Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The ARP2/3 complex: an actin nucleator comes of age

Key Points

  • The seven-subunit actin-related proteins-2/3 (ARP2/3) complex is one of three known actin nucleators in eukaryotes, and is unique in its capability to organize filaments into branched networks.

  • The nucleation and branching activities of ARP2/3 are tightly coupled and are regulated by ATP, nucleation-promoting factors (NPFs) and actin. Structural and biochemical data indicate that activation entails a significant conformational change that enables ARP2 and ARP3 to interact as a heterodimer that forms the template for the assembly of a new filament.

  • Over a dozen NPFs have been identified that fall into two classes, based on the mechanism by which they activate the ARP2/3 complex. NPFs differ in domain organization and physiological function and activate ARP2/3 in response to diverse signals.

  • Class I NPFs activate the ARP2/3 complex by promoting a conformational change and presenting an actin monomer, enabling the branching of a new filament. Class II NPFs bind to the ARP2/3 complex and actin filaments and stabilize ARP2/3-mediated branches.

  • Branching by the ARP2/3 complex is crucial for generating actin networks that are ideally suited for force generation. Branching and debranching are regulated in large part by the nucleotide that is bound to ARP2 and also by the nucleotide that is bound to actin subunits in the mother and daughter filaments.

  • The ARP2/3 complex is essential in many, but not all, eukaryotes. It functions during cell motility, phagocytosis, endocytosis, membrane-trafficking events, and cell-type-specific functions such as T-cell activation.

  • The activities of the ARP2/3 complex are exploited during the pathogenesis of a number of infectious agents to initiate actin polymerization that promotes attachment to the host cell, internalization or cell–cell spread.

  • Misregulation of the activities of the ARP2/3 complex are associated with human disease. For example, the X-linked immune disorder Wiskott–Aldrich syndrome results from mutations in the gene that encodes the NPF Wiskott–Aldrich syndrome protein. ARP2/3 complex activity is also associated with metastasis and invasive-cell motility in cancer cells.

Abstract

The cellular functions of the actin cytoskeleton require precise regulation of both the initiation of actin polymerization and the organization of the resulting filaments. The actin-related protein-2/3 (ARP2/3) complex is a central player in this regulation. A decade of study has begun to shed light on the molecular mechanisms by which this powerful machine controls the polymerization, organization and recycling of actin-filament networks, both in vitro and in the living cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and function of the ARP2/3 complex.
Figure 2: Model for activation and recycling of the ARP2/3 complex.
Figure 3: Domain organization of nucleation-promoting factors.
Figure 4: Cellular functions of the ARP2/3 complex.
Figure 5: Pathogens use ARP2/3 complex activities during infection.

Similar content being viewed by others

References

  1. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Baum, B. & Kunda, P. Actin nucleation: spire-actin nucleator in a class of its own. Curr. Biol. 15, R305–R308 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Kovar, D. R. Molecular details of formin-mediated actin assembly. Curr. Opin. Cell Biol. 18, 11–17 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Machesky, L. M., Atkinson, S. J., Ampe, C., Vandekerckhove, J. & Pollard, T. D. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J. Cell Biol. 127, 107–115 (1994). Initial purification and characterization of the ARP2/3 complex.

    Article  CAS  PubMed  Google Scholar 

  5. Lees-Miller, J. P., Henry, G. & Helfman, D. M. Identification of act2, an essential gene in the fission yeast Schizosaccharomyces pombe that encodes a protein related to actin. Proc. Natl Acad. Sci. USA 89, 80–83 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schwob, E. & Martin, R. P. New yeast actin-like gene required late in the cell cycle. Nature 355, 179–182 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Fyrberg, C. & Fyrberg, E. A Drosophila homologue of the Schizosaccharomyces pombe act2 gene. Biochem. Genet. 31, 329–341 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Waterston, R. et al. A survey of expressed genes in Caenorhabditis elegans. Nature Genet. 1, 114–123 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Winter, D., Podtelejnikov, A. V., Mann, M. & Li, R. The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches. Curr. Biol. 7, 519–529 (1997). The S. cerevisiae Arp2/3 complex is characterized in vitro and in vivo and is shown to be important for the function of cortical actin patches.

    Article  CAS  PubMed  Google Scholar 

  10. Morrell, J. L., Morphew, M. & Gould, K. L. A mutant of Arp2p causes partial disassembly of the Arp2/3 complex and loss of cortical actin function in fission yeast. Mol. Biol. Cell 10, 4201–4215 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Welch, M. D., Iwamatsu, A. & Mitchison, T. J. Actin polymerization is induced by the Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385, 265–269 (1997). The Arp2/3 complex is biochemically isolated as a host factor that promotes actin nucleation at the surface of the bacterial pathogen L. monocytogenes.

    Article  CAS  PubMed  Google Scholar 

  12. Ma, L., Rohatgi, R. & Kirschner, M. W. The Arp2/3 complex mediates actin polymerization induced by the small GTP-binding protein Cdc42. Proc. Natl Acad. Sci. USA 95, 15362–15367 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gordon, J. L. & Sibley, L. D. Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites. BMC Genomics 6, 179 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berriman, M. et al. The genome of the African trypanosome Trypanosoma brucei. Science 309, 416–422 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of actin filaments. Proc. Natl Acad. Sci. USA 95, 6181–6186 (1998). Shows that the ARP2/3 complex binds to the sides and pointed ends of actin filaments and mediates filament branching.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Amann, K. J. & Pollard, T. D. Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy. Proc. Natl Acad. Sci. USA 98, 15009–15013 (2001). Initiation of ARP2/3-mediated daughter-filament formation from the sides of mother filaments is observed in real time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mullins, R. D., Stafford, W. F. & Pollard, T. P. Structure, subunit topology, and actin-binding activity of the Arp2/3 complex from Acanthamoeba. J. Cell Biol. 136, 331–343 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998). WASP and SCAR1 are shown to interact physically with the ARP2/3 complex and to regulate the actin cytoskeleton.

    Article  CAS  PubMed  Google Scholar 

  19. Winter, D. C., Choe, E. Y. & Li, R. Genetic dissection of the budding yeast Arp2/3 complex: a comparison of the in vivo and structural roles of individual subunits. Proc. Natl Acad. Sci. USA 96, 7288–7293 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gournier, H., Goley, E. D., Niederstrasser, H., Trinh, T. & Welch, M. D. Reconstitution of human Arp2/3 complex reveals critical roles of individual subunits in complex structure and activity. Mol. Cell 8, 1041–1052 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, X., Yang, Z., Qian, M. & Zhu, X. Interactions among subunits of human Arp2/3 complex: p20–Arc as the hub. Biochem. Biophys. Res. Commun. 280, 513–517 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Robinson, R. C. et al. Crystal structure of Arp2/3 complex. Science 294, 1679–1684 (2001). The crystal structure of the inactive ARP2/3 complex shows molecular details of its organization and provides insights into its mechanism of action.

    Article  CAS  PubMed  Google Scholar 

  23. Kelleher, J. F., Atkinson, S. J. & Pollard, T. D. Sequences, structural models, and cellular localization of the actin-related proteins Arp2 and Arp3 from Acanthamoeba. J. Cell Biol. 131, 385–397 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Nolen, B. J., Littlefield, R. S. & Pollard, T. D. Crystal structures of actin-related protein 2/3 complex with bound ATP or ADP. Proc. Natl Acad. Sci. USA 101, 15627–15632 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Beltzner, C. C. & Pollard, T. D. Identification of functionally important residues of Arp2/3 complex by analysis of homology models from diverse species. J. Mol. Biol. 336, 551–565 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Egile, C. et al. Mechanism of filament nucleation and branch stability revealed by the structure of the Arp2/3 complex at actin branch junctions. PLoS Biol 3, e383 (2005). The most recent cryo-EM structure of the activated ARP2/3 complex in which the subunits of the complex are localized in a branch point by addition of bulky tags.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dayel, M. J., Holleran, E. A. & Mullins, R. D. Arp2/3 complex requires hydrolyzable ATP for nucleation of new actin filaments. Proc. Natl Acad. Sci. USA 98, 14871–14876 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Le Clainche, C., Didry, D., Carlier, M. F. & Pantaloni, D. Activation of Arp2/3 complex by Wiskott–Aldrich syndrome protein is linked to enhanced binding of ATP to Arp2. J. Biol. Chem. 276, 46689–46692 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Goley, E. D., Rodenbusch, S. E., Martin, A. C. & Welch, M. D. Critical conformational changes in the Arp2/3 complex are induced by nucleotide and nucleation promoting factor. Mol. Cell 16, 269–279 (2004). FRET studies show that conformational changes induced by activating factors are important for the activation of the ARP2/3 complex.

    Article  CAS  PubMed  Google Scholar 

  30. Martin, A. C. et al. Effects of Arp2 and Arp3 nucleotide-binding pocket mutations on Arp2/3 complex function. J. Cell Biol. 168, 315–328 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Le Clainche, C., Pantaloni, D. & Carlier, M. F. ATP hydrolysis on actin-related protein 2/3 complex causes debranching of dendritic actin arrays. Proc. Natl Acad. Sci. USA 100, 6337–6342 (2003). ATP hydrolysis on ARP2 is found to be temporally and functionally linked to actin branch dissociation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dayel, M. J. & Mullins, R. D. Activation of Arp2/3 complex: addition of the first subunit of the new filament by a WASP protein triggers rapid ATP hydrolysis on Arp2. PLoS Biol. 2, E91 (2004). The timing of and requirements for ATP hydrolysis on ARP2 are defined.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Martin, A. C., Welch, M. D. & Drubin, D. G. Arp2/3 ATP hydrolysis-catalyzed branch dissociation is critical for endocytic force generation. Nature Cell Biol. 8, 826–833 (2006). In vivo and in vitro characterization of hydrolysis defective mutants in yeast Arp2 and Arp3 supports a functional role for ATP hydrolysis on Arp2 in debranching and remodelling of actin networks in yeast.

    Article  CAS  PubMed  Google Scholar 

  34. Bompard, G. & Caron, E. Regulation of WASP/WAVE proteins: making a long story short. J. Cell Biol. 166, 957–962 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stradal, T. E. & Scita, G. Protein complexes regulating Arp2/3-mediated actin assembly. Curr. Opin. Cell Biol. 18, 4–10 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Welch, M. D., Rosenblatt, J., Skoble, J., Portnoy, D. & Mitchison, T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281, 105–108 (1998). ActA is identified as the first activator for ARP2/3.

    Article  CAS  PubMed  Google Scholar 

  37. Machesky, L. M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl Acad. Sci. USA 96, 3739–3744 (1999). Shows that SCAR/WAVE proteins and pre-formed actin filaments are activators of the ARP2/3 complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999). Shows that CDC42 and phosphatidylinositol bisphosphate activate N-WASP, which in turn activates the ARP2/3 complex.

    Article  CAS  PubMed  Google Scholar 

  39. Winter, D., Lechler, T. & Li, R. Activation of the yeast Arp2/3 complex by Bee1p, a WASP-family protein. Curr. Biol. 9, 501–504 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Yarar, D., To, W., Abo, A. & Welch, M. D. The Wiskott–Aldrich syndrome protein directs actin-based motility by stimulating actin nucleation with the Arp2/3 complex. Curr. Biol. 9, 555–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Lee, W. L., Bezanilla, M. & Pollard, T. D. Fission yeast myosin-I, Myo1p, stimulates actin assembly by Arp2/3 complex and shares functions with WASp. J. Cell Biol. 151, 789–800 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lechler, T., Jonsdottir, G. A., Klee, S. K., Pellman, D. & Li, R. A two-tiered mechanism by which Cdc42 controls the localization and activation of an Arp2/3-activating motor complex in yeast. J. Cell Biol. 155, 261–270 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jung, G., Remmert, K., Wu, X., Volosky, J. M. & Hammer, J. A. 3rd. The Dictyostelium CARMIL protein links capping protein and the Arp2/3 complex to type I myosins through their SH3 domains. J. Cell Biol. 153, 1479–1497 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gouin, E. et al. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427, 457–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Jeng, R. L. et al. A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actin-based motility. Cell Microbiol. 6, 761–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Chereau, D. et al. Actin-bound structures of Wiskott–Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly. Proc. Natl Acad. Sci. USA 102, 16644–16649 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marchand, J. B., Kaiser, D. A., Pollard, T. D. & Higgs, H. N. Interaction of WASP/Scar proteins with actin and vertebrate Arp2/3 complex. Nature Cell Biol. 3, 76–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Panchal, S. C., Kaiser, D. A., Torres, E., Pollard, T. D. & Rosen, M. K. A conserved amphipathic helix in WASP/Scar proteins is essential for activation of Arp2/3 complex. Nature Struct. Mol. Biol. 10, 591–598 (2003). Identifies conserved residues in the central region of the WCA domain that contribute to ARP2/3 activation and autoinhibition of N-WASP.

    Article  CAS  Google Scholar 

  49. Zalevsky, J., Lempert, L., Kranitz, H. & Mullins, R. D. Different WASP family proteins stimulate different Arp2/3 complex-dependent actin-nucleating activities. Curr. Biol. 11, 1903–1913 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Rodal, A. A. et al. Conformational changes in the Arp2/3 complex leading to actin nucleation. Nature Struct. Mol. Biol. 12, 26–31 (2005). Cryo-EM is used to visualize conformational changes that are required for the activation of the ARP2/3 complex.

    Article  CAS  Google Scholar 

  51. Zalevsky, J., Grigorova, I. & Mullins, R. D. Activation of the Arp2/3 complex by the Listeria ActA protein. ActA binds two actin monomers and three subunits of the Arp2/3 complex. J. Biol. Chem. 276, 3468–3475 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Weaver, A. M. et al. Interaction of cortactin and N-WASp with Arp2/3 complex. Curr. Biol. 12, 1270–1278 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Kreishman-Deitrick, M. et al. NMR analyses of the activation of the Arp2/3 complex by neuronal Wiskott–Aldrich syndrome protein. Biochemistry 44, 15247–15256 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Kelly, A. E., Kranitz, H., Dotsch, V. & Mullins, R. D. Actin binding to the central domain of WASP/Scar proteins plays a critical role in the activation of the Arp2/3 complex. J. Biol. Chem. 281, 10589–10597 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Goode, B. L., Rodal, A. A., Barnes, G. & Drubin, D. G. Activation of the Arp2/3 complex by the actin filament binding protein Abp1p. J. Cell Biol. 153, 627–634 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Duncan, M. C., Cope, M. J., Goode, B. L., Wendland, B. & Drubin, D. G. Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2/3 complex. Nature Cell Biol. 3, 687–690 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Weed, S. A. et al. Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex. J. Cell Biol. 151, 29–40 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Uruno, T. et al. Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nature Cell Biol. 3, 259–266 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Weaver, A. M. et al. Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr. Biol. 11, 370–374 (2001). Shows that the class II NPF cortactin functions to stabilize ARP2/3-mediated branches.

    Article  CAS  PubMed  Google Scholar 

  60. Higgs, H. N., Blanchoin, L. & Pollard, T. D. Influence of the C terminus of Wiskott–Aldrich syndrome protein (WASp) and the Arp2/3 complex on actin polymerization. Biochemistry 38, 15212–15222 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Pantaloni, D., Boujemaa, R., Didry, D., Gounon, P. & Carlier, M. F. The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. Nature Cell Biol. 2, 385–391 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Bailly, M. et al. The F-actin side binding activity of the Arp2/3 complex is essential for actin nucleation and lamellipod extension. Curr. Biol. 11, 620–625 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Fujiwara, I., Suetsugu, S., Uemura, S., Takenawa, T. & Ishiwata, S. Visualization and force measurement of branching by Arp2/3 complex and N-WASP in actin filament. Biochem. Biophys. Res. Commun. 293, 1550–1555 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Ichetovkin, I., Grant, W. & Condeelis, J. Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr. Biol. 12, 79–84 (2002). Shows that ATP–actin-containing mother filaments support more ARP2/3-mediated branching than ADP-containing or ADP–P i -containing mother filaments.

    Article  CAS  PubMed  Google Scholar 

  65. Amann, K. J. & Pollard, T. D. The Arp2/3 complex nucleates actin filament branches from the sides of pre-existing filaments. Nature Cell Biol. 3, 306–310 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Boujemaa-Paterski, R. et al. Listeria protein ActA mimics WASp family proteins: it activates filament barbed end branching by Arp2/3 complex. Biochemistry 40, 11390–11404 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Falet, H. et al. Importance of free actin filament barbed ends for Arp2/3 complex function in platelets and fibroblasts. Proc. Natl Acad. Sci. USA 99, 16782–16787 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Carlsson, A. E., Wear, M. A. & Cooper, J. A. End versus side branching by Arp2/3 complex. Biophys. J. 86, 1074–1081 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Blanchoin, L., Pollard, T. D. & Mullins, R. D. Interactions of ADF/cofilin, Arp2/3 complex, capping protein and profilin in remodeling of branched actin filament networks. Curr. Biol. 10, 1273–1282 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Theriot, J. A. & Mitchison, T. J. Actin microfilament dynamics in locomoting cells. Nature 352, 126–131 (1991).

    Article  CAS  PubMed  Google Scholar 

  71. Balasubramanian, M. K., Feoktistova, A., McCollum, D. & Gould, K. L. Fission yeast Sop2p: a novel and evolutionarily conserved protein that interacts with Arp3p and modulates profilin function. EMBO J. 15, 6426–6437 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hudson, A. M. & Cooley, L. A subset of dynamic actin rearrangements in Drosophila requires the Arp2/3 complex. J. Cell Biol. 156, 677–687 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zallen, J. A. et al. SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila. J. Cell Biol. 156, 689–701 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sawa, M. et al. Essential role of the C. elegans Arp2/3 complex in cell migration during ventral enclosure. J. Cell Sci. 116, 1505–1518 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Harborth, J., Elbashir, S. M., Bechert, K., Tuschl, T. & Weber, K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci. 114, 4557–4565 (2001).

    CAS  PubMed  Google Scholar 

  76. Lommel, S. et al. Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility of Shigella flexneri are abolished in N-WASP-defective cells. EMBO Rep. 2, 850–857 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Snapper, S. B. et al. N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility. Nature Cell Biol. 3, 897–904 (2001). References 76 and 77 describe the effects of N-WASP deficiency on murine development and on actin-dependent events in mouse fibroblasts.

    Article  CAS  PubMed  Google Scholar 

  78. Dahl, J. P. et al. Characterization of the WAVE1 knock-out mouse: implications for CNS development. J. Neurosci. 23, 3343–3352 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Soderling, S. H. et al. Loss of WAVE-1 causes sensorimotor retardation and reduced learning and memory in mice. Proc. Natl Acad. Sci. USA 100, 1723–1728 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yamazaki, D. et al. WAVE2 is required for directed cell migration and cardiovascular development. Nature 424, 452–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Yan, C. et al. WAVE2 deficiency reveals distinct roles in embryogenesis and Rac-mediated actin-based motility. EMBO J. 22, 3602–3612 (2003). References 80 and 81 describe the effects of WAVE2 deficiency on murine development and on cell migration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Le, J., El-Assal Sel, D., Basu, D., Saad, M. E. & Szymanski, D. B. Requirements for Arabidopsis ATARP2 and ATARP3 during epidermal development. Curr. Biol. 13, 1341–1347 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Mathur, J., Mathur, N., Kernebeck, B. & Hulskamp, M. Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis. Plant Cell 15, 1632–1645 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mathur, J. et al. Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation. Development 130, 3137–3146 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Machesky, L. M. et al. Mammalian actin-related protein 2/3 complex localizes to regions of lamellipodial protrusion and is composed of evolutionarily conserved proteins. Biochem. J. 328, 105–112 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Welch, M. D., DePace, A. H., Verma, S., Iwamatsu, A. & Mitchison, T. J. The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J. Cell Biol. 138, 375–384 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Weiner, O. D. et al. Spatial control of actin polymerization during neutrophil chemotaxis. Nature Cell Biol. 1, 75–81 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999). EM study that shows that filaments in lamellipodia are organized into branched networks with the ARP2/3 complex localized to branch points.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rogers, S. L., Wiedemann, U., Stuurman, N. & Vale, R. D. Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J. Cell Biol. 162, 1079–1088 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Steffen, A. et al. Filopodia formation in the absence of functional WAVE- and Arp2/3-complexes. Mol. Biol. Cell 17, 2581–2591 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Di Nardo, A. et al. Arp2/3 complex-deficient mouse fibroblasts are viable and have normal leading-edge actin structure and function. Proc. Natl Acad. Sci. USA 102, 16263–16268 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. May, R. C. et al. The Arp2/3 complex is essential for the actin-based motility of Listeria monocytogenes. Curr. Biol. 9, 759–762 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Strasser, G. A., Rahim, N. A., VanderWaal, K. E., Gertler, F. B. & Lanier, L. M. Arp2/3 is a negative regulator of growth cone translocation. Neuron 43, 81–94 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Gupton, S. L. et al. Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin. J. Cell Biol. 168, 619–631 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Svitkina, T. M. et al. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160, 409–421 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Biyasheva, A., Svitkina, T., Kunda, P., Baum, B. & Borisy, G. Cascade pathway of filopodia formation downstream of SCAR. J. Cell Sci. 117, 837–748 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Suetsugu, S., Miki, H. & Takenawa, T. Identification of two human WAVE/SCAR homologues as general actin regulatory molecules which associate with the Arp2/3 complex. Biochem. Biophys. Res. Commun. 260, 296–302 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Sossey-Alaoui, K., Head, K., Nowak, N. & Cowell, J. K. Genomic organization and expression profile of the human and mouse WAVE gene family. Mamm. Genome 14, 314–322 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Miki, H., Suetsugu, S. & Takenawa, T. WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J. 17, 6932–6941 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nozumi, M., Nakagawa, H., Miki, H., Takenawa, T. & Miyamoto, S. Differential localization of WAVE isoforms in filopodia and lamellipodia of the neuronal growth cone. J. Cell Sci. 116, 239–246 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Stovold, C. F., Millard, T. H. & Machesky, L. M. Inclusion of Scar/WAVE3 in a similar complex to Scar/WAVE1 and 2. BMC Cell Biol. 6, 11 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sossey-Alaoui, K., Ranalli, T. A., Li, X., Bakin, A. V. & Cowell, J. K. WAVE3 promotes cell motility and invasion through the regulation of MMP-1, MMP-3, and MMP-9 expression. Exp. Cell Res. 308, 135–145 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Suetsugu, S., Yamazaki, D., Kurisu, S. & Takenawa, T. Differential roles of WAVE1 and WAVE2 in dorsal and peripheral ruffle formation for fibroblast cell migration. Dev. Cell 5, 595–609 (2003). Shows differential roles for WAVE1 and WAVE2 in the formation of actin-rich structures during cell migration using WAVE1- or WAVE2-deficient mouse embryonic fibroblasts.

    Article  CAS  PubMed  Google Scholar 

  104. Yamazaki, D., Fujiwara, T., Suetsugu, S. & Takenawa, T. A novel function of WAVE in lamellipodia: WAVE1 is required for stabilization of lamellipodial protrusions during cell spreading. Genes Cells 10, 381–392 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekman, D. & Hall, A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).

    Article  CAS  PubMed  Google Scholar 

  106. DeMali, K. A., Barlow, C. A. & Burridge, K. Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion. J. Cell Biol. 159, 881–891 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kovacs, E. M., Goodwin, M., Ali, R. G., Paterson, A. D. & Yap, A. S. Cadherin-directed actin assembly: E-cadherin physically associates with the Arp2/3 complex to direct actin assembly in nascent adhesive contacts. Curr. Biol. 12, 379–382 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Drees, F., Pokutta, S., Yamada, S., Nelson, W. J. & Weis, W. I. α-catenin is a molecular switch that binds E-cadherin–β-catenin and regulates actin-filament assembly. Cell 123, 903–915 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. May, R. C., Caron, E., Hall, A. & Machesky, L. M. Involvement of the Arp2/3 complex in phagocytosis mediated by FcγR or CR3. Nature Cell Biol. 2, 246–248 (2000). Shows that the ARP2/3 complex is functionally important for actin polymerization during phagocytosis.

    Article  CAS  PubMed  Google Scholar 

  110. Castellano, F., Le Clainche, C., Patin, D., Carlier, M. F. & Chavrier, P. A WASp–VASP complex regulates actin polymerization at the plasma membrane. EMBO J. 20, 5603–5614 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Coppolino, M. G. et al. Evidence for a molecular complex consisting of Fyb/SLAP, SLP-76, Nck, VASP and WASP that links the actin cytoskeleton to Fcγ receptor signalling during phagocytosis. J. Cell Sci. 114, 4307–4318 (2001).

    CAS  PubMed  Google Scholar 

  112. Lorenzi, R., Brickell, P. M., Katz, D. R., Kinnon, C. & Thrasher, A. J. Wiskott–Aldrich syndrome protein is necessary for efficient IgG-mediated phagocytosis. Blood 95, 2943–2946 (2000).

    CAS  PubMed  Google Scholar 

  113. Kaksonen, M., Sun, Y. & Drubin, D. G. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115, 475–487 (2003). Uses live-cell microscopy to temporally define the assembly of actin cytoskeletal proteins, including the ARP2/3 complex and NPFs, during endocytosis in yeast, providing insights into how the actin cytoskeleton and endocytosis are coordinated.

    Article  CAS  PubMed  Google Scholar 

  114. Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Merrifield, C. J., Qualmann, B., Kessels, M. M. & Almers, W. Neural Wiskott–Aldrich syndrome protein (N-WASP) and the Arp2/3 complex are recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur. J. Cell Biol. 83, 13–18 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Merrifield, C. J., Perrais, D. & Zenisek, D. Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121, 593–606 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Moreau, V., Galan, J. M., Devilliers, G., Haguenauer-Tsapis, R. & Winsor, B. The yeast actin-related protein Arp2p is required for the internalization step of endocytosis. Mol. Biol. Cell 8, 1361–1375 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schaerer-Brodbeck, C. & Riezman, H. Functional interactions between the p35 subunit of the Arp2/3 complex and calmodulin in yeast. Mol. Biol. Cell 11, 1113–1127 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jonsdottir, G. A. & Li, R. Dynamics of yeast Myosin I: evidence for a possible role in scission of endocytic vesicles. Curr. Biol. 14, 1604–1609 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Benesch, S. et al. N-WASP deficiency impairs EGF internalization and actin assembly at clathrin-coated pits. J. Cell Sci. 118, 3103–3115 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Kaksonen, M., Toret, C. P. & Drubin, D. G. Harnessing actin dynamics for clathrin-mediated endocytosis. Nature Rev. Mol. Cell Biol. 7, 404–414 (2006).

    Article  CAS  Google Scholar 

  122. Rozelle, A. L. et al. Phosphatidylinositol4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP–Arp2/3. Curr. Biol. 10, 311–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Schafer, D. A., D'Souza-Schorey, C. & Cooper, J. A. Actin assembly at membranes controlled by ARF6. Traffic 1, 896–907 (2000).

    Article  Google Scholar 

  124. Taunton, J. et al. Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J. Cell Biol. 148, 519–530 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang, F., Southwick, F. S. & Purich, D. L. Actin-based phagosome motility. Cell Motil. Cytoskeleton 53, 81–88 (2002).

    Article  PubMed  Google Scholar 

  126. Benesch, S. et al. Phosphatidylinositol4,5-biphosphate (PIP2)-induced vesicle movement depends on N-WASP and involves Nck, WIP, and Grb2. J. Biol. Chem. 277, 37771–37776 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Stamnes, M. Regulating the actin cytoskeleton during vesicular transport. Curr. Opin. Cell Biol. 14, 428–433 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Fucini, R. V., Chen, J. L., Sharma, C., Kessels, M. M. & Stamnes, M. Golgi vesicle proteins are linked to the assembly of an actin complex defined by mAbp1. Mol. Biol. Cell 13, 621–631 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Luna, A. et al. Regulation of protein transport from the Golgi complex to the endoplasmic reticulum by CDC42 and N-WASP. Mol. Biol. Cell 13, 866–879 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chen, J. L., Lacomis, L., Erdjument-Bromage, H., Tempst, P. & Stamnes, M. Cytosol-derived proteins are sufficient for Arp2/3 recruitment and ARF/coatomer-dependent actin polymerization on Golgi membranes. FEBS Lett. 566, 281–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Matas, O. B., Martinez-Menarguez, J. A. & Egea, G. Association of Cdc42/N-WASP/Arp2/3 signaling pathway with Golgi membranes. Traffic 5, 838–846 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Gasman, S., Chasserot-Golaz, S., Malacombe, M., Way, M. & Bader, M. F. Regulated exocytosis in neuroendocrine cells: a role for subplasmalemmal Cdc42/N-WASP-induced actin filaments. Mol. Biol. Cell 15, 520–531 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Stevens, J. M., Galyov, E. E. & Stevens, M. P. Actin-dependent movement of bacterial pathogens. Nature Rev. Microbiol. 4, 91–101 (2006).

    Article  CAS  Google Scholar 

  134. Gruenheid, S. et al. Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nature Cell Biol. 3, 856–859 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Lommel, S., Benesch, S., Rohde, M., Wehland, J. & Rottner, K. Enterohaemorrhagic and enteropathogenic Escherichia coli use different mechanisms for actin pedestal formation that converge on N-WASP. Cell Microbiol. 6, 243–254 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Campellone, K. G., Robbins, D. & Leong, J. M. EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev. Cell 7, 217–228 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Munter, S., Way, M. & Frischknecht, F. Signaling during pathogen infection. Sci. STKE 16 May 2006 (doi:10.1126/stke.3352006re5).

  138. Frischknecht, F. et al. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401, 926–929 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Patel, J. C. & Galan, J. E. Manipulation of the host actin cytoskeleton by Salmonella — all in the name of entry. Curr. Opin. Microbiol. 8, 10–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Stender, S. et al. Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol. Microbiol. 36, 1206–1221 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Criss, A. K. & Casanova, J. E. Coordinate regulation of Salmonella enterica Serovar Typhimurium invasion of epithelial cells by the Arp2/3 complex and Rho GTPases. Infect. Immun. 71, 2885–2891 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Unsworth, K. E., Way, M., McNiven, M., Machesky, L. & Holden, D. W. Analysis of the mechanisms of Salmonella-induced actin assembly during invasion of host cells and intracellular replication. Cell Microbiol. 6, 1041–1055 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Egile, C. et al. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell Biol. 146, 1319–1332 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Stamm, L. M. et al. Role of the WASP family proteins for Mycobacterium marinum actin tail formation. Proc. Natl Acad. Sci. USA 102, 14837–14842 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Stevens, M. P. et al. Identification of a bacterial factor required for actin-based motility of Burkholderia pseudomallei. Mol. Microbiol. 56, 40–53 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999). Describes the minimal set of cytoskeletal components sufficient to support actin-based motility of bacterial pathogens in vitro.

    Article  CAS  PubMed  Google Scholar 

  147. Thrasher, A. J. WASp in immune-system organization and function. Nature Rev. Immunol. 2, 635–646 (2002).

    Article  CAS  Google Scholar 

  148. Derry, J. M., Ochs, H. D. & Francke, U. Isolation of a novel gene mutated in Wiskott–Aldrich syndrome. Cell 79, 922 (1994).

    Google Scholar 

  149. Dupre, L. et al. Wiskott–Aldrich syndrome protein regulates lipid raft dynamics during immunological synapse formation. Immunity 17, 157–166 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Badour, K. et al. The Wiskott–Aldrich syndrome protein acts downstream of CD2 and the CD2AP and PSTPIP1 adaptors to promote formation of the immunological synapse. Immunity 18, 141–154 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Nolz, J. C. et al. The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation. Curr. Biol. 16, 24–34 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zipfel, P. A. et al. Role for the Abi/Wave protein complex in T cell receptor-mediated proliferation and cytoskeletal remodeling. Curr. Biol. 16, 35–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Linder, S. et al. The polarization defect of Wiskott–Aldrich syndrome macrophages is linked to dislocalization of the Arp2/3 complex. J. Immunol. 165, 221–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  154. Calle, Y. et al. WASp deficiency in mice results in failure to form osteoclast sealing zones and defects in bone resorption. Blood 103, 3552–3361 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Zicha, D. et al. Chemotaxis of macrophages is abolished in the Wiskott–Aldrich syndrome. Br. J. Haematol. 101, 659–665 (1998).

    Article  CAS  PubMed  Google Scholar 

  156. Burns, S., Thrasher, A. J., Blundell, M. P., Machesky, L. & Jones, G. E. Configuration of human dendritic cell cytoskeleton by Rho GTPases, the WAS protein, and differentiation. Blood 98, 1142–1149 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. de Noronha, S. et al. Impaired dendritic-cell homing in vivo in the absence of Wiskott–Aldrich syndrome protein. Blood 105, 1590–1597 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Wang, W. et al. Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends Cell Biol. 15, 138–145 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Otsubo, T. et al. Involvement of Arp2/3 complex in the process of colorectal carcinogenesis. Mod. Pathol. 17, 461–467 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Wang, W. et al. Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res. 64, 8585–8594 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Semba, S. et al. Coexpression of actin-related protein 2 and Wiskott–Aldrich syndrome family verproline-homologous protein 2 in adenocarcinoma of the lung. Clin. Cancer Res. 12, 2449–2454 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Yanagawa, R. et al. Genome-wide screening of genes showing altered expression in liver metastases of human colorectal cancers by cDNA microarray. Neoplasia 3, 395–401 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Linder, S., Nelson, D., Weiss, M. & Aepfelbacher, M. Wiskott–Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc. Natl Acad. Sci. USA 96, 9648–9653 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mizutani, K., Miki, H., He, H., Maruta, H. & Takenawa, T. Essential role of neural Wiskott–Aldrich syndrome protein in podosome formation and degradation of extracellular matrix in src-transformed fibroblasts. Cancer Res. 62, 669–674 (2002).

    CAS  PubMed  Google Scholar 

  165. Hiura, K., Lim, S. S., Little, S. P., Lin, S. & Sato, M. Differentiation dependent expression of tensin and cortactin in chicken osteoclasts. Cell Motil. Cytoskeleton 30, 272–284 (1995).

    Article  CAS  PubMed  Google Scholar 

  166. Yamaguchi, H. et al. Molecular mechanisms of invadopodium formation: the role of the N-WASP–Arp2/3 complex pathway and cofilin. J. Cell Biol. 168, 441–452 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Quinlan, M. E., Heuser, J. E., Kerkhoff, E. & Mullins, R. D. Drosophila Spire is an actin nucleation factor. Nature 433, 382–388 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Siripala and K. Campellone for comments on the manuscript, and members of the Welch laboratory for helpful discussion. Research in the Welch laboratory is supported from National Institutes of Health and National Institute of General Medicine Sciences, the National Research Initiative of the United States Department of Agriculture Cooperative State Research, Education and Extension Service, and an Established Investigator Award from the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Welch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Wiskott–Aldrich syndrome

Protein Data Bank

1A8K

1ATN

FURTHER INFORMATION

Matthew Welch's homepage

Glossary

Barbed end

(also called the + end). The more dynamic end of the actin filament, where growth and shrinkage are fast. In the actin monomer, the barbed end is on the side of the molecule opposite the nucleotide-binding cleft.

Pointed end

(also called the – end). The less dynamic end of the actin filament. In the actin monomer, the pointed end is on the same side of the molecule as the nucleotide-binding cleft.

FRET

A technique for measuring changes in the distance and orientation between two fluorescent molecules that can be used to monitor protein–protein interactions, or protein conformational dynamics.

Ring canal

Intercellular bridges that connect the developing D. melanogaster oocyte to the nurse cells and serve as conduits for the transfer of cytoplasmic components.

Lamellipodia

Flat, sheet-like cellular protrusions that contain a network of actin filaments that mediate the protrusion of the leading edge of a migrating cell.

Pseudopodia

Large cellular protrusions that contain a network of actin filaments that mediate the protrusion of the leading edge of an amoeboid cell or a phagocyte during crawling migration.

Filopodia

Thin, finger-like structures with a bundled core of actin filaments that form at the leading edge of migrating animal cells.

Fcγ receptor

A family of receptors found on the surface of phagocytic cells. They bind to the constant (Fc) region of immunoglobulins and mediate the phagocytosis of pathogens.

Complement receptor

A family of receptors found on the surface of phagocytic cells. They bind to complement proteins and mediate the phagocytosis of pathogens.

Clathrin-mediated endocytosis

The uptake of material into the cell by a mechanism that involves the assembly of a clathrin protein into a cage-like structure on the cytoplasmic surface of the membrane.

Type III secretion system

A needle-like complex of proteins used by many Gram-negative bacterial pathogens to inject virulence factors (called effectors) directly into the cytoplasm of a host cell.

Antigen-presenting cell

A cell that displays on its surface a foreign antigen in association with a major histocompatibility complex (MHC) protein. Antigen presentation can lead to T-cell activation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goley, E., Welch, M. The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7, 713–726 (2006). https://doi.org/10.1038/nrm2026

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2026

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing