 856–863 (2003).

    CAS  PubMed  Google Scholar 

  90. Takeuchi, J. & Tamura, T. Recombinant ATPases of the yeast 26S proteasome activate protein degradation by the 20S proteasome. FEBS Lett. 565, 39–42 (2004).

    CAS  PubMed  Google Scholar 

  91. Rosenzweig, R., Osmulski, P. A., Gaczynska, M. & Glickman, M. H. The central unit within the 19S regulatory particle of the proteasome. Nature Struct. Biol. 15, 573–580 (2008).

    CAS  Google Scholar 

  92. DeMartino, G. N. et al. Identification, purification, and characterization of a PA700-dependent activator of the proteasome. J. Biol. Chem. 271, 3112–3118 (1996).

    CAS  PubMed  Google Scholar 

  93. Hori, T. et al. cDNA cloning and functional analysis of p28 (Nas6p) and p40.5 (Nas7p), two novel regulatory subunits of the 26S proteasome. Gene 216, 113–122 (1998).

    CAS  PubMed  Google Scholar 

  94. Dawson, S. et al. Gankyrin is an ankyrin-repeat oncoprotein that interacts with CDK4 kinase and the S6 ATPase of the 26 S proteasome. J. Biol. Chem. 277, 10893–10902 (2002).

    CAS  PubMed  Google Scholar 

  95. Nakamura, Y. et al. Structure of the oncoprotein gankyrin in complex with S6 ATPase of the 26S proteasome. Structure 15, 179–189 (2007).

    CAS  PubMed  Google Scholar 

  96. Isono, E., Saito, N., Kamata, N., Saeki, Y. & Toh, E. A. Functional analysis of Rpn6p, a lid component of the 26 S proteasome, using temperature-sensitive rpn6 mutants of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 280, 6537–6547 (2005).

    CAS  PubMed  Google Scholar 

  97. Sharon, M., Taverner, T., Ambroggio, X. I., Deshaies, R. J. & Robinson, C. V. Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol. 4, e267 (2006). Together with reference 96, this paper provides evidence that the lid consists of two subclusters.

    PubMed  PubMed Central  Google Scholar 

  98. Fu, H., Reis, N., Lee, Y., Glickman, M. H. & Vierstra, R. D. Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J. 20, 7096–7107 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Davy, A. et al. A protein–protein interaction map of the Caenorhabditis elegans 26S proteasome. EMBO Rep. 2, 821–828 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Whitesell, L. & Lindquist, S. L. HSP90 and the chaperoning of cancer. Nature Rev. Cancer 5, 761–772 (2005).

    CAS  Google Scholar 

  101. Imai, J., Maruya, M., Yashiroda, H., Yahara, I. & Tanaka, K. The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J. 22, 3557–3567 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Yen, H. C., Gordon, C. & Chang, E. C. Schizosaccharomyces pombe Int6 and Ras homologs regulate cell division and mitotic fidelity via the proteasome. Cell 112, 207–217 (2003).

    CAS  PubMed  Google Scholar 

  103. Sha, Z. et al. Isolation of the Schizosaccharomyces pombe proteasome subunit Rpn7 and a structure–function study of the proteasome–COP9–initiation factor domain. J. Biol. Chem. 282, 32414–32423 (2007).

    CAS  PubMed  Google Scholar 

  104. Hoareau Alves, K., Bochard, V., Rety, S. & Jalinot, P. Association of the mammalian proto-oncoprotein Int-6 with the three protein complexes eIF3, COP9 signalosome and 26S proteasome. FEBS Lett. 527, 15–21 (2002).

    CAS  PubMed  Google Scholar 

  105. Groll, M. et al. A gated channel into the proteasome core particle. Nature Struct. Biol. 7, 1062–1067 (2000).

    CAS  PubMed  Google Scholar 

  106. Gillette, T. G., Kumar, B., Thompson, D., Slaughter, C. A. & Demartino, G. N. Differential roles of the COOH termini of AAA subunits of PA700 (19S regulator) in asymmetric assembly and activation of the 26S proteasome. J. Biol. Chem. 283, 31813–31822 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Smith, D. M. et al. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's α ring opens the gate for substrate entry. Mol. Cell 27, 731–744 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Rabl, J. et al. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol. Cell 30, 360–368 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu, C. W. et al. ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Mol. Cell 24, 39–50 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kleijnen, M. F. et al. Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nature Struct. Biol. 14, 1180–1188 (2007).

    CAS  Google Scholar 

  111. Babbitt, S. E. et al. ATP hydrolysis-dependent disassembly of the 26S proteasome is part of the catalytic cycle. Cell 121, 553–565 (2005).

    CAS  PubMed  Google Scholar 

  112. Kriegenburg, F. et al. Mammalian 26S proteasomes remain intact during protein degradation. Cell 135, 355–365 (2008).

    CAS  PubMed  Google Scholar 

  113. Cascio, P., Hilton, C., Kisselev, A. F., Rock, K. L. & Goldberg, A. L. 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide. EMBO J. 20, 2357–2366 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Hendil, K. B., Hartmann-Petersen, R. & Tanaka, K. 26 S proteasomes function as stable entities. J. Mol. Biol. 315, 627–636 (2002).

    CAS  PubMed  Google Scholar 

  115. Leggett, D. S. et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 10, 495–507 (2002).

    CAS  PubMed  Google Scholar 

  116. Adams, G. M., Crotchett, B., Slaughter, C. A., DeMartino, G. N. & Gogol, E. P. Formation of proteasome–PA700 complexes directly correlates with activation of peptidase activity. Biochemistry 37, 12927–12932 (1998).

    CAS  PubMed  Google Scholar 

  117. Adams, G. M. et al. Structural and functional effects of PA700 and modulator protein on proteasomes. J. Mol. Biol. 273, 646–657 (1997).

    CAS  PubMed  Google Scholar 

  118. Tone, Y. & Toh, E. A. Nob1p is required for biogenesis of the 26S proteasome and degraded upon its maturation in Saccharomyces cerevisiae. Genes Dev. 16, 3142–3157 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Fatica, A., Oeffinger, M., Dlakic, M. & Tollervey, D. Nob1p is required for cleavage of the 3′ end of 18S rRNA. Mol. Cell. Biol. 23, 1798–1807 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Adams, J. The proteasome: a suitable antineoplastic target. Nature Rev. Cancer 4, 349–360 (2004).

    CAS  Google Scholar 

  121. Nickeleit, I. et al. Argyrin a reveals a critical role for the tumor suppressor protein p27(kip1) in mediating antitumor activities in response to proteasome inhibition. Cancer Cell 14, 23–35 (2008).

    CAS  PubMed  Google Scholar 

  122. Schwartz, A. L. & Ciechanover, A. Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu. Rev. Pharmacol. Toxicol. 3 Oct 2008 (doi: 10.1146/annurev.pharmtox.051208.165340).

    CAS  PubMed  Google Scholar 

  123. Rubinsztein, D. C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786 (2006).

    CAS  PubMed  Google Scholar 

  124. Breusing, N. & Grune, T. Regulation of proteasome-mediated protein degradation during oxidative stress and aging. Biol. Chem. 389, 203–209 (2008).

    CAS  PubMed  Google Scholar 

  125. Goldberg, A. L. On prions, proteasomes, and mad cows. N. Engl. J. Med. 357, 1150–1152 (2007).

    CAS  PubMed  Google Scholar 

  126. Kristiansen, M. et al. Disease-associated prion protein oligomers inhibit the 26S proteasome. Mol. Cell 26, 175–188 (2007).

    CAS  PubMed  Google Scholar 

  127. Ozaki, K. et al. A functional SNP in PSMA6 confers risk of myocardial infarction in the Japanese population. Nature Genet. 38, 921–925 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Mizushima, Nagoya City University, Nagoya, Japan, for preparing figures of crystal structures. This work was supported by grants to S.M., H.Y. and K.T. from the Ministry of Education, Science and Culture of Japan (MEXT) and the Target Protein Project of MEXT (to K.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Tanaka.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Shigeo Murata's homepage

Hideki Yashiroda's homepage

Keiji Tanaka's homepage

Glossary

Caspase-like activity

Enzymatic activity that is similar to that of caspases — Cys proteases that have essential roles in apoptosis. β1 was first reported to cleave after Glu residues, and was thus termed peptidylglutamyl peptide hydrolase. Later, it was found that β1 also cleaves after Asp acid residues in substrates of caspases.

Trypsin-like activity

β2 cleaves after the basic amino acids Lys and Arg. As this activity resembles that of trypsin, a Ser protease that is secreted in pancreatic juice, it is referred to as 'trypsin-like' activity.

Chymotrypsin-like activity

β5 cleaves after hydrophobic amino acids. This activity resembles that of chymotrypsin, a Ser protease that is secreted in pancreatic juice, and is thus referred to as chymotrypsin-like activity.

AAA+ ATPase

(ATPase associated with diverse cellular activities). ATP-hydrolysing enzyme that contains one or two conserved ATP-binding domains, which are in turn comprised of conserved A and B motifs. AAA+ ATPases assemble into oligomeric assemblies (often hexamers) that form a ring-shaped structure with a central pore.

UBL

(Ubiquitin-like). A protein domain with motifs that have significant sequence and structural similarity to ubiquitin. Type 1 UBLs are comprised solely of this motif and generally work as modifiers that are covalently attached to target proteins, in a fashion similar to the ubiquitin. Type 2 UBLs are larger proteins that contain this motif as a part of the protein.

UBA

(Ubiquitin-association). A domain of 45 amino acids that adopts a structure that comprises a three α-helix bundle. The UBA domain binds to ubiquitin through a conserved hydrophobic surface patch.

Operon

A unit of genes in prokaryotes that is expressed as a single messenger RNA.

ERAD

(Endoplasmic reticulum-associated degradation). A system that ubiquitylates misfolded proteins in the endoplasmic reticulum for degradation by the 26S proteasome.

Unfolded protein response

A cellular stress response that is induced by the accumulation of unfolded proteins in the endoplasmic reticulum.

Cdc48

A chaperone-like AAA+ ATPase that is required for various cellular processes, such as cell cycle progression, homotypic membrane fusion and ERAD. The human counterpart of Cdc48 is valosin-containing protein.

Proteasome-activating nucleotidase

An AAA+ ATPase ring complex and archaeal regulatory particle triple-A homologue that opens the gate of 20S proteasomes and activates protein degradation.

PCI domain

The homology domain of unclear function that is present in several components of the proteasome, the COP9 signalosome and eukaryotic translation initiation factor 3.

COP9 signalosome

An eight-subunit protein complex that regulates protein ubiquitylation and turnover in various developmental and physiological contexts. Extensively characterized in plants but fundamental to all eukaryotes, this complex post-translationally modifies the cullin subunit of E3 ubiquitin ligases by cleaving the covalently coupled polypeptide Nedd8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murata, S., Yashiroda, H. & Tanaka, K. Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol 10, 104–115 (2009). https://doi.org/10.1038/nrm2630

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2630

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing