Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Causes and consequences of microRNA dysregulation in cancer

Key Points

  • This paper describes the alterations and mechanisms that are involved in microRNA (miRNA) dysregulation in human cancer and how such dysregulation is involved in cancer initiation and progression.

  • miRNA profiling can be used to assess which miRNAs are dysregulated in human cancer.

  • miRNAs acting as tumour suppressors target important oncogenes, such as B cell leukaemia/lymphoma 2 (BCL2), MYC and RAS.

  • miRNAs acting as oncogenes target important tumour suppressors, such as phosphatase and tensin homologue (PTEN), p27, p57 and tissue inhibitor of metalloproteinases 3 (TIMP3).

  • miRNA genes can be silenced by epigenetic changes and can cause epigenetic changes that result in the silencing of tumour suppressor genes; for example, loss of miR-29 family members results in the overexpression of DNA methyltransferases and the silencing of tumour suppressors. Reintroduction of miR-29 family members into tumour cells that have lost them results in the reactivation of silenced tumour suppressors and the suppression of tumorigenicity.

  • The same miRNAs are dysregulated in multiple human tumours, which suggests that they may be downstream targets of pathways that are commonly dysregulated in human cancer.

  • Dysregulated miRNAs could be targets for anticancer treatment.

Abstract

Over the past several years it has become clear that alterations in the expression of microRNA (miRNA) genes contribute to the pathogenesis of most — if not all — human malignancies. These alterations can be caused by various mechanisms, including deletions, amplifications or mutations involving miRNA loci, epigenetic silencing or the dysregulation of transcription factors that target specific miRNAs. Because malignant cells show dependence on the dysregulated expression of miRNA genes, which in turn control or are controlled by the dysregulation of multiple protein-coding oncogenes or tumour suppressor genes, these small RNAs provide important opportunities for the development of future miRNA-based therapies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MicroRNA genes map to chromosomal regions that are involved in alterations in human cancer.
Figure 2: Role of the miR-106b–25 and miR-17–92 clusters in the control of transforming growth factor-β signalling.

Similar content being viewed by others

References

  1. Croce, C. M. Oncogenes and cancer. N. Engl. J. Med. 358, 502–511 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Groffen, J. et al. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36, 93–99 (1984).

    Article  CAS  PubMed  Google Scholar 

  3. Shtivelman, E., Lifshitz, B., Gale, R. P. & Canaani, E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 315, 550–554 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Roche-Lestienne, C. et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 100, 1014–1018 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Bots, M. & Johnstone, R. W. Rational combinations using HDAC inhibitors. Clin. Cancer Res. 15, 3970–3977 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with anti-sense complementarity to lin-14. Cell 75, 843–854 (1993). This paper describes the discovery of the first miRNA gene.

    Article  CAS  PubMed  Google Scholar 

  10. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Esquela-Kerscher, A. & Slack, F. J. Oncomirs — microRNAs with a role in cancer. Nature Rev. Cancer 6, 259–269 (2006). An excellent review on the role of miRNAs in human malignancies.

    Article  CAS  Google Scholar 

  12. Calin, G. A. & Croce, C. M. MicroRNA signatures in human cancers. Nature Rev. Cancer 6, 857–866 (2006).

    Article  CAS  Google Scholar 

  13. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Bullrich, F. et al. Characterization of the 13q14 tumor suppressor locus in CLL: identification of ALT1, an alternative splice variant of the LEU2 gene. Cancer Res. 61, 6640–6648 (2001).

    CAS  PubMed  Google Scholar 

  15. Calin, G. A. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99, 15524–15529 (2002). The first evidence of alterations of miRNA genes and dysregulation of miRNA gene expression in human disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101, 2999–3004 (2004). The first evidence that many miRNA genes are located in genomic regions that are altered in human cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Esquela-Kerscher, A. et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 7, 759–764 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Chin, L. J. et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res. 68, 8535–8540 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Volinia, S. et al. MicroRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA 103, 2257–2261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Calin, G. A. et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med. 353, 1793–1801 (2005). The first evidence of somatic and germline mutations in miRNA genes in disease.

    Article  CAS  PubMed  Google Scholar 

  21. Raveche, E. S. et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood 109, 5079–5086 (2007). The first evidence of a germline mutation in an miRNA precursor that predisposes to a malignancy in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005). The first evidence of an miRNA that targets an oncogene.

    Article  CAS  PubMed  Google Scholar 

  23. Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA 102, 13944–13949 (2006). The first evidence that miRNAs target an oncogene that is involved in the inhibition of apoptosis.

    Article  Google Scholar 

  24. Tsujimoto, Y. et al. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226, 1097–1099 (1984).

    Article  CAS  PubMed  Google Scholar 

  25. Tsujimoto, Y., Cossman, J., Jaffe, E. & Croce, C. M. Involvement of the bcl-2 gene in human follicular lymphoma. Science 228, 1440–1443 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, Y. A. & Dutta, A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Develop. 21, 1025–1030 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adachi, M., Cossman, J., Longo, D., Croce, C. M. & Tsujimoto, Y. Variant translocation of the bcl-2 gene to immunoglobulin λ light chain gene in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 86, 2771–2774 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Adachi, M., Tefferi, A., Greipp, P. R., Kipps, T. J. & Tsujimoto, Y. Preferential linkage of bcl-2 to immunoglobulin light chain gene in chronic lymphocytic leukemia. J. Exp. Med. 171, 559–564 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Calin, G. A. et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc. Natl Acad. Sci. USA 105, 5166–5171 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Felli, N. et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl Acad. Sci. USA 102, 18081–18086 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Iorio, M. V. et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65, 7065–7070 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Eis, P. S. et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl Acad. Sci. USA 102, 3627–3632 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Costinean, S. et al. Pre-B cell proliferation and lymphoblastic leukemia/high grade lymphoma in Eμ-miR155 transgenic mice. Proc. Natl Acad. Sci. USA 103, 7024–7029 (2006). This paper provides the first direct evidence that the dysregulation of a single miRNA can lead to cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ota, A. et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31–q32 amplification in malignant lymphoma. Cancer Res. 64, 3087–3095 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Mendell, J. T. miRiad roles for the miR-17-92 cluster in development and disease. Cell 133, 217–222 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Metzler, M., Wilda, M., Busch, K., Viehmann, S. & Borkhardt, A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosom. Cancer 39, 167–169 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Kluiver, J. et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J. Pathol. 207, 243–249 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Garzon, R. et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111, 3183–3189 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. He, L. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xiao, C. et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature Immunol. 9, 405–414 (2008).

    Article  CAS  Google Scholar 

  41. Ventura, A. G. et al. Targeted deletion reveals essential and overlapping functions of the miR-1792 family of miRNA clusters. Cell 132, 875–886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yanaihara, N. et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9, 189–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Garofalo, M. et al. MiR-221 and 222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell (in the press).

  44. Ciafrè, S. A. et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem. Biophys. Res. Commun. 334, 1351–1358 (2005).

    Article  PubMed  Google Scholar 

  45. Meng, F. et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133, 647–658 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Chan, J. A., Kritchevsky, A. M. & Kasic, K. S. MicroRNA-21 is an anti-apoptotic factor in human glioblastoma cells. Cancer Res. 65, 6029–6033 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Frankel, L. B. et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem. 283, 1026–1033 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Zhu, S., Si, M.-L., Win, H. & Mo, Y.-Y. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J. Biol. Chem. 282, 14328–14336 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Bloomston, M. et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297, 1901–1908 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Schetter, A. J. et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299, 425–436 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fornari, F. et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27, 5651–5661 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Ambs, S. et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res. 68, 6162–6170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. O'Donnell, K. A. et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Petrocca, F. et al. E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13, 272–286 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Derynck, R., Akhurst, R. J. & Balmain, A. TGF-β signaling in tumor suppression and cancer progression. Nature Genet. 29, 117–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. He, L. et al. A microRNA component of the p53 tumour suppressor network. Nature 447, 1130–1134 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Raver-Shapira, N. et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol. Cell 26, 731–743 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Chang, T.-C. et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26, 745–752 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. DiLeva, G. et al. A regulatory 'miRcircuitry' inducing miR-221 and 222 and ERα determines ERα status of breast cancer cells. J. Natl Cancer Inst. (in the press).

  60. Bonci, D. et al. The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nature Med. 14, 1271–1277 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Kota, J. et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137, 1005–1017 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nature Rev. Genet. 8, 286–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Saito, Y. et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9, 435–443 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Fabbri, M. et al. MicroRNA family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl Acad. Sci. USA 104, 15805–15810 (2007). The first evidence that miRNAs can affect epigenetic changes and cause the reactivation of silenced tumour suppressor genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Garzon, R. et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113, 6411–6418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Garzon, R. et al. MicroRNA-29 expression and function in acute myeloid leukemia. Blood (in the press).

  67. Noonan, E. J. et al. miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28, 1714–1724 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    Article  PubMed  Google Scholar 

  69. Roccaro, A. M. et al. MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma. Blood 26, 6669–6680 (2009).

    Article  Google Scholar 

  70. Sampson, V. B. et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 67, 9762–9770 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Mott, J. L., Kobayashi, S., Bronk, S. F. & Gores, G. J. miR-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26, 6133–6140 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pekarsky, Y. et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 66, 11590–11593 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. le Sage, C. et al. Regulation of the p27Kip1 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J. 26, 3699–3708 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Voorhoeve, P. M. et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124, 1169–1181 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

miRBase

lin-4

miR-155

miR-15a

miR-15b

miR-16-1

miR-16-2

miR-17

miR-18a

miR-19a

miR-19b-1

miR-20a

miR-221

miR-222

miR-34a

miR-34b

miR-34c

miR-92a-1

Glossary

CpG island

A sequence of at least 200 bp with more CpG sites than would be expected for its GC content. These sequences are often GC rich, are typically undermethylated and are found upstream of many mammalian genes.

RNA-induced silencing complex

An Argonaute protein–small RNA complex that inhibits the translation of target RNAs through degradative or non-degradative mechanisms.

Indolent

In medical terms, slow to develop or heal.

Syngeneic mice

Mice that are genetically identical. Cells can be transferred between syngeneic mice without provoking an immune response.

Liposome

An artificial lipid vesicle. Liposomes fuse with the cell membrane to deliver their contents, such as DNA for gene therapy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croce, C. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10, 704–714 (2009). https://doi.org/10.1038/nrg2634

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2634

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing