Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stem cells and their implications for colorectal cancer

Abstract

The colonic crypt is home to several multipotent stem cells. These stem cells reside in a niche at the base of the crypt, which controls their behavior and maintains the stem cell's homeostasis through a variety of signaling pathways and interactions. Several attempts have been made to define markers that can identify colonic stem cells, the most useful of which is Lgr5, a Wnt target gene. Although the crypt base contains several stem cells, each colonic crypt comprises a single clone of cells. Investigators have attempted to reconcile these apparently contradictory observations by conducting research into stem cell division. The propagation of stem-cell-acquired mutations through a crypt results in a monocryptal adenoma that, through crypt fission, develops into a microadenoma. Some early adenomas become polyclonal through an as yet unknown mechanism. The discovery of subpopulations of cancer cells that can initiate tumors when implanted into mice has renewed interest in the existence of cancer stem cells, especially with regard to their implications for the use of chemotherapy. Various potential markers of cancer stem cells have been investigated, particularly CD133, but the cancer stem cell theory still has some limitations.

Key Points

  • Several stem cells are thought to reside at the base of each colonic crypt, in a niche that maintains their homeostatic environment and regulates their activities

  • Colonic stem cells can divide either symmetrically (resulting in two daughter or two stem cells) or asymmetrically (resulting in one daughter and one stem cell)

  • The progeny of one stem cell will come to dominate the niche (niche succession) and eventually the entire crypt (monoclonal conversion), facilitating the spread of mutations within a crypt

  • Oncogenic mutations spread through the colonic epithelium (field cancerization) via crypt fission, during which crypts divide laterally; interactions between adjacent crypts might explain why many adenomas are polyclonal

  • Established tumors are thought to contain cancer stem cells, which could be responsible for the continued growth, invasion and metastasis of the tumor

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The colonic stem cell and its niche.
Figure 2: Niche succession, monoclonal conversion and crypt fission.
Figure 3: Possible explanations for the polyclonality of colonic adenomas.

Similar content being viewed by others

References

  1. Cheng, H. & Leblond, C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. III. Entero-endocrine cells. Am. J. Anat. 141, 503–519 (1974).

    CAS  PubMed  Google Scholar 

  2. Cheng, H. & Leblond, C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. Am. J. Anat. 141, 537–561 (1974).

    CAS  PubMed  Google Scholar 

  3. Cheng, H. & Leblond, C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am. J. Anat. 141, 461–479 (1974).

    CAS  PubMed  Google Scholar 

  4. Stemple, D. L. & Anderson, D. J. Lineage diversification of the neural crest: in vitro investigations. Dev. Biol. 159, 12–23 (1993).

    CAS  PubMed  Google Scholar 

  5. Beltrami, A. P. et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763–776 (2003).

    CAS  PubMed  Google Scholar 

  6. Mauro, A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493–495 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Alonso, L. & Fuchs, E. Stem cells of the skin epithelium. Proc. Natl Acad. Sci. USA 100 (Suppl. 1), 11830–11835 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bjerknes, M. & Cheng, H. The stem-cell zone of the small intestinal epithelium. V. Evidence for controls over orientation of boundaries between the stem-cell zone, proliferative zone, and the maturation zone. Am. J. Anat. 160, 105–112 (1981).

    CAS  PubMed  Google Scholar 

  9. Bjerknes, M. & Cheng, H. The stem-cell zone of the small intestinal epithelium. I. Evidence from Paneth cells in the adult mouse. Am. J. Anat. 160, 51–63 (1981).

    CAS  PubMed  Google Scholar 

  10. Bjerknes, M. & Cheng, H. The stem-cell zone of the small intestinal epithelium. IV. Effects of resecting 30% of the small intestine. Am. J. Anat. 160, 93–103 (1981).

    CAS  PubMed  Google Scholar 

  11. Bjerknes, M. & Cheng, H. The stem-cell zone of the small intestinal epithelium. II. Evidence from Paneth cells in the newborn mouse. Am. J. Anat. 160, 65–75 (1981).

    CAS  PubMed  Google Scholar 

  12. Bjerknes, M. & Cheng, H. The stem-cell zone of the small intestinal epithelium. III. Evidence from columnar, enteroendocrine, and mucous cells in the adult mouse. Am. J. Anat. 160, 77–91 (1981).

    CAS  PubMed  Google Scholar 

  13. Forbes, S., Vig, P., Poulsom, R., Thomas, H. & Alison, M. Hepatic stem cells. J. Pathol. 197, 510–518 (2002).

    PubMed  Google Scholar 

  14. Bonner-Weir, S. & Sharma, A. Pancreatic stem cells. J. Pathol. 197, 519–526 (2002).

    PubMed  Google Scholar 

  15. Watt, F. M. & Hogan, B. L. Out of Eden: stem cells and their niches. Science 287, 1427–1430 (2000).

    CAS  PubMed  Google Scholar 

  16. Luebeck, E. G. & Moolgavkar, S. H. Multistage carcinogenesis and the incidence of colorectal cancer. Proc. Natl Acad. Sci. USA 9, 15095–15100 (2002).

    Google Scholar 

  17. American Cancer Society. Colorectal Cancer Facts & Figures 2008–2010. Cancer Facts and Figures [online], (2010).

  18. Potten, C. S. & Hendry, J. H. (Eds) Structure, function and proliferative organisation of the mammalian gut. In Radiation and Gut 1–31 (Elsevier, Amsterdam, 1995).

    Google Scholar 

  19. Bjerknes, M. & Cheng, H. Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology 116, 7–14 (1999).

    CAS  PubMed  Google Scholar 

  20. Marshman, E., Booth, C. & Potten, C. The intestinal epithelial stem cell. Bioessays 24, 91–98 (2002).

    PubMed  Google Scholar 

  21. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    CAS  PubMed  Google Scholar 

  22. Kiger, A. A., Jones, D. L., Schulz, C., Rogers, M. B. & Fuller, M. T. Stem cell self-renewal specified by JAK–STAT activation in response to a support cell cue. Science 294, 2542–2545 (2001).

    CAS  PubMed  Google Scholar 

  23. Tulina, N. & Matunis, E. Control of stem cell self-renewal in Drosophila spermatogenesis by JAK–STAT signaling. Science 294, 2546–2549 (2001).

    CAS  PubMed  Google Scholar 

  24. Powell, D. W. et al. Myofibroblasts. II. Intestinal subepithelial myofibroblasts. Am. J. Physiol. 277 (Pt 1), C183–C201 (1999).

    CAS  PubMed  Google Scholar 

  25. Okuno, T. et al. Interleukin-1β and tumour necrosis factor-α induce chemokine and matrix metalloproteinase gene expression in human colonic subepithelial myofibroblasts. Scand. J. Gastroenterol. 37, 317–324 (2002).

    CAS  PubMed  Google Scholar 

  26. Mahida, Y. R. et al. Adult human colonic subepithelial myofibroblasts express extracellular matrix proteins and cyclooxygenase-1 and -2. Am. J. Physiol. 273 (Pt 1), G1341–G1348 (1997).

    CAS  PubMed  Google Scholar 

  27. Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat. Genet. 19, 379–383 (1998).

    CAS  PubMed  Google Scholar 

  28. Kuhnert, F. et al. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc. Natl Acad. Sci. USA 101, 266–271 (2004).

    CAS  PubMed  Google Scholar 

  29. Pinto, D., Gregorieff, A., Begthel, H. & Clevers, H. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev. 17, 1709–1713 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Batlle, E. et al. β-Catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/EphrinB. Cell 111, 251–263 (2002).

    CAS  PubMed  Google Scholar 

  31. Kosinski, C. et al. Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc. Natl Acad. Sci. USA 104, 15418–15423 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Andoh, A., Bamba, S., Brittan, M., Fujiyama, Y. & Wright, N. A. Role of intestinal subepithelial myofibroblasts in inflammation and regenerative response in the gut. Pharmacol. Ther. 114, 94–106 (2007).

    CAS  PubMed  Google Scholar 

  33. Crosnier, C., Stamataki, D. & Lewis, J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat. Rev. Genet. 7, 349–359 (2006).

    CAS  PubMed  Google Scholar 

  34. He, X. C. et al. PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat. Genet. 39, 189–198 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. He, X. C. et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt–β-catenin signaling. Nat. Genet. 36, 1117–1121 (2004).

    CAS  PubMed  Google Scholar 

  36. Haramis, A. P. et al. De novo crypt formation and juvenile polyposis on BMP. Science 303, 1684–1686 (2004).

    CAS  PubMed  Google Scholar 

  37. Hardwick, J. C., Kodach, L. L., Offerhaus, G. J. & van den Brink, G. R. Bone morphogenetic protein signalling in colorectal cancer. Nat. Rev. Cancer 8, 806–812 (2008).

    CAS  PubMed  Google Scholar 

  38. van den Brink, G. R. et al. Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat. Genet. 36, 277–282 (2004).

    CAS  PubMed  Google Scholar 

  39. Jensen, J. et al. Control of endodermal endocrine development by Hes-1. Nat. Genet. 24, 36–44 (2000).

    CAS  PubMed  Google Scholar 

  40. van Es, J. H. et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435, 959–963 (2005).

    CAS  PubMed  Google Scholar 

  41. Yang, Q., Bermingham, N. A., Finegold, M. J. & Zoghbi, H. Y. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 294, 2155–2158 (2001).

    CAS  PubMed  Google Scholar 

  42. Madison, B. B. et al. Epithelial hedgehog signals pattern the intestinal crypt–villus axis. Development 132, 279–289 (2005).

    CAS  PubMed  Google Scholar 

  43. Withers, H. R. & Elkind, M. M. Microcolony survival assay for cells of mouse intestinal mucosa exposed to radiation. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 17, 261–267 (1970).

    CAS  PubMed  Google Scholar 

  44. Ponder, B. A. et al. Derivation of mouse intestinal crypts from single progenitor cells. Nature 313, 689–691 (1985).

    CAS  PubMed  Google Scholar 

  45. Potten, C. S., Owen, G. & Booth, D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J. Cell Sci. 115 (Pt 11), 2381–2388 (2002).

    CAS  PubMed  Google Scholar 

  46. Potten, C. S., Hume, W. J., Reid, P. & Cairns, J. The segregation of DNA in epithelial stem cells. Cell 15, 899–906 (1978).

    CAS  PubMed  Google Scholar 

  47. Potten, C. S., Kellett, M., Rew, D. A. & Roberts, S. A. Proliferation in human gastrointestinal epithelium using bromodeoxyuridine in vivo: data for different sites, proximity to a tumour, and polyposis coli. Gut 33, 524–529 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dekaney, C. M., Rodriguez, J. M., Graul, M. C. & Henning, S. J. Isolation and characterization of a putative intestinal stem cell fraction from mouse jejunum. Gastroenterology 129, 1567–1580 (2005).

    CAS  PubMed  Google Scholar 

  49. Potten, C. S. et al. Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation 71, 28–41 (2003).

    CAS  PubMed  Google Scholar 

  50. Nishimura, S., Wakabayashi, N., Toyoda, K., Kashima, K. & Mitsufuji, S. Expression of Musashi-1 in human normal colon crypt cells: a possible stem cell marker of human colon epithelium. Dig. Dis. Sci. 48, 1523–1529 (2003).

    CAS  PubMed  Google Scholar 

  51. May, R. et al. Identification of a novel putative gastrointestinal stem cell and adenoma stem cell marker, doublecortin and CaM kinase-like-1, following radiation injury and in adenomatous polyposis coli/multiple intestinal neoplasia mice. Stem Cells 26, 630–637 (2008).

    PubMed  Google Scholar 

  52. Gerbe, F., Brulin, B., Makrini, L., Legraverend, C. & Jay, P. DCAMKL-1 expression identifies tuft cells rather than stem cells in the adult mouse intestinal epithelium. Gastroenterology 137, 2179–2180 (2009).

    CAS  PubMed  Google Scholar 

  53. Barker, N. & Clevers, H. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology 138, 1681–1696 (2010).

    CAS  PubMed  Google Scholar 

  54. Klaus, A. & Birchmeier, W. Wnt signalling and its impact on development and cancer. Nat. Rev. Cancer 8, 387–398 (2008).

    CAS  PubMed  Google Scholar 

  55. van der Flier, L. G., Haegebarth, A., Stange, D. E. & van de Wetering, M. OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology 137, 15–17 (2009).

    PubMed  Google Scholar 

  56. Beà, B. et al. BMI-1 gene amplification and overexpression in hematological malignancies occur mainly in mantle cell lymphomas. Cancer Res. 61, 2409–2412 (2001).

    PubMed  Google Scholar 

  57. Baylin, S. B., Herman, J. G., Graff, J. R., Vertino, P. M. & Issa, J. P. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res. 72, 141–196 (1998).

    CAS  PubMed  Google Scholar 

  58. Kim, H. K. et al. Circulating numbers of endothelial progenitor cells in patients with gastric and breast cancer. Cancer Lett. 198, 83–88 (2003).

    CAS  PubMed  Google Scholar 

  59. Sangiorgi, E. & Capecchi, M. R. Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet. 40, 915–920 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jass, J. R. & Roberton, A. M. Colorectal mucin histochemistry in health and disease: a critical review. Pathol. Int. 44, 487–504 (1994).

    CAS  PubMed  Google Scholar 

  61. Fuller, C. E., Davies, R. P., Williams, G. T. & Williams, E. D. Crypt restricted heterogeneity of goblet cell mucus glycoprotein in histologically normal human colonic mucosa: a potential marker of somatic mutation. Br. J. Cancer 61, 382–384 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Novelli, M. R. et al. Polyclonal origin of colonic adenomas in an XO/XY patient with FAP. Science 272, 1187–1190 (1996).

    CAS  PubMed  Google Scholar 

  63. Novelli, M. et al. X-inactivation patch size in human female tissue confounds the assessment of tumor clonality. Proc. Natl Acad. Sci. USA 100, 3311–3314 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Taylor, R. W. et al. Mitochondrial DNA mutations in human colonic crypt stem cells. J. Clin. Invest. 112, 1351–1360 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Shibata, D. Inferring human stem cell behaviour from epigenetic drift. J. Pathol. 217, 199–205 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim, K. M. & Shibata, D. Methylation reveals a niche: stem cell succession in human colon crypts. Oncogene 21, 5441–5449 (2002).

    CAS  PubMed  Google Scholar 

  67. Shibata, D., Yatabe, Y. & Tavare, S. Investigating stem cells in human colon by using methylation patterns. Proc. Natl Acad. Sci. USA 98, 10839–10844 (2001).

    PubMed  PubMed Central  Google Scholar 

  68. Nicolas, P., Kim, K. M., Shibata, D. & Tavaré, S. The stem cell population of the human colon crypt: analysis via methylation patterns. PLoS Comput. Biol. 3, e28 (2007).

    PubMed  PubMed Central  Google Scholar 

  69. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    CAS  PubMed  Google Scholar 

  70. Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975).

    CAS  PubMed  Google Scholar 

  71. Quyn, A. J. et al. Spindle orientation bias in gut epithelial stem cell compartments is lost in precancerous tissue. Cell Stem Cell 6, 175–181 (2010).

    CAS  PubMed  Google Scholar 

  72. Falconer, E. et al. Identification of sister chromatids by DNA template strand sequences. Nature 463, 93–97 (2010).

    CAS  PubMed  Google Scholar 

  73. Laken, S. J. et al. Analysis of masked mutations in familial adenomatous polyposis. Proc. Natl Acad. Sci. USA 96, 2322–2326 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Miyoshi, Y. et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum. Mol. Genet. 1, 229–233 (1992).

    CAS  PubMed  Google Scholar 

  75. Nakamura, S. & Kino, I. Morphogenesis of minute adenomas in familial polyposis coli. J. Natl Cancer Inst. 73, 41–49 (1984).

    CAS  PubMed  Google Scholar 

  76. Woda, B. A., Forde, K. & Lane, N. A unicryptal colonic adenoma, the smallest colonic neoplasm yet observed in a non-polyposis individual. Am. J. Clin. Pathol. 68, 631–632 (1977).

    CAS  PubMed  Google Scholar 

  77. Wasan, H. S. et al. APC in the regulation of intestinal crypt fission. J. Pathol. 185, 246–255 (1998).

    CAS  PubMed  Google Scholar 

  78. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).

    CAS  PubMed  Google Scholar 

  79. Roncucci, L., Medline, A. & Bruce, W. R. Classification of aberrant crypt foci and microadenomas in human colon. Cancer Epidemiol. Biomarkers Prev. 1, 57–60 (1991).

    CAS  PubMed  Google Scholar 

  80. Levine, D. S. et al. Distribution of aneuploid cell populations in ulcerative colitis with dysplasia or cancer. Gastroenterology 101, 1198–1210 (1991).

    CAS  PubMed  Google Scholar 

  81. Shih, I. M. et al. Top-down morphogenesis of colorectal tumors. Proc. Natl Acad. Sci. USA 98, 2640–2645 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Preston, S. L. et al. Bottom-up histogenesis of colorectal adenomas: origin in the monocryptal adenoma and initial expansion by crypt fission. Cancer Res. 63, 3819–3825 (2003).

    CAS  PubMed  Google Scholar 

  83. Cheng, H., Bjerknes, M., Amar, J. & Gardiner, G. Crypt production in normal and diseased human colonic epithelium. Anat. Rec. 216, 44–48 (1986).

    CAS  PubMed  Google Scholar 

  84. Maskens, A. P. & Dujardin-Loits, R. M. Kinetics of tissue proliferation in colorectal mucosa during post-natal growth. Cell Tissue Kinet. 14, 467–477 (1981).

    CAS  PubMed  Google Scholar 

  85. Cairnie, A. B. & Millen, B. H. Fission of crypts in the small intestine of the irradiated mouse. Cell Tissue Kinet. 8, 189–196 (1975).

    CAS  PubMed  Google Scholar 

  86. Wright, N. A. & Al-Nafussi, A. The kinetics of villus cell populations in the mouse small intestine. II. Studies on growth control after death of proliferative cells induced by cytosine arabinoside, with special reference to negative feedback mechanisms. Cell Tissue Kinet. 15, 611–621 (1982).

    CAS  PubMed  Google Scholar 

  87. Greaves, L. C. et al. Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proc. Natl Acad. Sci. USA 103, 714–719 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, R. et al. The initiation of colon cancer in a chronic inflammatory setting. Carcinogenesis 26, 1513–1519 (2005).

    CAS  PubMed  Google Scholar 

  89. Fialkow, P. J. Clonal origin of human tumors. Biochim. Biophys. Acta 458, 283–321 (1976).

    CAS  PubMed  Google Scholar 

  90. Edwards, C. M. & Chapman, S. J. Biomechanical modelling of colorectal crypt budding and fission. Bull. Math. Biol. 69, 1927–1942 (2007).

    PubMed  Google Scholar 

  91. Thliveris, A. T. et al. Polyclonality of familial murine adenomas: analyses of mouse chimeras with low tumor multiplicity suggest short-range interactions. Proc. Natl Acad. Sci. USA 102, 6960–6965 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Thirlwell, C. et al. Clonality assessment and clonal ordering of individual neoplastic crypts shows polyclonality of colorectal adenomas. Gastroenterology 138, 1441.e7–1454.e7 (2010).

    Google Scholar 

  93. Merritt, A. J., Gould, K. A. & Dove, W. F. Polyclonal structure of intestinal adenomas in ApcMin/+ mice with concomitant loss of Apc+ from all tumor lineages. Proc. Natl Acad. Sci. USA 94, 13927–13931 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu, M., Pastor-Pareja, J. C. & Xu, T. Interaction between RasV12 and scribbled clones induces tumour growth and invasion. Nature 463, 545–548 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hamburger, A. W. & Salmon, S. E. Primary bioassay of human tumor stem cells. Science 197, 461–463 (1977).

    CAS  PubMed  Google Scholar 

  96. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997).

    CAS  PubMed  Google Scholar 

  97. Maw, M. A. et al. A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum. Mol. Genet. 9, 27–34 (2000).

    CAS  PubMed  Google Scholar 

  98. Miraglia, S. et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90, 5013–5021 (1997).

    CAS  PubMed  Google Scholar 

  99. Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003).

    CAS  PubMed  Google Scholar 

  100. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    CAS  PubMed  Google Scholar 

  101. Bussolati, B. et al. Isolation of renal progenitor cells from adult human kidney. Am. J. Pathol. 166, 545–555 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J. & Maitland, N. J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65, 10946–10951 (2005).

    CAS  PubMed  Google Scholar 

  103. Yin, S. et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int. J. Cancer 120, 1444–1450 (2007).

    CAS  PubMed  Google Scholar 

  104. O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007).

    CAS  PubMed  Google Scholar 

  105. Ricci-Vitiani, L. et al. Identification and expansion of human colon cancer initiating cells. Nature 445, 111–115 (2007).

    CAS  PubMed  Google Scholar 

  106. Brabletz, T., Jung, A., Spaderna, S., Hlubek, F. & Kirchner, T. Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat. Rev. Cancer 5, 744–749 (2005).

    CAS  PubMed  Google Scholar 

  107. Dalerba, P. et al. Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl Acad. Sci. USA 104, 10158–10163 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Vermeulen, L. et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc. Natl Acad. Sci. USA 105, 13427–13432 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kirkland, S. C. Clonal origin of columnar, mucous, and endocrine cell lineages in human colorectal epithelium. Cancer 61, 1359–1363 (1988).

    CAS  PubMed  Google Scholar 

  110. Schatton, T. et al. Identification of cells initiating human melanomas. Nature 451, 345–349 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Quintana, E. et al. Efficient tumour formation by single human melanoma cells. Nature 456, 593–598 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Dallas, N. A. et al. Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res. 69, 1951–1957 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. S. Zeki researched data for and wrote the article. T. A. Graham and N. A. Wright made substantial contributions to discussions of the article content and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Sebastian S. Zeki.

Ethics declarations

Competing interests

S. S. Zeki declares that he has received a research grant from the charitable organization CORE. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeki, S., Graham, T. & Wright, N. Stem cells and their implications for colorectal cancer. Nat Rev Gastroenterol Hepatol 8, 90–100 (2011). https://doi.org/10.1038/nrgastro.2010.211

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2010.211

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer