Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Powering membrane traffic in endocytosis and recycling

Key Points

  • Endocytic trafficking and subsequent recycling of plasma-membrane components is essential for cell viability. They direct the movement of vesicular carriers from the cell surface to the cell interior and back.

  • Endocytic uptake by phagocytosis or macropinocytosis requires different myosin motors that participate in the extension and closure of phagocytic cup pseudopods and their initial transport.

  • Clathrin-mediated endocytosis is tightly linked to the activity of the plus-end directed motor myosin VI, whereas an involvement of a motor(s) in caveolar endocytosis is unclear at present.

  • Microtubule-dependent, minus-end-directed transport definitely requires dynein and its activator, dynactin. The participation of a minus-end-directed kinesin has been suspected, but not proven conclusively.

  • Plus-end-directed motors from several kinesin families also participate in endosomal trafficking along microtubules, leading to prominent bidirectional movement of early and late endosomes as well as lysosomes.

  • Recycling can occur through several pathways, possibly starting at the early endosome step, and requires plus-end-directed microtubule transport. Depending on the cargo in question, transport is powered by members of the kinesin-1, -2 and -3 families.

  • A prominent motor class that is involved in the final steps of delivery to the cell surface is myosin V, although class-I myosins also operate primarily in the cell cortex near the plasma membrane.

  • The cooperation between microtubule and actin motors entails control by small G-proteins and other regulators. Different motors and their regulators can thereby form a complex on the surfaces of trafficking organelles, although this is hypothetical at present.

Abstract

Early in evolution, the diversification of membrane-bound compartments that characterize eukaryotic cells was accompanied by the elaboration of molecular machineries that mediate intercompartmental communication and deliver materials to specific destinations. Molecular motors that move on tracks of actin filaments or microtubules mediate the movement of organelles and transport between compartments. The subjects of this review are the motors that power the transport steps along the endocytic and recycling pathways, their modes of attachment to cargo and their regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structural diversity of molecular motors.
Figure 2: Overview of the motors that are involved in endocytic and recycling traffic.

Similar content being viewed by others

References

  1. Schliwa, M. (ed.) Molecular Motors 1–582 (Wiley VCH, Weinheim, 2003).

    Google Scholar 

  2. Soldati, T. Unconventional myosins, actin dynamics and endocytosis: a menage a trois? Traffic 4, 358–366 (2003).

    CAS  PubMed  Google Scholar 

  3. Kaksonen, M., Toret, C. P. & Drubin, D. G. Harnessing actin dynamics for clathrin-mediated endocytosis. Nature Rev. Mol. Cell Biol. 7, 404–414 (2006).

    CAS  Google Scholar 

  4. Vallee, R. B., Williams, J. C., Varma, D. & Barnhart, L. E. Dynein: an ancient motor protein involved in multiple modes of transport. J. Neurobiol. 58, 189–200 (2004).

    CAS  PubMed  Google Scholar 

  5. Hirokawa, N. & Takemura, R. Molecular motors and mechanisms of directional transport in neurons. Nature Rev. Neurosci. 6, 201–214 (2005).

    CAS  Google Scholar 

  6. Sakato, M. & King, S. M. Design and regulation of the AAA+ microtubule motor dynein. J. Struct. Biol. 146, 58–71 (2004).

    CAS  PubMed  Google Scholar 

  7. Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    CAS  PubMed  Google Scholar 

  8. Nichols, B. Caveosomes and endocytosis of lipid rafts. J. Cell Sci. 116, 4707–4714 (2003).

    CAS  PubMed  Google Scholar 

  9. Swanson, J. A. et al. A contractile activity that closes phagosomes in macrophages. J. Cell Sci. 112, 307–316 (1999).

    CAS  PubMed  Google Scholar 

  10. Cox, D. et al. Myosin X is a downstream effector of PI(3)K during phagocytosis. Nature Cell Biol. 4, 469–477 (2002).

    CAS  PubMed  Google Scholar 

  11. Olazabal, I. M. et al. Rho-kinase and myosin-II control phagocytic cup formation during CR, but not FcγR, phagocytosis. Curr. Biol. 12, 1413–1418 (2002).

    CAS  PubMed  Google Scholar 

  12. Durrwang, U. et al. Dictyostelium myosin-IE is a fast molecular motor involved in phagocytosis. J. Cell Sci. 119, 550–558 (2006).

    PubMed  Google Scholar 

  13. Titus, M. A. The role of unconventional myosins in Dictyostelium endocytosis. J. Eukaryot. Microbiol. 47, 191–196 (2000).

    CAS  PubMed  Google Scholar 

  14. Hasson, T. Molecular motors: sensing a function for myosin-VIIa. Curr. Biol. 9, R838–R841 (1999).

    CAS  PubMed  Google Scholar 

  15. Tuxworth, R. I., Stephens, S., Ryan, Z. C. & Titus, M. A. Identification of a myosin VII–talin complex. J. Biol. Chem. 280, 26557–26564 (2005).

    CAS  PubMed  Google Scholar 

  16. Titus, M. A. A conserved role for myosin VII in adhesion. Novartis Found. Symp. 269, 16–34; 223–230 (2005).

    CAS  PubMed  Google Scholar 

  17. Yang, Y., Kovacs, M., Xu, Q., Anderson, J. B. & Sellers, J. R. Myosin VIIB from Drosophila is a high duty ratio motor. J. Biol. Chem. 280, 32061–32068 (2005).

    CAS  PubMed  Google Scholar 

  18. Henn, A. & De La Cruz, E. M. Vertebrate myosin VIIb is a high duty ratio motor adapted for generating and maintaining tension. J. Biol. Chem. 280, 39665–39676 (2005).

    CAS  PubMed  Google Scholar 

  19. Etournay, R. et al. PHR1, an integral membrane protein of the inner ear sensory cells, directly interacts with myosin 1c and myosin VIIa. J. Cell Sci. 118, 2891–2899 (2005).

    CAS  PubMed  Google Scholar 

  20. Araki, N. Role of microtubules and myosins in Fc γ receptor-mediated phagocytosis. Front. Biosci. 11, 1479–1490 (2006).

    CAS  PubMed  Google Scholar 

  21. Ostap, E. M. et al. Dynamic localization of myosin-I to endocytic structures in Acanthamoeba. Cell Motil. Cytoskeleton 54, 29–40 (2003).

    CAS  PubMed  Google Scholar 

  22. Schwarz, E. C., Neuhaus, E. M., Kistler, C., Henkel, A. W. & Soldati, T. Dictyostelium myosin IK is involved in the maintenance of cortical tension and affects motility and phagocytosis. J. Cell Sci. 113, 621–633 (2000).

    CAS  PubMed  Google Scholar 

  23. Tang, N., Lin, T. & Ostap, E. M. Dynamics of myo1c (myosin-Iβ) lipid binding and dissociation. J. Biol. Chem. 277, 42763–42768 (2002).

    CAS  PubMed  Google Scholar 

  24. Clarke, M., Kohler, J., Heuser, J. & Gerisch, G. Endosome fusion and microtubule-based dynamics in the early endocytic pathway of Dictyostelium. Traffic 3, 791–800 (2002). An enlightening series of live observations — by total internal reflection fluorescence microscopy as well as by other microscopy techniques — on macropinocytosis, endosome maturation, fusion and transport on microtubules.

    CAS  PubMed  Google Scholar 

  25. Yang, Z., Vadlamudi, R. K. & Kumar, R. Dynein light chain 1 phosphorylation controls macropinocytosis. J. Biol. Chem. 280, 654–659 (2005).

    CAS  PubMed  Google Scholar 

  26. Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305–320 (2005).

    CAS  PubMed  Google Scholar 

  27. Jonsdottir, G. A. & Li, R. Dynamics of yeast myosin I: evidence for a possible role in scission of endocytic vesicles. Curr. Biol. 14, 1604–1609 (2004).

    CAS  PubMed  Google Scholar 

  28. Takeda, T. & Chang, F. Role of fission yeast myosin I in organization of sterol-rich membrane domains. Curr. Biol. 15, 1331–1336 (2005).

    CAS  PubMed  Google Scholar 

  29. Wesche, S., Arnold, M. & Jansen, R. P. The UCS domain protein She4p binds to myosin motor domains and is essential for class I and class V myosin function. Curr. Biol. 13, 715–724 (2003).

    CAS  PubMed  Google Scholar 

  30. Biemesderfer, D., Mentone, S. A., Mooseker, M. & Hasson, T. Expression of myosin VI within the early endocytic pathway in adult and developing proximal tubules. Am. J. Physiol. Renal Physiol. 282, F785–F794 (2002).

    CAS  PubMed  Google Scholar 

  31. Roberts, R. et al. Myosin VI: cellular functions and motor properties. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 1931–1944 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Aschenbrenner, L., Naccache, S. N. & Hasson, T. Uncoated endocytic vesicles require the unconventional myosin, Myo6, for rapid transport through actin barriers. Mol. Biol. Cell 15, 2253–2263 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lister, I. et al. A monomeric myosin VI with a large working stroke. EMBO J. 23, 1729–1738 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Park, H. et al. Full-length myosin VI dimerizes and moves processively along actin filaments upon monomer clustering. Mol. Cell 21, 331–336 (2006). A crisp and splendid demonstration of the cargo-induced dimerization of myosin VI and of its processive movement along actin filaments in large steps.

    CAS  PubMed  Google Scholar 

  35. Tomishige, M., Klopfenstein, D. R. & Vale, R. D. Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization. Science 297, 2263–2267 (2002).

    CAS  PubMed  Google Scholar 

  36. Iwaki, M. et al. Cargo-binding makes a wild-type single-headed myosin-VI move processively. Biophys. J. 90, 3643–3652 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Reed, B. C. et al. GLUT1CBP(TIP2/GIPC1) interactions with GLUT1 and myosin VI: evidence supporting an adapter function for GLUT1CBP. Mol. Biol. Cell 16, 4183–4201 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dance, A. L. et al. Regulation of myosin-VI targeting to endocytic compartments. Traffic 5, 798–813 (2004).

    CAS  PubMed  Google Scholar 

  39. Swiatecka-Urban, A. et al. Myosin VI regulates endocytosis of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 279, 38025–38031 (2004).

    CAS  PubMed  Google Scholar 

  40. Morris, S. M. et al. Myosin VI binds to and localises with Dab2, potentially linking receptor-mediated endocytosis and the actin cytoskeleton. Traffic 3, 331–341 (2002). A study that revealed strong functional evidence for the adaptor-mediated link of myosin VI to clathrin-mediated endocytosis.

    CAS  PubMed  Google Scholar 

  41. Osterweil, E., Wells, D. G. & Mooseker, M. S. A role for myosin VI in postsynaptic structure and glutamate receptor endocytosis. J. Cell Biol. 168, 329–338 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Allan, V. J., Thompson, H. M. & McNiven, M. A. Motoring around the Golgi. Nature Cell Biol. 4, E236–E242 (2002).

    CAS  PubMed  Google Scholar 

  43. Sahlender, D. A. et al. Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J. Cell Biol. 169, 285–295 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Warner, C. L. et al. Loss of myosin VI reduces secretion and the size of the Golgi in fibroblasts from Snell's waltzer mice. EMBO J. 22, 569–579 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Pelkmans, L. Viruses as probes for systems analysis of cellular signalling, cytoskeleton reorganization and endocytosis. Curr. Opin. Microbiol. 8, 331–337 (2005).

    CAS  PubMed  Google Scholar 

  46. Pelkmans, L., Puntener, D. & Helenius, A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296, 535–539 (2002).

    CAS  PubMed  Google Scholar 

  47. Tagawa, A. et al. Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters. J. Cell Biol. 170, 769–779 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005).

    CAS  PubMed  Google Scholar 

  49. Southwick, F. S., Li, W., Zhang, F., Zeile, W. L. & Purich, D. L. Actin-based endosome and phagosome rocketing in macrophages: activation by the secretagogue antagonists lanthanum and zinc. Cell Motil. Cytoskeleton 54, 41–55 (2003).

    CAS  PubMed  Google Scholar 

  50. Merrifield, C. J. et al. Annexin 2 has an essential role in actin-based macropinocytic rocketing. Curr. Biol. 11, 1136–1141 (2001).

    CAS  PubMed  Google Scholar 

  51. Orth, J. D., Krueger, E. W., Cao, H. & McNiven, M. A. The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc. Natl Acad. Sci. USA 99, 167–172 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cordonnier, M. N., Dauzonne, D., Louvard, D. & Coudrier, E. Actin filaments and myosin I α cooperate with microtubules for the movement of lysosomes. Mol. Biol. Cell 12, 4013–4029 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Salas-Cortes, L. et al. Myosin Ib modulates the morphology and the protein transport within multi-vesicular sorting endosomes. J. Cell Sci. 15, 4823–4832 (2005). Beautifully illustrates the complex interaction and role of class I myosins in endosomal morphology and function.

    Google Scholar 

  54. Kuznetsov, S. A., Langford, G. M. & Weiss, D. G. Actin-dependent organelle movement in squid axoplasm. Nature 356, 722–725 (1992). A seminal paper that described, for the first time, that the same organelle can move on both microtubules and actin filaments.

    CAS  PubMed  Google Scholar 

  55. Lansbergen, G. & Akhmanova, A. Microtubule plus end: a hub of cellular activities. Traffic 7, 499–507 (2006).

    CAS  PubMed  Google Scholar 

  56. Vaughan, K. T. Microtubule plus ends, motors, and traffic of Golgi membranes. Biochim. Biophys. Acta 1744, 316–324 (2005).

    CAS  PubMed  Google Scholar 

  57. Rickard, J. E. & Kreis, T. E. CLIPs for organelle-microtubule interactions. Trends Cell Biol. 6, 178–183 (1996).

    CAS  PubMed  Google Scholar 

  58. Lansbergen, G. et al. Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization. J. Cell Biol. 166, 1003–1014 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lantz, V. A. & Miller, K. G. A class VI unconventional myosin is associated with a homologue of a microtubule-binding protein, cytoplasmic linker protein-170, in neurons and at the posterior pole of Drosophila embryos. J. Cell Biol. 140, 897–910 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Xiang, X. A +TIP for a smooth trip. J. Cell Biol. 172, 651–654 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bananis, E., Murray, J. W., Stockert, R. J., Satir, P. & Wolkoff, A. W. Regulation of early endocytic vesicle motility and fission in a reconstituted system. J. Cell Sci. 116, 2749–2761 (2003).

    CAS  PubMed  Google Scholar 

  62. Yang, Z., Roberts, E. A. & Goldstein, L. S. Functional analysis of mouse C-terminal kinesin motor KifC2. Mol. Cell. Biol. 21, 2463–2466 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bananis, E. et al. Microtubule-dependent movement of late endocytic vesicles in vitro: requirements for dynein and kinesin. Mol. Biol. Cell 15, 3688–3697 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Valetti, C. et al. Role of dynactin in endocytic traffic: effects of dynamitin overexpression and colocalization with CLIP-170. Mol. Biol. Cell 10, 4107–4120 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. King, S. J., Brown, C. L., Maier, K. C., Quintyne, N. J. & Schroer, T. A. Analysis of the dynein–dynactin interaction in vitro and in vivo. Mol. Biol. Cell 14, 5089–5097 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Schroer, T. A. Dynactin. Annu. Rev. Cell Dev. Biol. 20, 759–779 (2004).

    CAS  PubMed  Google Scholar 

  67. Levy, J. R. & Holzbaur, E. L. Cytoplasmic dynein/dynactin function and dysfunction in motor neurons. Int. J. Dev. Neurosci. 24, 103–111 (2006).

    CAS  PubMed  Google Scholar 

  68. Harrison, R. E., Bucci, C., Vieira, O. V., Schroer, T. A. & Grinstein, S. Phagosomes fuse with late endosomes and/or lysosomes by extension of membrane protrusions along microtubules: role of Rab7 and RILP. Mol. Cell. Biol. 23, 6494–6506 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Jordens, I. et al. The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein–dynactin motors. Curr. Biol. 11, 1680–1685 (2001).

    CAS  PubMed  Google Scholar 

  70. Cantalupo, G., Alifano, P., Roberti, V., Bruni, C. B. & Bucci, C. Rab-interacting lysosomal protein (RILP): the Rab7 effector required for transport to lysosomes. EMBO J. 20, 683–693 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Johansson, M., Lehto, M., Tanhuanpaa, K., Cover, T. L. & Olkkonen, V. M. The oxysterol-binding protein homologue ORP1L interacts with Rab7 and alters functional properties of late endocytic compartments. Mol. Biol. Cell 16, 5480–5492 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Marsman, M. et al. A splice variant of RILP induces lysosomal clustering independent of dynein recruitment. Biochem. Biophys. Res. Commun. 344, 747–756 (2006).

    CAS  PubMed  Google Scholar 

  73. Varma, D., Dujardin, D. L., Stehman, S. A. & Vallee, R. B. Role of the kinetochore/cell cycle checkpoint protein ZW10 in interphase cytoplasmic dynein function. J. Cell Biol. 172, 655–662 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hoepfner, S. et al. Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B. Cell 121, 437–450 (2005). Clear evidence for the specific role of a kinesin-3-family motor in early transport steps.

    CAS  PubMed  Google Scholar 

  75. Wedlich-Soldner, R., Straube, A., Friedrich, M. W. & Steinberg, G. A balance of KIF1A-like kinesin and dynein organizes early endosomes in the fungus Ustilago maydis. EMBO J. 21, 2946–2957 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lenz, J. H., Schuchardt, I., Straube, A. & Steinberg, G. A dynein loading zone for retrograde endosome motility at microtubule plus-ends. EMBO J. 25, 2275–2286 (2006). Nice demonstration, in a fungal cell model, for a switch between kinesin-powered and dynein-driven movement of endosomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mesngon, M. T. et al. Regulation of cytoplasmic dynein ATPase by Lis1. J. Neurosci. 26, 2132–2139 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Vallee, R. B. & Tsai, J. W. The cellular roles of the lissencephaly gene LIS1, and what they tell us about brain development. Genes Dev. 20, 1384–1393 (2006).

    CAS  PubMed  Google Scholar 

  79. Brown, C. L. et al. Kinesin-2 is a motor for late endosomes and lysosomes. Traffic 6, 1114–1124 (2005).

    CAS  PubMed  Google Scholar 

  80. Welte, M. A. Bidirectional transport along microtubules. Curr. Biol. 14, R525–R537 (2004).

    CAS  PubMed  Google Scholar 

  81. Ling, S. C., Fahrner, P. S., Greenough, W. T. & Gelfand, V. I. Transport of Drosophila fragile X mental retardation protein-containing ribonucleoprotein granules by kinesin-1 and cytoplasmic dynein. Proc. Natl Acad. Sci. USA 101, 17428–17433 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. He, Y. et al. Role of cytoplasmic dynein in the axonal transport of microtubules and neurofilaments. J. Cell Biol. 168, 697–703 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Huang, J. D. et al. Direct interaction of microtubule- and actin-based transport motors. Nature 397, 267–270 (1999).

    CAS  PubMed  Google Scholar 

  84. Levi, V., Serpinskaya, A. S., Gratton, E. & Gelfand, V. Organelle transport along microtubules in Xenopus melanophores: evidence for cooperation between multiple motors. Biophys. J. 90, 318–327 (2006).

    CAS  PubMed  Google Scholar 

  85. Ross, J. L., Wallace, K., Shuman, H., Goldman, Y. E. & Holzbaur, E. L. Processive bidirectional motion of dynein–dynactin complexes in vitro. Nature Cell Biol. 8, 562–570 (2006). Reports the stunning observation that in vitro , the dynein–dynactin complex can move bidirectionally on microtubules, although the 'reverse' movement towards the microtubule plus end is less robust.

    CAS  PubMed  Google Scholar 

  86. Liang, Y. et al. Nudel functions in membrane traffic mainly through association with Lis1 and cytoplasmic dynein. J. Cell Biol. 164, 557–566 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lebrand, C. et al. Late endosome motility depends on lipids via the small GTPase Rab7. EMBO J. 21, 1289–1300 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Maxfield, F. R. & McGraw, T. E. Endocytic recycling. Nature Rev. Mol. Cell Biol. 5, 121–132 (2004).

    CAS  Google Scholar 

  89. Lakadamyali, M., Rust, M. J. & Zhuang, X. Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 124, 997–1009 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lin, S. X., Gundersen, G. G. & Maxfield, F. R. Export from pericentriolar endocytic recycling compartment to cell surface depends on stable, detyrosinated (glu) microtubules and kinesin. Mol. Biol. Cell 13, 96–109 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Matsushita, M., Tanaka, S., Nakamura, N., Inoue, H. & Kanazawa, H. A novel kinesin-like protein, KIF1Bβ3 is involved in the movement of lysosomes to the cell periphery in non-neuronal cells. Traffic 5, 140–151 (2004).

    CAS  PubMed  Google Scholar 

  92. Wozniak, M. J., Milner, R. & Allan, V. N-terminal kinesins: many and various. Traffic 5, 400–410 (2004).

    CAS  PubMed  Google Scholar 

  93. Nakata, T. & Hirokawa, N. Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport. J. Cell Biol. 131, 1039–1053 (1995).

    CAS  PubMed  Google Scholar 

  94. Tanaka, Y. et al. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93, 1147–1158 (1998).

    CAS  PubMed  Google Scholar 

  95. Santama, N. et al. KIF2β, a new kinesin superfamily protein in non-neuronal cells, is associated with lysosomes and may be implicated in their centrifugal translocation. EMBO J. 17, 5855–5867 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Moore, A. T. et al. MCAK associates with the tips of polymerizing microtubules. J. Cell Biol. 169, 391–397 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Semiz, S. et al. Conventional kinesin KIF5B mediates insulin-stimulated GLUT4 movements on microtubules. EMBO J. 22, 2387–2399 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Imamura, T. et al. Insulin-induced GLUT4 translocation involves protein kinase C-λ-mediated functional coupling between Rab4 and the motor protein kinesin. Mol. Cell. Biol. 23, 4892–4900 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Huang, J., Imamura, T. & Olefsky, J. M. Insulin can regulate GLUT4 internalization by signaling to Rab5 and the motor protein dynein. Proc. Natl Acad. Sci. USA 98, 13084–13089 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bose, A. et al. Unconventional myosin Myo1c promotes membrane fusion in a regulated exocytic pathway. Mol. Cell. Biol. 24, 5447–5458 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Rudolf, R. et al. Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells. J. Cell Sci. 116, 1339–1348 (2003).

    CAS  PubMed  Google Scholar 

  102. Lang, T. et al. Role of actin cortex in the subplasmalemmal transport of secretory granules in PC-12 cells. Biophys. J. 78, 2863–2877 (2000). Reconciled the contradictory views about the role of the actin cytoskeleton in exocytosis and replenishment of the releasable pool of granules.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Brown, J. R., Stafford, P. & Langford, G. M. Short-range axonal/dendritic transport by myosin-V: a model for vesicle delivery to the synapse. J. Neurobiol. 58, 175–188 (2004).

    CAS  PubMed  Google Scholar 

  104. Shupliakov, O. et al. Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton. Proc. Natl Acad. Sci. USA 99, 14476–14481 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Bridgman, P. C. Myosin Va movements in normal and dilute-lethal axons provide support for a dual filament motor complex. J. Cell Biol. 146, 1045–1060 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Watanabe, M. et al. Myosin-Va regulates exocytosis through the submicromolar Ca2+-dependent binding of syntaxin-1A. Mol. Biol. Cell 16, 4519–4530 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Wakabayashi, Y., Dutt, P., Lippincott-Schwartz, J. & Arias, I. M. Rab11a and myosin Vb are required for bile canalicular formation in WIF-B9 cells. Proc. Natl Acad. Sci. USA 102, 15087–15092 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Lindsay, A. J. & McCaffrey, M. W. Rab11-FIP2 functions in transferrin recycling and associates with endosomal membranes via its COOH-terminal domain. J. Biol. Chem. 277, 27193–27199 (2002).

    CAS  PubMed  Google Scholar 

  109. Fan, G. H., Lapierre, L. A., Goldenring, J. R., Sai, J. & Richmond, A. Rab11-family interacting protein 2 and myosin Vb are required for CXCR2 recycling and receptor-mediated chemotaxis. Mol. Biol. Cell 15, 2456–2469 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Volpicelli, L. A., Lah, J. J., Fang, G., Goldenring, J. R. & Levey, A. I. Rab11a and myosin Vb regulate recycling of the M4 muscarinic acetylcholine receptor. J. Neurosci. 22, 9776–9784 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Leiva, N., Pavarotti, M., Colombo, M. I. & Damiani, M. T. Reconstitution of recycling from the phagosomal compartment in streptolysin O-permeabilized macrophages: role of Rab11. Exp. Cell Res. 312, 1843–1855 (2006).

    CAS  PubMed  Google Scholar 

  112. Hales, C. M., Vaerman, J. P. & Goldenring, J. R. Rab11 family interacting protein 2 associates with Myosin Vb and regulates plasma membrane recycling. J. Biol. Chem. 277, 50415–50421 (2002).

    CAS  PubMed  Google Scholar 

  113. Hobdy-Henderson, K. C., Hales, C. M., Lapierre, L. A., Cheney, R. E. & Goldenring, J. R. Dynamics of the apical plasma membrane recycling system during cell division. Traffic 4, 681–693 (2003).

    CAS  PubMed  Google Scholar 

  114. Stachelek, S. J. et al. Real-time visualization of processive myosin 5a-mediated vesicle movement in living astrocytes. J. Biol. Chem. 276, 35652–35659 (2001).

    CAS  PubMed  Google Scholar 

  115. Rodriguez, O. C. & Cheney, R. E. Human myosin-Vc is a novel class V myosin expressed in epithelial cells. J. Cell Sci. 115, 991–1004 (2002).

    CAS  PubMed  Google Scholar 

  116. Yan, Q. et al. CART: an Hrs–actinin-4–BERP–myosin V protein complex required for efficient receptor recycling. Mol. Biol. Cell 16, 2470–2482 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Bose, A. et al. Glucose transporter recycling in response to insulin is facilitated by myosin Myo1c. Nature 420, 821–824 (2002).

    CAS  PubMed  Google Scholar 

  118. Huber, L. A. et al. Both calmodulin and the unconventional myosin Myr4 regulate membrane trafficking along the recycling pathway of MDCK cells. Traffic 1, 494–503 (2000).

    CAS  PubMed  Google Scholar 

  119. Durrbach, A., Raposo, G., Tenza, D., Louvard, D. & Coudrier, E. Truncated brush border myosin I affects membrane traffic in polarized epithelial cells. Traffic 1, 411–424 (2000).

    CAS  PubMed  Google Scholar 

  120. Neuhaus, E. M. & Soldati, T. A myosin I is involved in membrane recycling from early endosomes. J. Cell Biol. 150, 1013–1026 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Barile, M. et al. Large-scale protein identification in intracellular aquaporin-2 vesicles from renal inner medullary collecting duct. Mol. Cell. Proteomics 4, 1095–1106 (2005).

    CAS  PubMed  Google Scholar 

  122. Togo, T. & Steinhardt, R. A. Nonmuscle myosin IIA and IIB have distinct functions in the exocytosis-dependent process of cell membrane repair. Mol. Biol. Cell 15, 688–695 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Neco, P. et al. New roles of myosin II during vesicle transport and fusion in chromaffin cells. J. Biol. Chem. 279, 27450–27457 (2004).

    CAS  PubMed  Google Scholar 

  124. Jerdeva, G. V. et al. Actin and non-muscle myosin II facilitate apical exocytosis of tear proteins in rabbit lacrimal acinar epithelial cells. J. Cell Sci. 118, 4797–4812 (2005).

    CAS  PubMed  Google Scholar 

  125. Polo-Parada, L., Plattner, F., Bose, C. & Landmesser, L. T. NCAM 180 acting via a conserved C-terminal domain and MLCK is essential for effective transmission with repetitive stimulation. Neuron 46, 917–931 (2005).

    CAS  PubMed  Google Scholar 

  126. Takagishi, Y. et al. Localization of myosin II and V isoforms in cultured rat sympathetic neurones and their potential involvement in presynaptic function. J. Physiol. 569, 195–208 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Rose, S. D. et al. Myosins II and V in chromaffin cells: myosin V is a chromaffin vesicle molecular motor involved in secretion. J. Neurochem. 85, 287–298 (2003).

    CAS  PubMed  Google Scholar 

  128. Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).

    CAS  PubMed  Google Scholar 

  129. Kull, F. J., Sablin, E. P., Lau, R., Fletterick, R. J. & Vale, R. D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550–555 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Samso, M. & Koonce, M. P. 25 Å resolution structure of a cytoplasmic dynein motor reveals a seven-member planar ring. J. Mol. Biol. 340, 1059–1072 (2004).

    CAS  PubMed  Google Scholar 

  131. Takahashi, Y., Edamatsu, M. & Toyoshima, Y. Y. Multiple ATP-hydrolyzing sites that potentially function in cytoplasmic dynein. Proc. Natl Acad. Sci. USA 101, 12865–12869 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Burgess, S. A., Walker, M. L., Sakakibara, H., Knight, P. J. & Oiwa, K. Dynein structure and power stroke. Nature 421, 715–718 (2003).

    CAS  PubMed  Google Scholar 

  133. Hancock, W. O. & Howard, J. in Molecular Motors (ed. Schliwa, M.) 243–269 (Wiley VCH, Weinheim, 2003).

    Google Scholar 

  134. Geissler, H., Ullmann, R. & Soldati, T. The tail domain of myosin M catalyses nucleotide exchange on Rac1 GTPases and can induce actin-driven surface protrusions. Traffic 1, 399–410 (2000).

    CAS  PubMed  Google Scholar 

  135. Oishi, N., Adachi, H. & Sutoh, K. Novel Dictyostelium unconventional myosin, MyoM, has a putative RhoGEF domain. FEBS Lett. 474, 16–22 (2000).

    CAS  PubMed  Google Scholar 

  136. Foth, B. J., Goedecke, M. C. & Soldati, D. New insights into myosin evolution and classification. Proc. Natl Acad. Sci. USA 103, 3681–3686 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Kamal, A., Stokin, G. B., Yang, Z., Xia, C. H. & Goldstein, L. S. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449–459 (2000).

    CAS  PubMed  Google Scholar 

  138. Lazarov, O. et al. Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus: revisited. J. Neurosci. 25, 2386–2395 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Muresan, V. et al. Dynactin-dependent, dynein-driven vesicle transport in the absence of membrane proteins: a role for spectrin and acidic phospholipids. Mol. Cell 7, 173–183 (2001).

    CAS  PubMed  Google Scholar 

  140. Koushika, S. P. et al. Mutations in Caenorhabditis elegans cytoplasmic dynein components reveal specificity of neuronal retrograde cargo. J. Neurosci. 24, 3907–3916 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Fuchs, E., Short, B. & Barr, F. A. Assay and properties of rab6 interaction with dynein–dynactin complexes. Methods Enzymol. 403, 607–618 (2005).

    CAS  PubMed  Google Scholar 

  142. Nascimento, A. A., Roland, J. T. & Gelfand, V. I. Pigment cells: a model for the study of organelle transport. Annu. Rev. Cell Dev. Biol. 19, 469–491 (2003).

    CAS  PubMed  Google Scholar 

  143. Deacon, S. W. et al. Dynactin is required for bidirectional organelle transport. J. Cell Biol. 160, 297–301 (2003). Shows that dynactin can interact with dynein and kinesin-2 on melanosomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Kashina, A. S. et al. Protein kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles. Curr. Biol. 14, 1877–1881 (2004).

    CAS  PubMed  Google Scholar 

  145. Gross, S. P. et al. Interactions and regulation of molecular motors in Xenopus melanophores. J. Cell Biol. 156, 855–865 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Wu, X. S. et al. Identification of an organelle receptor for myosin-Va. Nature Cell Biol. 4, 271–278 (2002).

    CAS  PubMed  Google Scholar 

  147. Wu, X. S., Tsan, G. L. & Hammer, J. A. 3rd. Melanophilin and myosin Va track the microtubule plus end on EB1. J. Cell Biol. 171, 201–207 (2005). Clear evidence for the delivery mechanism from the actin to the microtubule transport system.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. El-Amraoui, A. et al. MyRIP, a novel Rab effector, enables myosin VIIa recruitment to retinal melanosomes. EMBO Rep. 3, 463–470 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Desnos, C. et al. Rab27A and its effector MyRIP link secretory granules to F-actin and control their motion towards release sites. J. Cell Biol. 163, 559–570 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Hannah, M. J. et al. Weibel–Palade bodies recruit Rab27 by a content-driven, maturation-dependent mechanism that is independent of cell type. J. Cell Sci. 116, 3939–3948 (2003).

    CAS  PubMed  Google Scholar 

  151. Chen, X. et al. Organellar proteomics: analysis of pancreatic zymogen granule membranes. Mol. Cell. Proteomics 5, 306–312 (2006).

    CAS  PubMed  Google Scholar 

  152. Lawrence, C. J. et al. A standardized kinesin nomenclature. J. Cell Biol. 167, 19–22 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Asai, D. J. & Wilkes, D. E. The dynein heavy chain family. J. Eukaryot. Microbiol. 51, 23–29 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research is supported by grants from the UK Biotechnology and Biological Sciences Research Council, the Wellcome Trust and the Swiss National Science Foundation to T.S., and the Deutsche Forschungsgemeinschaft, the Friedrich–Baur–Stiftung and the Fonds der Chemischen Industrie to M.S. Owing to space limitations, not all of the relevant references could be cited.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Thierry Soldati's homepage

Manfred Schliwa's homepage

Glossary

Endocytosis

A plasma-membrane-associated process in which a eukaryotic cell engulfs extracellular fluid or particles.

Phagocytosis

A form of endocytosis in which a eukaryotic cell engulfs large particles, such as bacteria.

Pinocytosis

A form of endocytosis in which a eukaryotic cell engulfs extracellular fluid and solutes.

Macropinocytosis

A form of pinocytosis, morphologically and mechanistically related to phagocytosis, by which cells form large membrane vesicles.

Clathrin-mediated endocytosis

A form of pinocytosis, often also referred to as receptor-mediated endocytosis, in which the invagination of the endocytic vesicle is driven by the clathrin coat.

Caveolae-mediated endocytosis

A form of pinocytosis that is driven by a coat made of the protein caveolin.

Clathrin- and caveolae-independent endocytosis

A form (or forms) of uptake that is revealed when the two other endocytosis pathways are blocked.

Lamellipodia

Sheet-like plasma-membrane protrusions that are formed by actin polymerization at the leading edge of motile cells.

Phagocytic cup

A bowl-shaped lamellipodia-like protrusion that forms around particles during phagocytic uptake.

Processivity

The capability of a single motor to move for long distances without dissociating from the track.

Acanthamoeba

A genus of small, highly motile soil amoebae that are frequently used for studies of actin-binding proteins and cell locomotion. Some pathogenic forms are known.

Minus end (plus end) direction

Both actin filaments and microtubules demonstrate polarity, and are assembled from monomers that are added at a high rate at one end (the plus end) and at a much slower rate at the other (the minus end). Motors can transport cargo in either direction, processes that are referred to as plus-end-directed and minus-end-directed transport.

Snell's waltzer phenotype

A mouse mutation in myosin VI that arose spontaneously at the Jackson laboratory in the 1960s. It affects inner ear structure and leads to deafness and vestibular dysfunction, causing the mice to circle.

Caveosomes

Endocytic vesicles enriched for the protein caveolin-1 formed from caveolae, flask-shaped pits in the membrane that resemble a cave.

RAB

One family of the large superfamily of small GTP-binding proteins involved in a myriad of cellular functions. RAB proteins are best known for their role in the timing of vesicle fusion.

Actin comet tail

A network of actin filaments that is assembled from one end of an intracellular bacterium (such as Listeria or Shigella) or a cytoplasmic vesicle and that takes on the form of a comet tail. Constant actin polymerization at the surface pushes the bacteria or vesicles through the cytoplasm.

Melanophore

A class of pigment-containing cell that is responsible for the generation of skin and eye colour. The pigment melanin (a tyrosine-polymer) is concentrated in vesicles (melanosomes) that can be translocated in the cell, causing colour change.

Cell cortex

The zone of the cell periphery, directly under the plasma membrane, where the actin cytoskeleton forms a dense meshwork.

CLIP

(Cytoplasmic linker protein). These were originally thought to load endocytic vesicles onto the plus ends of microtubules. CLIPs are part of the microtubule-plus-end-tracking complex (+TIPs) and are associated with the distal ends of microtubules.

Hyphal apex

Hyphae are long, branching filaments that are mostly found in the fungi that form the mycelium, the vegetative network below the ground. Hyphae only grow at the tip, and the hyphal apex contains a growth-related vesicular organelle cluster called Spitzenkörper (tip body).

Rigor mutant

A dominant-negative mutation of the ATP-binding domain in a motor that locks it irreversibly to its cytoskeletal partner.

Syntaxin-1a

A form of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein with a single transmembrane domain that participates in exocytosis. Its C-terminal domain is part of the core SNARE complex, which mediates membrane fusion.

Astrocytes

Star-shaped glial cells in the brain that interact with neurons in multiple ways. They are identified by the expression of glial fibrillary acidic protein (a type of intermediate filament protein) and they outnumber neurons ten to one.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soldati, T., Schliwa, M. Powering membrane traffic in endocytosis and recycling. Nat Rev Mol Cell Biol 7, 897–908 (2006). https://doi.org/10.1038/nrm2060

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2060

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing