Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular genetics and diagnosis of thyroid cancer

Abstract

Thyroid cancer is a common type of endocrine malignancy, and its incidence has been steadily increasing in many regions of the world. Initiation and progression of thyroid cancer involves multiple genetic and epigenetic alterations, of which mutations leading to the activation of the MAPK and PI3K–AKT signaling pathways are crucial. Common mutations found in thyroid cancer are point mutation of the BRAF and RAS genes as well as RET/PTC and PAX8/PPARγ chromosomal rearrangements. The mutational mechanisms seem to be linked to specific etiologic factors. Chromosomal rearrangements have a strong association with exposure to ionizing radiation and possibly with DNA fragility, whereas point mutations probably arise as a result of chemical mutagenesis. A potential role of dietary iodine excess in the generation of BRAF point mutations has also been proposed. Somatic mutations and other molecular alterations have been recognized as helpful diagnostic and prognostic markers for thyroid cancer and are beginning to be introduced into clinical practice, to offer a valuable tool for the management of patients with thyroid nodules.

Key Points

  • Activation of MAPK and PI3K–AKT signaling pathways is important for thyroid cancer initiation and progression

  • Common mutational mechanisms in thyroid cancer are point mutations, such as those in the RAS and BRAF genes, and chromosomal rearrangements, such as RET/PTC and PAX8/PPARγ

  • RET/PTC and BRAF/AKAP9 chromosomal rearrangements have strong correlation with radiation exposure; RET/PTC can also develop via induction of chromosome fragility

  • Association between BRAF point mutations and high iodine intake or exposure to chemical elements present at high levels in volcanic areas has been proposed

  • Mutational markers can be used to improve cancer diagnosis in fine-needle aspiration samples from thyroid nodules and to aid tumor prognostication

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme of step-wise dedifferentiation of follicular cell-derived thyroid cancer.
Figure 2: The main signaling pathways involved in thyroid carcinogenesis are the MAPK and PI3K–AKT pathways.
Figure 3: Molecular alterations in papillary thyroid cancer and their average prevalence and association with clinical and histopathological features of tumors.
Figure 4: In papillary thyroid cancer, activation of the MAPK signaling pathway occurs via two main mechanisms: chromosomal rearrangement or point mutations, which correlate with distinct etiologic factors.
Figure 5: Potential clinical management of patients with thyroid nodules on the basis of a combination of cytological examination and molecular analysis.

Similar content being viewed by others

References

  1. DeLellis, R. A., Lloyd, R. V., Heitz, P. U. & Eng, C. (Eds) World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Endocrine Organs (IARC Press, Lyon, 2004).

    Google Scholar 

  2. Nikiforov, Y. E. in Diagnostic Pathology and Molecular Genetics of the Thyroid (eds Nikiforov, Y. E., Biddinger, P. W. & Thompson, L. D. R.) 94–102 (Lippincott Williams & Wilkins, Baltimore, 2009).

    Google Scholar 

  3. Davies, L. & Welch, H. G. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 295, 2164–2167 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Albores-Saavedra, J., Henson, D. E., Glazer, E. & Schwartz, A. M. Changing patterns in the incidence and survival of thyroid cancer with follicular phenotype–papillary, follicular, and anaplastic: a morphological and epidemiological study. Endocr. Pathol. 18, 1–7 (2007).

    Article  PubMed  Google Scholar 

  5. Burgess, J. R. & Tucker, P. Incidence trends for papillary thyroid carcinoma and their correlation with thyroid surgery and thyroid fine-needle aspirate cytology. Thyroid 16, 47–53 (2006).

    Article  PubMed  Google Scholar 

  6. Colonna, M. et al. A time trend analysis of papillary and follicular cancers as a function of tumour size: a study of data from six cancer registries in France (1983–2000). Eur. J. Cancer 43, 891–900 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Mazzaferri, E. L. Thyroid cancer in thyroid nodules: finding a needle in the haystack. Am. J. Med. 93, 359–362 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Gharib, H. Changing trends in thyroid practice: understanding nodular thyroid disease. Endocr. Pract. 10, 31–39 (2004).

    Article  PubMed  Google Scholar 

  9. Frates, M. C. et al. Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography. J. Clin. Endocrinol. Metab. 91, 3411–3417 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Papini, E. et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J. Clin. Endocrinol. Metab. 87, 1941–1946 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Greaves, T. S. et al. Follicular lesions of thyroid: a 5-year fine-needle aspiration experience. Cancer 90, 335–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Sclabas, G. M. et al. Fine-needle aspiration of the thyroid and correlation with histopathology in a contemporary series of 240 patients. Am. J. Surg. 186, 702–709 (2003).

    Article  PubMed  Google Scholar 

  13. Cooper, D. S. et al. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 16, 109–142 (2006).

    Article  PubMed  Google Scholar 

  14. Yassa, L. et al. Long-term assessment of a multidisciplinary approach to thyroid nodule diagnostic evaluation. Cancer 111, 508–516 (2007).

    Article  PubMed  Google Scholar 

  15. Adeniran, A. J. et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am. J. Surg. Pathol. 30, 216–222 (2006).

    Article  PubMed  Google Scholar 

  16. Kimura, E. T. et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 63, 1454–1457 (2003).

    CAS  PubMed  Google Scholar 

  17. Soares, P. et al. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 22, 4578–4580 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Frattini, M. et al. Alternative mutations of BRAF, RET and NTRK1 are associated with similar but distinct gene expression patterns in papillary thyroid cancer. Oncogene 23, 7436–7440 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Santoro, M. et al. Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J. Clin. Invest. 89, 1517–1522 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jhiang, S. M. et al. Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology 137, 375–378 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Santoro, M. et al. Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene 12, 1821–1826 (1996).

    CAS  PubMed  Google Scholar 

  22. Powell, D. J. Jr et al. The RET/PTC3 oncogene: metastatic solid-type papillary carcinomas in murine thyroids. Cancer Res. 58, 5523–5528 (1998).

    CAS  PubMed  Google Scholar 

  23. Grieco, M. et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60, 557–563 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Santoro, M. et al. Molecular characterization of RET/PTC3; a novel rearranged version of the RET proto-oncogene in a human thyroid papillary carcinoma. Oncogene 9, 509–516 (1994).

    CAS  PubMed  Google Scholar 

  25. Pierotti, M. A. et al. Characterization of an inversion on the long arm of chromosome 10 juxtaposing D10S170 and RET and creating the oncogenic sequence RET/PTC. Proc. Natl Acad. Sci. USA 89, 1616–1620 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Minoletti, F. et al. The two genes generating RET/PTC3 are localized in chromosomal band 10q11.2. Genes Chromosomes Cancer 11, 51–57 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Bongarzone, I. et al. Molecular characterization of a thyroid tumor-specific transforming sequence formed by the fusion of ret tyrosine kinase and the regulatory subunit RI alpha of cyclic AMP-dependent protein kinase A. Mol. Cell. Biol. 13, 358–366 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Klugbauer, S., Demidchik, E. P., Lengfelder, E. & Rabes, H. M. Detection of a novel type of RET rearrangement (PTC5) in thyroid carcinomas after Chernobyl and analysis of the involved RET-fused gene RFG5. Cancer Res. 58, 198–203 (1998).

    CAS  PubMed  Google Scholar 

  29. Klugbauer, S. & Rabes, H. M. The transcription coactivator HTIF1 and a related protein are fused to the RET receptor tyrosine kinase in childhood papillary thyroid carcinomas. Oncogene 18, 4388–4393 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Klugbauer, S., Jauch, A., Lengfelder, E., Demidchik, E. & Rabes, H. M. A novel type of RET rearrangement (PTC8) in childhood papillary thyroid carcinomas and characterization of the involved gene (RFG8). Cancer Res. 60, 7028–7032 (2000).

    CAS  PubMed  Google Scholar 

  31. Salassidis, K. et al. Translocation t(10;14)(q11.2:q22.1) fusing the kinetin to the RET gene creates a novel rearranged form (PTC8) of the RET proto-oncogene in radiation-induced childhood papillary thyroid carcinoma. Cancer Res. 60, 2786–2789 (2000).

    CAS  PubMed  Google Scholar 

  32. Corvi, R., Berger, N., Balczon, R. & Romeo, G. RET/PCM-1: a novel fusion gene in papillary thyroid carcinoma. Oncogene 19, 4236–4242 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Saenko, V. et al. Novel tumorigenic rearrangement, Delta rfp/ret, in a papillary thyroid carcinoma from externally irradiated patient. Mutat. Res. 527, 81–90 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Nakata, T. et al. Fusion of a novel gene, ELKS, to RET due to translocation t(10;12)(q11;p13) in a papillary thyroid carcinoma. Genes Chromosomes Cancer 25, 97–103 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Ciampi, R., Giordano, T. J., Wikenheiser-Brokamp, K., Koenig, R. J. & Nikiforov, Y. E. HOOK3-RET: a novel type of RET/PTC rearrangement in papillary thyroid carcinoma. Endocr. Relat. Cancer 14, 445–452 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Nikiforov, Y. E. RET/PTC rearrangement in thyroid tumors. Endocr. Pathol. 13, 3–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Tallini, G. & Asa, S. L. RET oncogene activation in papillary thyroid carcinoma. Adv. Anat. Pathol. 8, 345–354 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Unger, K. et al. Heterogeneity in the distribution of RET/PTC rearrangements within individual post-Chernobyl papillary thyroid carcinomas. J. Clin. Endocrinol. Metab. 89, 4272–4279 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Zhu, Z., Ciampi, R., Nikiforova, M. N., Gandhi, M. & Nikiforov, Y. E. Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J. Clin. Endocrinol. Metab. 91, 3603–3610 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Santoro, M. et al. Involvement of RET oncogene in human tumours: specificity of RET activation to thyroid tumours. Br. J. Cancer 68, 460–464 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tallini, G. et al. RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin. Cancer Res. 4, 287–294 (1998).

    CAS  PubMed  Google Scholar 

  42. Nikiforova, M. N., Caudill, C. M., Biddinger, P. & Nikiforov, Y. E. Prevalence of RET/PTC rearrangements in Hashimoto's thyroiditis and papillary thyroid carcinomas. Int. J. Surg. Pathol. 10, 15–22 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Ishizaka, Y. et al. Detection of retTPC/PTC transcripts in thyroid adenomas and adenomatous goiter by an RT-PCR method. Oncogene 6, 1667–1672 (1991).

    CAS  PubMed  Google Scholar 

  44. Wirtschafter, A. et al. Expression of the RET/PTC fusion gene as a marker for papillary carcinoma in Hashimoto's thyroiditis. Laryngoscope 107, 95–100 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Sheils, O. M., O'Eary, J. J., Uhlmann, V., Lättich, K. & Sweeney, E. C. ret/PTC-1 Activation in Hashimoto Thyroiditis. Int. J. Surg. Pathol. 8, 185–189 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Elisei, R. et al. RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J. Clin. Endocrinol. Metab. 86, 3211–3216 (2001).

    CAS  PubMed  Google Scholar 

  47. Chiappetta, G. et al. The RET/PTC oncogene is frequently activated in oncocytic thyroid tumors (Hurthle cell adenomas and carcinomas), but not in oncocytic hyperplastic lesions. J. Clin. Endocrinol. Metab. 87, 364–369 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Sapio, M. R. et al. High growth rate of benign thyroid nodules bearing RET/PTC rearrangements. J. Clin. Endocrinol. Metab. 96, E916–E919 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Guerra, A. et al. Prevalence of RET/PTC rearrangement in benign and malignant thyroid nodules and its clinical application. Endocr. J. 58, 31–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Radice, P. et al. The human tropomyosin gene involved in the generation of the TRK oncogene maps to chromosome 1q31. Oncogene 6, 2145–2148 (1991).

    CAS  PubMed  Google Scholar 

  51. Greco, A. et al. TRK-T1 is a novel oncogene formed by the fusion of TPR and TRK genes in human papillary thyroid carcinomas. Oncogene 7, 237–242 (1992).

    CAS  PubMed  Google Scholar 

  52. Miranda, C., Minoletti, F., Greco, A., Sozzi, G. & Pierotti, M. A. Refined localization of the human TPR gene to chromosome 1q25 by in situ hybridization. Genomics 23, 714–715 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Pierotti, M. A. et al. Cytogenetics and molecular genetics of carcinomas arising from thyroid epithelial follicular cells. Genes Chromosomes Cancer 16, 1–14 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Bongarzone, I. et al. RET/NTRK1 rearrangements in thyroid gland tumors of the papillary carcinoma family: correlation with clinicopathological features. Clin. Cancer Res. 4, 223–228 (1998).

    CAS  PubMed  Google Scholar 

  55. Musholt, T. J. et al. Prognostic significance of RET and NTRK1 rearrangements in sporadic papillary thyroid carcinoma. Surgery 128, 984–993 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Suarez, H. G. et al. Presence of mutations in all three ras genes in human thyroid tumors. Oncogene 5, 565–570 (1990).

    CAS  PubMed  Google Scholar 

  57. Esapa, C. T., Johnson, S. J., Kendall-Taylor, P., Lennard, T. W. & Harris, P. E. Prevalence of Ras mutations in thyroid neoplasia. Clin. Endocrinol. (Oxf.) 50, 529–535 (1999).

    Article  CAS  Google Scholar 

  58. Motoi, N. et al. Role of ras mutation in the progression of thyroid carcinoma of follicular epithelial origin. Pathol. Res. Pract. 196, 1–7 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Manenti, G., Pilotti, S., Re, F. C., Della Porta, G. & Pierotti, M. A. Selective activation of ras oncogenes in follicular and undifferentiated thyroid carcinomas. Eur. J. Cancer 30A, 987–993 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Namba, H., Rubin, S. A. & Fagin, J. A. Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol. Endocrinol. 4, 1474–1479 (1990).

    Article  CAS  PubMed  Google Scholar 

  61. Karga, H. et al. Ras oncogene mutations in benign and malignant thyroid neoplasms. J. Clin. Endocrinol. Metab. 73, 832–836 (1991).

    Article  CAS  PubMed  Google Scholar 

  62. Ezzat, S. et al. Prevalence of activating ras mutations in morphologically characterized thyroid nodules. Thyroid 6, 409–416 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Zhu, Z., Gandhi, M., Nikiforova, M. N., Fischer, A. H. & Nikiforov, Y. E. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am. J. Clin. Pathol. 120, 71–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Fagin, J. A. Minireview: branded from the start-distinct oncogenic initiating events may determine tumor fate in the thyroid. Mol. Endocrinol. 16, 903–911 (2002).

    CAS  PubMed  Google Scholar 

  65. Saavedra, H. I. et al. The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the MAPK pathway. Oncogene 19, 3948–3954 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Basolo, F. et al. N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone metastases and inverse correlation to thyroglobulin expression. Thyroid 10, 19–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Garcia-Rostan, G. et al. Ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J. Clin. Oncol. 21, 3226–3235 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Cohen, Y. et al. BRAF mutation in papillary thyroid carcinoma. J. Natl Cancer Inst. 95, 625–627 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Trovisco, V. et al. BRAF mutations are associated with some histological types of papillary thyroid carcinoma. J. Pathol. 202, 247–251 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Carta, C. et al. Genotyping of an Italian papillary thyroid carcinoma cohort revealed high prevalence of BRAF mutations, absence of RAS mutations and allowed the detection of a new mutation of BRAF oncoprotein (BRAF(V599lns)). Clin. Endocrinol. (Oxf.) 64, 105–109 (2006).

    Article  CAS  Google Scholar 

  71. Hou, P., Liu, D. & Xing, M. Functional characterization of the T1799–1801del and A1799–1816ins BRAF mutations in papillary thyroid cancer. Cell Cycle 6, 377–379 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Chiosea, S. et al. A novel complex BRAF mutation detected in a solid variant of papillary thyroid carcinoma. Endocr. Pathol. 20, 122–126 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Basolo, F. et al. Correlation between the BRAF V600E mutation and tumor invasiveness in papillary thyroid carcinomas smaller than 20 millimeters: analysis of 1060 cases. J. Clin. Endocrinol. Metab. 95, 4197–4205 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Ciampi, R. et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J. Clin. Invest. 115, 94–101 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xing, M. BRAF mutation in thyroid cancer. Endocr. Relat. Cancer 12, 245–262 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Namba, H. et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J. Clin. Endocrinol. Metab. 88, 4393–4397 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Nikiforova, M. N. et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J. Clin. Endocrinol. Metab. 88, 5399–5404 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Begum, S. et al. BRAF mutations in anaplastic thyroid carcinoma: implications for tumor origin, diagnosis and treatment. Mod. Pathol. 17, 1359–1363 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Ricarte-Filho, J. C. et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 69, 4885–4893 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kroll, T. G. et al. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science 289, 1357–1360 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Gregory Powell, J. et al. The PAX8/PPARgamma fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-type PPARgamma inhibition. Oncogene 23, 3634–3641 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. French, C. A. et al. Genetic and biological subgroups of low-stage follicular thyroid cancer. Am. J. Pathol. 162, 1053–1060 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nikiforova, M. N. et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab. 88, 2318–2326 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Dwight, T. et al. Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J. Clin. Endocrinol. Metab. 88, 4440–4445 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Nikiforova, M. N., Biddinger, P. W., Caudill, C. M., Kroll, T. G. & Nikiforov, Y. E. PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am. J. Surg. Pathol. 26, 1016–1023 (2002).

    Article  PubMed  Google Scholar 

  86. Marques, A. R. et al. Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab. 87, 3947–3952 (2002).

    CAS  PubMed  Google Scholar 

  87. Castro, P. et al. PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 91, 213–220 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Fagin, J. A. et al. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J. Clin. Invest. 91, 179–184 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Donghi, R. et al. Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J. Clin. Invest. 91, 1753–1760 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dobashi, Y. et al. Stepwise participation of p53 gene mutation during dedifferentiation of human thyroid carcinomas. Diagn. Mol. Pathol. 3, 9–14 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Ito, T. et al. Unique association of p53 mutations with undifferentiated but not with differentiated carcinomas of the thyroid gland. Cancer Res. 52, 1369–1371 (1992).

    CAS  PubMed  Google Scholar 

  92. Garcia-Rostan, G. et al. Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am. J. Pathol. 158, 987–996 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Garcia-Rostan, G. et al. Frequent mutation and nuclear localization of beta-catenin in anaplastic thyroid carcinoma. Cancer Res. 59, 1811–1815 (1999).

    CAS  PubMed  Google Scholar 

  94. Kurihara, T. et al. Immunohistochemical and sequencing analyses of the Wnt signaling components in Japanese anaplastic thyroid cancers. Thyroid 14, 1020–1029 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. García-Rostán, G. et al. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 65, 10199–10207 (2005).

    Article  PubMed  Google Scholar 

  96. Santarpia, L., El-Naggar, A. K., Cote, G. J., Myers, J. N. & Sherman, S. I. Phosphatidylinositol 3-kinase/akt and ras/raf-mitogen-activated protein kinase pathway mutations in anaplastic thyroid cancer. J. Clin. Endocrinol. Metab. 93, 278–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Hou, P. et al. Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin. Cancer Res. 13, 1161–1170 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Dahia, P. L. et al. Somatic deletions and mutations in the Cowden disease gene, PTEN, in sporadic thyroid tumors. Cancer Res. 57, 4710–4713 (1997).

    CAS  PubMed  Google Scholar 

  99. Bonora, E., Evangelisti, C., Bonichon, F., Tallini, G. & Romeo, G. Novel germline variants identified in the inner mitochondrial membrane transporter TIMM44 and their role in predisposition to oncocytic thyroid carcinomas. Br. J. Cancer 95, 1529–1536 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Máximo, V. & Sobrinho-Simões, M. Hurthle cell tumours of the thyroid. A review with emphasis on mitochondrial abnormalities with clinical relevance. Virchows Arch. 437, 107–115 (2000).

    Article  PubMed  Google Scholar 

  101. Tallini, G. Oncocytic tumours. Virchows Arch. 433, 5–12 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Katoh, R., Harach, H. R. & Williams, E. D. Solitary, multiple, and familial oxyphil tumours of the thyroid gland. J. Pathol. 186, 292–299 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Máximo, V. et al. Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hurthle cell) tumours of the thyroid. Br. J. Cancer 92, 1892–1898 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Angell, J. E., Lindner, D. J., Shapiro, P. S., Hofmann, E. R. & Kalvakolanu, D. V. Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach. J. Biol. Chem. 275, 33416–33426 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Gasparre, G. et al. Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc. Natl Acad. Sci. USA 104, 9001–9006 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Máximo, V., Soares, P., Lima, J., Cameselle-Teijeiro, J. & Sobrinho-Simões, M. Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hürthle cell tumors. Am. J. Pathol. 160, 1857–1865 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Bonora, E. et al. Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res. 66, 6087–6096 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Giordano, T. J. et al. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene 24, 6646–6656 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Chevillard, S. et al. Gene expression profiling of differentiated thyroid neoplasms: diagnostic and clinical implications. Clin. Cancer Res. 10, 6586–6597 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Huang, Y. et al. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc. Natl Acad. Sci. USA 98, 15044–15049 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mazzanti, C. et al. Using gene expression profiling to differentiate benign versus malignant thyroid tumors. Cancer Res. 64, 2898–2903 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Lubitz, C. C. & Fahey, T. J. 3rd. The differentiation of benign and malignant thyroid nodules. Adv. Surg. 39, 355–377 (2005).

    Article  PubMed  Google Scholar 

  113. Prasad, N. B. et al. Identification of genes differentially expressed in benign versus malignant thyroid tumors. Clin. Cancer Res. 14, 3327–3337 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Finley, D. J., Arora, N., Zhu, B., Gallagher, L. & Fahey, T. J. 3rd. Molecular profiling distinguishes papillary carcinoma from benign thyroid nodules. J. Clin. Endocrinol. Metab. 89, 3214–3223 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Knauf, J. A. et al. Progression of BRAF-induced thyroid cancer is associated with epithelial-mesenchymal transition requiring concomitant MAP kinase and TGFbeta signaling. Oncogene 30, 3153–3162 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Vasko, V. et al. Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc. Natl Acad. Sci. USA 104, 2803–2808 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chen, Y. T., Kitabayashi, N., Zhou, X. K., Fahey, T. J. 3rd & Scognamiglio, T. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod. Pathol. 21, 1139–1146 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. He, H. et al. The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl Acad. Sci. USA 102, 19075–19080 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nikiforova, M. N., Chiosea, S. I. & Nikiforov, Y. E. MicroRNA expression profiles in thyroid tumors. Endocr. Pathol. 20, 85–91 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Pallante, P. et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr. Relat. Cancer 13, 497–508 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Nikiforova, M. N., Tseng, G. C., Steward, D., Diorio, D. & Nikiforov, Y. E. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J. Clin. Endocrinol. Metab. 93, 1600–1608 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Visone, R. et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr. Relat. Cancer 14, 791–798 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Jazdzewski, K. et al. Thyroid hormone receptor beta (THRB) is a major target gene for microRNAs deregulated in papillary thyroid carcinoma (PTC). J. Clin. Endocrinol. Metab. 96, E546–E553 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Weber, F., Teresi, R. E., Broelsch, C. E., Frilling, A. & Eng, C. A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. J. Clin. Endocrinol. Metab. 91, 3584–3591 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Visone, R. et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 26, 7590–7595 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Xing, M. Gene methylation in thyroid tumorigenesis. Endocrinology 148, 948–953 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Zuo, H. et al. Downregulation of Rap1GAP through epigenetic silencing and loss of heterozygosity promotes invasion and progression of thyroid tumors. Cancer Res. 70, 1389–1397 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Russo, D., Damante, G., Puxeddu, E., Durante, C. & Filetti, S. Epigenetics of thyroid cancer and novel therapeutic targets. J. Mol. Endocrinol. 46, R73–R81 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Hu, S. et al. Association of aberrant methylation of tumor suppressor genes with tumor aggressiveness and BRAF mutation in papillary thyroid cancer. Int. J. Cancer 119, 2322–2329 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Rabes, H. M. et al. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-Chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin. Cancer Res. 6, 1093–1103 (2000).

    CAS  PubMed  Google Scholar 

  131. Nikiforov, Y. E., Rowland, J. M., Bove, K. E., Monforte-Munoz, H. & Fagin, J. A. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 57, 1690–1694 (1997).

    CAS  PubMed  Google Scholar 

  132. Bounacer, A. et al. High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene 15, 1263–1273 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Smida, J. et al. Distinct frequency of ret rearrangements in papillary thyroid carcinomas of children and adults from Belarus. Int. J. Cancer 80, 32–38 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Nikiforova, M. N. et al. Low prevalence of BRAF mutations in radiation-induced thyroid tumors in contrast to sporadic papillary carcinomas. Cancer Lett. 209, 1–6 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Hamatani, K. et al. RET/PTC rearrangements preferentially occurred in papillary thyroid cancer among atomic bomb survivors exposed to high radiation dose. Cancer Res. 68, 7176–7182 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Takahashi, K. et al. The presence of BRAF point mutation in adult papillary thyroid carcinomas from atomic bomb survivors correlates with radiation dose. Mol. Carcinog. 46, 242–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Ito, T. et al. In vitro irradiation is able to cause RET oncogene rearrangement. Cancer Res. 53, 2940–2943 (1993).

    CAS  PubMed  Google Scholar 

  138. Caudill, C. M., Zhu, Z., Ciampi, R., Stringer, J. R. & Nikiforov, Y. E. Dose-dependent generation of RET/PTC in human thyroid cells after in vitro exposure to gamma-radiation: a model of carcinogenic chromosomal rearrangement induced by ionizing radiation. J. Clin. Endocrinol. Metab. 90, 2364–2369 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Mizuno, T., Kyoizumi, S., Suzuki, T., Iwamoto, K. S. & Seyama, T. Continued expression of a tissue specific activated oncogene in the early steps of radiation-induced human thyroid carcinogenesis. Oncogene 15, 1455–1460 (1997).

    Article  CAS  PubMed  Google Scholar 

  140. Mizuno, T. et al. Preferential induction of RET/PTC1 rearrangement by X-ray irradiation. Oncogene 19, 438–443 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Nikiforova, M. N. et al. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290, 138–141 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Gandhi, M., Medvedovic, M., Stringer, J. R. & Nikiforov, Y. E. Interphase chromosome folding determines spatial proximity of genes participating in carcinogenic RET/PTC rearrangements. Oncogene 25, 2360–2366 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Roccato, E. et al. Proximity of TPR and NTRK1 rearranging loci in human thyrocytes. Cancer Res. 65, 2572–2576 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Büttel, I., Fechter, A. & Schwab, M. Common fragile sites and cancer: targeted cloning by insertional mutagenesis. Ann. NY Acad. Sci. 1028, 14–27 (2004).

    PubMed  Google Scholar 

  145. Richards, R. I. Fragile and unstable chromosomes in cancer: causes and consequences. Trends Genet. 17, 339–345 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Gandhi, M., Dillon, L. W., Pramanik, S., Nikiforov, Y. E. & Wang, Y. H. DNA breaks at fragile sites generate oncogenic RET/PTC rearrangements in human thyroid cells. Oncogene 29, 2272–2280 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Fenton, C. L. et al. The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J. Clin. Endocrinol. Metab. 85, 1170–1175 (2000).

    CAS  PubMed  Google Scholar 

  148. Guan, H. et al. Association of high iodine intake with the T1799A BRAF mutation in papillary thyroid cancer. J. Clin. Endocrinol. Metab. 94, 1612–1617 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Lind, P. et al. Epidemiology of thyroid diseases in iodine sufficiency. Thyroid 8, 1179–1183 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Pellegriti, G. et al. Papillary thyroid cancer incidence in the volcanic area of Sicily. J. Natl Cancer Inst. 101, 1575–1583 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Parkin, D. M., Bray, F., Ferlay, J. & Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin. 55, 74–108 (2005).

    Article  PubMed  Google Scholar 

  152. Baloch, Z. W., Fleisher, S., LiVolsi, V. A. & Gupta, P. K. Diagnosis of “follicular neoplasm”: a gray zone in thyroid fine-needle aspiration cytology. Diagn. Cytopathol. 26, 41–44 (2002).

    Article  PubMed  Google Scholar 

  153. Mazzaferri, E. L. Management of a solitary thyroid nodule. N. Engl. J. Med. 328, 553–559 (1993).

    Article  CAS  PubMed  Google Scholar 

  154. Baloch, Z. W. et al. Diagnostic terminology and morphologic criteria for cytologic diagnosis of thyroid lesions: a synopsis of the National Cancer Institute Thyroid Fine-Needle Aspiration State of the Science Conference. Diagn. Cytopathol. 36, 425–437 (2008).

    Article  PubMed  Google Scholar 

  155. Nikiforova, M. N. & Nikiforov, Y. E. Molecular diagnostics and predictors in thyroid cancer. Thyroid 19, 1351–1361 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Kim, S. K. et al. Surgical results of thyroid nodules according to a management guideline based on the BRAF(V600E) mutation status. J. Clin. Endocrinol. Metab. 96, 658–664 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Kim, S. W. et al. BRAFV600E mutation analysis in fine-needle aspiration cytology specimens for evaluation of thyroid nodule: a large series in a BRAFV600E-prevalent population. J. Clin. Endocrinol. Metab. 95, 3693–3700 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Nam, S. Y. et al. BRAF V600E mutation analysis of thyroid nodules needle aspirates in relation to their ultrasongraphic classification: a potential guide for selection of samples for molecular analysis. Thyroid 20, 273–279 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Nikiforov, Y. E. et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J. Clin. Endocrinol. Metab. 94, 2092–2098 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Pizzolanti, G. et al. Fine-needle aspiration molecular analysis for the diagnosis of papillary thyroid carcinoma through BRAF V600E mutation and RET/PTC rearrangement. Thyroid 17, 1109–1115 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Jo, Y. S. et al. Diagnostic value of pyrosequencing for the BRAF V600E mutation in ultrasound-guided fine-needle aspiration biopsy samples of thyroid incidentalomas. Clin. Endocrinol. (Oxf.) 70, 139–144 (2009).

    Article  CAS  Google Scholar 

  162. Cohen, Y. et al. Mutational analysis of BRAF in fine needle aspiration biopsies of the thyroid: a potential application for the preoperative assessment of thyroid nodules. Clin. Cancer Res. 10, 2761–2765 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Salvatore, G. et al. Analysis of BRAF point mutation and RET/PTC rearrangement refines the fine-needle aspiration diagnosis of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 89, 5175–5180 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Kim, S. K. et al. Pyrosequencing analysis for detection of a BRAFV600E mutation in an FNAB specimen of thyroid nodules. Diagn. Mol. Pathol. 17, 118–125 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Cantara, S. et al. Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J. Clin. Endocrinol. Metab. 95, 1365–1369 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Ohori, N. P. et al. Contribution of molecular testing to thyroid fine-needle aspiration cytology of “follicular lesion of undetermined significance/atypia of undetermined significance”. Cancer Cytopathol. 118, 17–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Moses, W. et al. Molecular testing for somatic mutations improves the accuracy of thyroid fine-needle aspiration biopsy. World J. Surg. 34, 2589–2594 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Cyniak-Magierska, A., Wojciechowska-Durczynska, K., Krawczyk-Rusiecka, K., Zygmunt, A. & Lewinski, A. Assessment of RET/PTC1 and RET/PTC3 rearrangements in fine-needle aspiration biopsy specimens collected from patients with Hashimoto's thyroiditis. Thyroid Res. 4, 5 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ali, S. Z. & Cibas, E. S. (Eds) The Bethesda System for Reporting Thyroid Cytopathology (Springer, New York, 2010).

    Book  Google Scholar 

  170. Cooper, D. S. et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19, 1167–1214 (2009).

    Article  PubMed  Google Scholar 

  171. Xing, M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr. Rev. 28, 742–762 (2007).

    Article  CAS  PubMed  Google Scholar 

  172. Xing, M. et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J. Clin. Endocrinol. Metab. 90, 6373–6379 (2005).

    Article  CAS  PubMed  Google Scholar 

  173. Kim, T. Y. et al. The BRAF mutation is useful for prediction of clinical recurrence in low-risk patients with conventional papillary thyroid carcinoma. Clin. Endocrinol. (Oxf.) 65, 364–368 (2006).

    Article  CAS  Google Scholar 

  174. Kebebew, E. et al. The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann. Surg. 246, 466–470 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Xing, M. et al. BRAF mutation testing of thyroid fine-needle aspiration biopsy specimens for preoperative risk stratification in papillary thyroid cancer. J. Clin. Oncol. 27, 2977–2982 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Elisei, R. et al. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J. Clin. Endocrinol. Metab. 93, 3943–3949 (2008).

    Article  CAS  PubMed  Google Scholar 

  177. O'Neill, C. J. et al. BRAF(V600E) mutation is associated with an increased risk of nodal recurrence requiring reoperative surgery in patients with papillary thyroid cancer. Surgery 148, 1139–1145 (2010).

    Article  PubMed  Google Scholar 

  178. Yip, L. et al. Optimizing surgical treatment of papillary thyroid carcinoma associated with BRAF mutation. Surgery 146, 1215–1223 (2009).

    Article  PubMed  Google Scholar 

  179. Riesco-Eizaguirre, G., Gutiérrez-Martínez, P., García-Cabezas, M. A., Nistal, M. & Santisteban, P. The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I– targeting to the membrane. Endocr. Relat. Cancer 13, 257–269 (2006).

    Article  CAS  PubMed  Google Scholar 

  180. Durante, C. et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J. Clin. Endocrinol. Metab. 92, 2840–2843 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Xing, M. Prognostic utility of BRAF mutation in papillary thyroid cancer. Mol. Cell. Endocrinol. 321, 86–93 (2010).

    Article  CAS  PubMed  Google Scholar 

  182. Rodolico, V. et al. BRAF V600E mutation and p27 kip1 expression in papillary carcinomas of the thyroid ≤1 cm and their paired lymph node metastases. Cancer 110, 1218–1226 (2007).

    Article  PubMed  Google Scholar 

  183. Lee, X. et al. Analysis of differential BRAF(V600E) mutational status in high aggressive papillary thyroid microcarcinoma. Ann. Surg. Oncol. 16, 240–245 (2009).

    Article  PubMed  Google Scholar 

  184. Lupi, C. et al. Association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 92, 4085–4090 (2007).

    Article  CAS  PubMed  Google Scholar 

  185. Frasca, F. et al. BRAF(V600E) mutation and the biology of papillary thyroid cancer. Endocr. Relat. Cancer 15, 191–205 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Kwak, J. Y. et al. Association of BRAFV600E mutation with poor clinical prognostic factors and US features in Korean patients with papillary thyroid microcarcinoma. Radiology 253, 854–860 (2009).

    Article  PubMed  Google Scholar 

  187. Lin, K. L. et al. The BRAF mutation is predictive of aggressive clinicopathological characteristics in papillary thyroid microcarcinoma. Ann. Surg. Oncol. 17, 3294–3300 (2010).

    Article  PubMed  Google Scholar 

  188. Soares, P. & Sobrinho-Simões, M. Cancer: Small papillary thyroid cancers—is BRAF of prognostic value? Nat. Rev. Endocrinol. 7, 9–10 (2011).

    Article  PubMed  Google Scholar 

  189. Howell, G. M. et al. Both BRAF V600E mutation and older age (≥65 years) are associated with recurrent papillary thyroid cancer. Ann. Surg. Oncol. doi: 10.1245/s10434-011-1781-5.

  190. Niemeier, L. A. et al. A combined molecular-pathological score improves risk stratification of thyroid papillary microcarcinoma. Cancer (in press).

  191. Belge, G. et al. Upregulation of HMGA2 in thyroid carcinomas: a novel molecular marker to distinguish between benign and malignant follicular neoplasias. Genes Chromosomes Cancer 47, 656–663 (2008).

    Article  CAS  Google Scholar 

  192. Chiappetta, G. et al. HMGA2 mRNA expression correlates with the malignant phenotype in human thyroid neoplasias. Eur. J. Cancer 44, 1015–1021 (2008).

    Article  CAS  PubMed  Google Scholar 

  193. Lappinga, P. J. et al. HMGA2 gene expression analysis performed on cytologic smears to distinguish benign from malignant thyroid nodules. Cancer Cytopathol. 118, 287–297 (2010).

    Article  CAS  PubMed  Google Scholar 

  194. Mathur, A. et al. A prospective study evaluating the accuracy of using combined clinical factors and candidate diagnostic markers to refine the accuracy of thyroid fine needle aspiration biopsy. Surgery 148, 1170–1176 (2010).

    Article  PubMed  Google Scholar 

  195. Chudova, D. et al. Molecular classification of thyroid nodules using high-dimensionality genomic data. J. Clin. Endocrinol. Metab. 95, 5296–5304 (2010).

    Article  CAS  PubMed  Google Scholar 

  196. Mazeh, H. et al. Development of a microRNA-based molecular assay for the detection of papillary thyroid carcinoma in aspiration biopsy samples. Thyroid 21, 111–118 (2011).

    Article  CAS  PubMed  Google Scholar 

  197. Yip, L. et al. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma. Ann. Surg. Oncol. 18, 2035–2041 (2011).

    Article  PubMed  Google Scholar 

  198. Chou, C. K. et al. miR-146b is highly expressed in adult papillary thyroid carcinomas with high risk features including extrathyroidal invasion and the BRAF(V600E) mutation. Thyroid 20, 489–494 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH grant CA88041.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Yuri E. Nikiforov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikiforov, Y., Nikiforova, M. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol 7, 569–580 (2011). https://doi.org/10.1038/nrendo.2011.142

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.142

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer