Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The TWEAK–Fn14 cytokine–receptor axis: discovery, biology and therapeutic targeting

Key Points

  • TWEAK (tumour necrosis factor (TNF)-like weak inducer of apoptosis) is a member of the TNF superfamily of structurally related cytokines. It is present on the cell surface but a soluble form can also be produced by proteolytic cleavage within the stalk domain. TWEAK gene expression has been detected in many cell types and tissues.

  • TWEAK binds to Fn14 (fibroblast growth factor-inducible 14), a small (102 amino acids) plasma-membrane-anchored receptor. The Fn14 gene is a growth-factor-inducible, immediate-early response gene, and it is highly expressed following tissue injury and in numerous solid tumour types.

  • TWEAK treatment of cells in culture activates several intracellular signalling pathways, including the nuclear factor-κB (NF-κB) pathway, and induces various cellular responses. TWEAK is a pro-angiogenic and pro-inflammatory cytokine in vivo.

  • Persistent TWEAK–Fn14 engagement or Fn14 overexpression may contribute to acute ischaemic stroke, rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis and cancer.

  • The more unique and also puzzling aspects of TWEAK and Fn14 biology are discussed. In particular, emphasis will be on recent findings supporting the notion that this ligand–receptor axis might contribute to tissue repair after injury and the pathogenesis of several diseases that are responsible for significant morbidity and mortality worldwide. Strategies that may be useful for therapeutically targeting this axis will also be discussed.

Abstract

TWEAK is a multifunctional cytokine that controls many cellular activities including proliferation, migration, differentiation, apoptosis, angiogenesis and inflammation. TWEAK acts by binding to Fn14, a highly inducible cell-surface receptor that is linked to several intracellular signalling pathways, including the nuclear factor-κB (NF-κB) pathway. The TWEAK–Fn14 axis normally regulates various physiological processes, in particular it seems to play an important, beneficial role in tissue repair following acute injury. Furthermore, recent studies have indicated that TWEAK–Fn14 axis signalling may contribute to cancer, chronic autoimmune diseases and acute ischaemic stroke. This Review provides an overview of TWEAK–Fn14 axis biology and summarizes the available data supporting the proposal that both TWEAK and Fn14 should be considered as potential targets for the development of novel therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TWEAK–Fn14 axis publication summary.
Figure 2: The Fn14 receptor.
Figure 3: The Fn14 gene is highly regulated in vivo.
Figure 4: TWEAK-dependent and -independent Fn14 signalling.
Figure 5: Hypothesis: TWEAK expression levels may dictate the predominant signalling mechanism in injured tissues and solid tumours.
Figure 6: Hypothesis: some tumour angiogenic factors may act, at least in part, by increasing TWEAK-dependent Fn14 signalling in sprouting vessels.
Figure 7: Potential therapeutic strategies for inhibiting Fn14-triggered pathological conditions.

Similar content being viewed by others

References

  1. Foster, D., Parrish-Novak, J., Fox, B. & Xu, W. Cytokine–receptor pairing: accelerating discovery of cytokine function. Nature Rev. Drug Discov. 3, 160–170 (2004).

    CAS  Google Scholar 

  2. Locksley, R. M., Killeen, N. & Lenardo, M. J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).

    CAS  PubMed  Google Scholar 

  3. Bodmer, J., Schneider, P. & Tschopp, J. The molecular architecture of the TNF superfamily. Trends Biochem. Sci. 27, 19–26 (2002).

    CAS  PubMed  Google Scholar 

  4. Chicheportiche, Y. et al. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J. Biol. Chem. 272, 32401–32410 (1997). References 4 and 5 describe the initial cloning and characterization of the TWEAK cytokine.

    CAS  PubMed  Google Scholar 

  5. Marsters, S. A. et al. Identification of a ligand for the death-domain-containing receptor Apo3. Curr. Biol. 8, 525–528 (1998).

    CAS  PubMed  Google Scholar 

  6. Schneider, P. et al. TWEAK can induce cell death via endogenous TNF and TNF receptor 1. Eur. J. Immunol. 29, 1785–1792 (1999).

    CAS  PubMed  Google Scholar 

  7. Kaptein, A. et al. Studies on the interaction between TWEAK and the death receptor WSL-1/TRAMP (DR3). FEBS Lett. 485, 135–141 (2000).

    CAS  PubMed  Google Scholar 

  8. Lynch, C. N. et al. TWEAK induces angiogenesis and proliferation of endothelial cells. J. Biol. Chem. 274, 8455–8459 (1999).

    CAS  PubMed  Google Scholar 

  9. Wiley, S. R. et al. A novel TNF receptor family member binds TWEAK and is implicated in angiogenesis. Immunity 15, 837–846 (2001). A pivotal paper describing the successful cloning of a TWEAK-binding cell surface protein (TWEAKR, Fn14) from an endothelial cell cDNA expression library.

    CAS  PubMed  Google Scholar 

  10. Meighan-Mantha, R. L. et al. The mitogen-inducible Fn14 gene encodes a type I transmembrane protein that modulates fibroblast adhesion and migration. J. Biol. Chem. 274, 33166–33176 (1999).

    CAS  PubMed  Google Scholar 

  11. Feng, S. Y. et al. The Fn14 immediate-early response gene is induced during liver regeneration and highly expressed in both human and murine hepatocellular carcinomas. Am. J. Pathol. 156, 1253–1261 (2000). An initial report demonstrating Fn14 overexpression in human tumour specimens.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bossen, C. et al. Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human. J. Biol. Chem. 281, 13964–13971 (2006).

    CAS  PubMed  Google Scholar 

  13. Inman, G. J. & Allday, M. J. Apoptosis induced by TGF-β1 in Burkitt's lymphoma cells is caspase 8 dependent but is death receptor independent. J. Immunol. 165, 2500–2510 (2000).

    CAS  PubMed  Google Scholar 

  14. Kaplan, M. J., Ray, D., Mo, R. R., Yung, R. L. & Richardson, B. C. TRAIL (Apo2 ligand) and TWEAK (Apo3 ligand) mediate CD4+ T cell killing of antigen-presenting macrophages. J. Immunol. 164, 2897–2904 (2000).

    CAS  PubMed  Google Scholar 

  15. Borysenko, C. W. et al. Death receptor-3 mediates apoptosis in human osteoblasts under narrowly regulated conditions. J. Cell. Physiol. 209, 1021–1028 (2006).

    CAS  PubMed  Google Scholar 

  16. Vince, J. E. & Silke, J. TWEAK shall inherit the earth. Cell Death Differ. 13, 1842–1844 (2006).

    CAS  PubMed  Google Scholar 

  17. Burkly, L. C., Michaelson, J. S., Hahm, K., Jakubowski, A. & Zheng, T. S. TWEAKing tissue remodeling by a multifunctional cytokine: Role of TWEAK/Fn14 pathway in health and disease. Cytokine 40, 1–16 (2007). An excellent review article on the TWEAK–Fn14 pathway.

    CAS  PubMed  Google Scholar 

  18. De, K. A. et al. Involvement of GSK-3β in TWEAK-mediated NF-κB activation. FEBS Lett. 566, 60–64 (2004).

    Google Scholar 

  19. Baxter, F. O. et al. IKKβ/2 induces TWEAK and apoptosis in mammary epithelial cells. Development 133, 3385–3394 (2006).

    Google Scholar 

  20. Kawakita, T. et al. Functional expression of TWEAK in human colonic adenocarcinoma cells. Int. J. Oncol. 26, 87–93 (2005).

    CAS  PubMed  Google Scholar 

  21. Nakayama, M., Harada, N., Okumura, K. & Yagita, H. Characterization of murine TWEAK and its receptor (Fn14) by monoclonal antibodies. Biochem. Biophys. Res. Commun. 306, 819–825 (2003).

    CAS  PubMed  Google Scholar 

  22. Chicheportiche, Y., Fossati-Jimack, L., Moll, S., Ibnou-Zekri, N. & Izui, S. Down-regulated expression of TWEAK mRNA in acute and chronic inflammatory pathologies. Biochem. Biophys. Res. Commun. 279, 162–165 (2000).

    CAS  PubMed  Google Scholar 

  23. Ho, D. H. et al. Soluble tumor necrosis factor-like weak inducer of apoptosis overexpression in HEK293 cells promotes tumor growth and angiogenesis in athymic nude mice. Cancer Res. 64, 8968–8972 (2004). An initial report indicating that TWEAK could contribute to tumour angiogenesis.

    CAS  PubMed  Google Scholar 

  24. De, A. et al. Intraovarian tumor necrosis factor-related weak inducer of apoptosis/fibroblast growth factor-inducible-14 ligand-receptor system limits ovarian preovulatory follicles from excessive luteinization. Mol. Endocrinol. 20, 2528–2538 (2006).

    CAS  PubMed  Google Scholar 

  25. Chacon, M. R. et al. Expression of TWEAK and its receptor Fn14 in human subcutaneous adipose tissue. Relationship with other inflammatory cytokines in obesity. Cytokine 33, 129–137 (2006).

    CAS  PubMed  Google Scholar 

  26. Kawakita, T. et al. Functional expression of TWEAK in human hepatocellular carcinoma: possible implication in cell proliferation and tumor angiogenesis. Biochem. Biophys. Res. Commun. 318, 726–733 (2004).

    CAS  PubMed  Google Scholar 

  27. Tran, N. L. et al. The human Fn14 receptor gene is up-regulated in migrating glioma cells in vitro and overexpressed in advanced glial tumors. Am. J. Pathol. 162, 1313–1321 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yepes, M. et al. A soluble Fn14-Fc decoy receptor reduces infarct volume in a murine model of cerebral ischemia. Am. J. Pathol. 166, 511–520 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Desplat-Jego, S. et al. TWEAK is expressed by glial cells, induces astrocyte proliferation and increases EAE severity. J. Neuroimmunol. 133, 116–123 (2002).

    CAS  PubMed  Google Scholar 

  30. Maecker, H. et al. TWEAK attenuates the transition from innate to adaptive immunity. Cell 123, 931–944 (2005). The first publication that used Tweak -null mice.

    CAS  PubMed  Google Scholar 

  31. Girgenrath, M. et al. TWEAK, via its receptor Fn14, is a novel regulator of mesenchymal progenitor cells and skeletal muscle regeneration. EMBO J. 25, 5826–5839 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakayama, M., Kayagaki, N., Yamaguchi, N., Okumura, K. & Yagita, H. Involvement of TWEAK in interferon γ-stimulated monocyte cytotoxicity. J. Exp. Med. 192, 1373–1380 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Potrovita, I. et al. Tumor necrosis factor-like weak inducer of apoptosis-induced neurodegeneration. J. Neurosci. 24, 8237–8244 (2004). An initial report linking TWEAK activity to ischaemia-induced cerebral tissue damage in a murine model of stroke.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Justo, P. et al. Cytokine cooperation in renal tubular cell injury: the role of TWEAK. Kidney Int. 70, 1750–1758 (2006).

    CAS  PubMed  Google Scholar 

  35. Polek, T. C., Talpaz, M., Darnay, B. G. & Spivak-Kroizman, T. TWEAK mediates signal transduction and differentiation of RAW264.7 cells in the absence of Fn14/TweakR. Evidence for a second TWEAK receptor. J. Biol. Chem. 278, 32317–32323 (2003).

    CAS  PubMed  Google Scholar 

  36. Bover, L. C. et al. A previously unrecognized protein–protein interaction between TWEAK and CD163: potential biological implications. J. Immunol. 178, 8183–8194 (2007).

    CAS  PubMed  Google Scholar 

  37. Glenney, G. W. & Wiens, G. D. Early diversification of the TNF superfamily in teleosts: genomic characterization and expression analysis. J. Immunol. 178, 7955–7973 (2007).

    CAS  PubMed  Google Scholar 

  38. Brown, S. A. N., Hanscom, H. N., Vu, H., Brew, S. A. & Winkles, J. A. TWEAK binding to the Fn14 cysteine-rich domain depends on charged residues located in both the A1 and D2 modules. Biochem. J. 397, 297–304 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakayama, M. et al. Multiple pathways of TWEAK-induced cell death. J. Immunol. 168, 734–743 (2002).

    CAS  PubMed  Google Scholar 

  40. Peter, M. E. & Krammer, P. H. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ. 10, 26–35 (2003).

    CAS  PubMed  Google Scholar 

  41. Wilson, C. A. & Browning, J. L. Death of HT29 adenocarcinoma cells induced by TNF family receptor activation is caspase-independent and displays features of both apoptosis and necrosis. Cell Death Differ. 9, 1321–1333 (2002).

    CAS  PubMed  Google Scholar 

  42. Nakayama, M. et al. Fibroblast growth factor-inducible 14 mediates multiple pathways of TWEAK-induced cell death. J. Immunol. 170, 341–348 (2003).

    CAS  PubMed  Google Scholar 

  43. Donohue, P. J. et al. TWEAK is an endothelial cell growth and chemotactic factor that also potentiates FGF-2 and VEGF-A mitogenic activity. Arterioscler. Thromb. Vasc. Biol. 23, 594–600 (2003).

    CAS  PubMed  Google Scholar 

  44. Harada, N. et al. Pro-inflammatory effect of TWEAK/Fn14 interaction on human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 299, 488–493 (2002).

    CAS  PubMed  Google Scholar 

  45. Dogra, C., Changotra, H., Mohan, S. & Kumar, A. Tumor necrosis factor-like weak inducer of apoptosis inhibits skeletal myogenesis through sustained activation of nuclear factor-κB and degradation of myoD protein. J. Biol. Chem. 281, 10327–10336 (2006).

    CAS  PubMed  Google Scholar 

  46. Dogra, C., Hall, S. L., Wedhas, N., Linkhart, T. A. & Kumar, A. Fibroblast growth factor inducible 14 (Fn14) is required for the expression of myogenic regulatory factors and differentiation of myoblasts into myotubes. Evidence for TWEAK-independent functions of Fn14 during myogenesis. J. Biol. Chem. 282, 15000–15010 (2007).

    CAS  PubMed  Google Scholar 

  47. Perper, S. J. et al. TWEAK is a novel arthritogenic mediator. J. Immunol. 177, 2610–2620 (2006). An initial report linking TWEAK activity to tissue inflammation, angiogenesis and damage in a murine model of rheumatoid arthritis.

    CAS  PubMed  Google Scholar 

  48. Kingsley, L. A., Fournier, P. G., Chirgwin, J. M. & Guise, T. A. Molecular biology of bone metastasis. Mol. Cancer Ther. 6, 2609–2617 (2007).

    CAS  PubMed  Google Scholar 

  49. Jakubowski, A. et al. TWEAK induces liver progenitor cell proliferation. J. Clin. Invest. 115, 2330–2340 (2005). The first publication that used Fn14 -null mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao, Z. et al. TWEAK/Fn14 interactions are instrumental in the pathogenesis of nephritis in the chronic graft-versus-host model of systemic lupus erythematosus. J. Immunol. 179, 7949–7958 (2007).

    CAS  PubMed  Google Scholar 

  51. Polavarapu, R., Gongora, M. C., Winkles, J. A. & Yepes, M. Tumor necrosis factor-like weak inducer of apoptosis increases the permeability of the neurovascular unit through nuclear factor-κB pathway activation. J. Neurosci. 25, 10094–10100 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, X. et al. TWEAK–Fn14 pathway inhibition protects the integrity of the neurovascular unit during cerebral ischemia. J. Cereb. Blood Flow Metab. 27, 534–544 (2007).

    PubMed  Google Scholar 

  53. Charge, S. B. & Rudnicki, M. A. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84, 209–238 (2004).

    CAS  PubMed  Google Scholar 

  54. Dogra, C. et al. TNF-related weak inducer of apoptosis (TWEAK) is a potent skeletal muscle-wasting cytokine. FASEB J. 21, 1857–1869 (2007).

    CAS  PubMed  Google Scholar 

  55. Brown, S. A. N., Richards, C. M., Hanscom, H. N., Feng, S. L. & Winkles, J. A. The Fn14 cytoplasmic tail binds tumour-necrosis-factor-receptor-associated factors 1, 2, 3 and 5 and mediates nuclear factor-κB activation. Biochem. J. 371, 395–403 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Han, S. et al. TNF-related weak inducer of apoptosis receptor, a TNF receptor superfamily member, activates NF-κB through TNF receptor-associated factors. Biochem. Biophys. Res. Commun. 305, 789–796 (2003).

    CAS  PubMed  Google Scholar 

  57. Tanabe, K., Bonilla, I., Winkles, J. A. & Strittmatter, S. M. Fibroblast growth factor-inducible-14 is induced in axotomized neurons and promotes neurite outgrowth. J. Neurosci. 23, 9675–9686 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tran, N. L. et al. Increased fibroblast growth factor-inducible 14 expression levels promote glioma cell invasion via Rac1 and nuclear factor-κB and correlate with poor patient outcome. Cancer Res. 66, 9535–9542 (2006). An important paper linking high Fn14 levels in advanced brain tumours to poor patient outcome.

    CAS  PubMed  Google Scholar 

  59. Wiley, S. R. & Winkles, J. A. TWEAK, a member of the TNF superfamily, is a multifunctional cytokine that binds the TweakR/Fn14 receptor. Cytokine Growth Factor Rev. 14, 241–249 (2003).

    CAS  PubMed  Google Scholar 

  60. Fischer, D., Petkova, V., Thanos, S. & Benowitz, L. I. Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation. J. Neurosci. 24, 8726–8740 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, S. et al. Transcriptional profiling suggests that Barrett's metaplasia is an early intermediate stage in esophageal adenocarcinogenesis. Oncogene 25, 3346–3356 (2006).

    CAS  PubMed  Google Scholar 

  62. Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    CAS  PubMed  Google Scholar 

  63. Iyer, V. R. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87 (1999).

    CAS  PubMed  Google Scholar 

  64. Chang, H. Y. et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2, e7 (2004).

    PubMed  PubMed Central  Google Scholar 

  65. Chang, H. Y. et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc. Natl Acad. Sci. USA 102, 3738–3743 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Saitoh, T. et al. TWEAK induces NF-κB2 p100 processing and long lasting NF-κB activation. J. Biol. Chem. 278, 36005–36012 (2003).

    CAS  PubMed  Google Scholar 

  67. Perkins, N. D. Integrating cell-signalling pathways with NF-κB and IKK function. Nature Rev. Mol. Cell Biol. 8, 49–62 (2007).

    CAS  Google Scholar 

  68. Hayden, M. S., West, A. P. & Ghosh, S. NF-κB and the immune response. Oncogene 25, 6758–6780 (2006).

    CAS  PubMed  Google Scholar 

  69. Karin, M. Nuclear factor-kappaB in cancer development and progression. Nature 441, 431–436 (2006).

    CAS  PubMed  Google Scholar 

  70. Neumann, M. & Naumann, M. Beyond IκBs: alternative regulation of NF-κB activity. FASEB J. 21, 2642–2654 (2007).

    CAS  PubMed  Google Scholar 

  71. Tran, N. L. et al. The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)-fibroblast growth factor-inducible 14 (Fn14) signaling system regulates glioma cell survival via NF-κB pathway activation and BCL-XL/BCL-W expression. J. Biol. Chem. 280, 3483–3492 (2005).

    CAS  PubMed  Google Scholar 

  72. Campbell, S. et al. Proinflammatory effects of TWEAK/Fn14 interactions in glomerular mesangial cells. J. Immunol. 176, 1889–1898 (2006).

    CAS  PubMed  Google Scholar 

  73. Ando, T. et al. TWEAK/Fn14 interaction regulates RANTES production, BMP-2-induced differentiation, and RANKL expression in mouse osteoblastic MC3T3-E1 cells. Arthritis Res. Ther. 8, R146 (2006).

    PubMed  PubMed Central  Google Scholar 

  74. Jin, L. et al. Induction of RANTES by TWEAK/Fn14 interaction in human keratinocytes. J. Invest. Dermatol. 122, 1175–1179 (2004).

    CAS  PubMed  Google Scholar 

  75. Xu, H. et al. TWEAK/Fn14 interaction stimulates human bronchial epithelial cells to produce IL-8 and GM-CSF. Biochem. Biophys. Res. Commun. 318, 422–427 (2004).

    CAS  PubMed  Google Scholar 

  76. Kim, S. H. et al. TWEAK can induce pro-inflammatory cytokines and matrix metalloproteinase-9 in macrophages. Circ. J. 68, 396–399 (2004).

    CAS  PubMed  Google Scholar 

  77. Michaelson, J. S. et al. Tweak induces mammary epithelial branching morphogenesis. Oncogene 24, 2613–2624 (2005).

    CAS  PubMed  Google Scholar 

  78. Nathan, C. Points of control in inflammation. Nature 420, 846–852 (2002).

    CAS  PubMed  Google Scholar 

  79. Luster, A. D., Alon, R. & von Andrian, U. H. Immune cell migration in inflammation: present and future therapeutic targets. Nature Immunol. 6, 1182–1190 (2005).

    CAS  Google Scholar 

  80. Saas, P. et al. TWEAK stimulation of astrocytes and the proinflammatory consequences. Glia 32, 102–107 (2000).

    CAS  PubMed  Google Scholar 

  81. Chicheportiche, Y. et al. Proinflammatory activity of TWEAK on human dermal fibroblasts and synoviocytes: blocking and enhancing effects of anti-TWEAK monoclonal antibodies. Arthritis Res. 4, 126–133 (2002).

    CAS  PubMed  Google Scholar 

  82. Hosokawa, Y., Hosokawa, I., Ozaki, K., Nakae, H. & Matsuo, T. Proinflammatory effects of tumour necrosis factor-like weak inducer of apoptosis (TWEAK) on human gingival fibroblasts. Clin. Exp. Immunol. 146, 540–549 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kamata, K. et al. Involvement of TNF-like weak inducer of apoptosis in the pathogenesis of collagen-induced arthritis. J. Immunol. 177, 6433–6439 (2006).

    CAS  PubMed  Google Scholar 

  84. Mueller, A. M. et al. Targeting fibroblast growth factor-inducible-14 signaling protects from chronic relapsing experimental autoimmune encephalomyelitis. J. Neuroimmunol. 159, 55–65 (2005).

    CAS  PubMed  Google Scholar 

  85. Desplat-Jego, S. et al. Anti-TWEAK monoclonal antibodies reduce immune cell infiltration in the central nervous system and severity of experimental autoimmune encephalomyelitis. Clin. Immunol. 117, 15–23 (2005).

    CAS  PubMed  Google Scholar 

  86. Winkles, J. A., Tran, N. L. & Berens, M. E. TWEAK and Fn14: new molecular targets for cancer therapy? Cancer Lett. 235, 11–17 (2005).

    Google Scholar 

  87. Watts, G. S. et al. Identification of Fn14/TWEAK receptor as a potential therapeutic target in esophageal adenocarcinoma. Int. J. Cancer 121, 2132–2139 (2007).

    CAS  PubMed  Google Scholar 

  88. Xu, L. G. & Shu, H. B. TNFR-associated factor-3 is associated with BAFF-R and negatively regulates BAFF-R-mediated NF-κB activation and IL-10 production. J. Immunol. 169, 6883–6889 (2002).

    CAS  PubMed  Google Scholar 

  89. Fotin-Mleczek, M. et al. Tumor necrosis factor receptor-associated factor (TRAF) 1 regulates CD40-induced TRAF2-mediated NF-κB activation. J. Biol. Chem. 279, 677–685 (2004).

    CAS  PubMed  Google Scholar 

  90. Hauer, J. et al. TNF receptor (TNFR)-associated factor (TRAF) 3 serves as an inhibitor of TRAF2/5-mediated activation of the noncanonical NF-κB pathway by TRAF-binding TNFRs. Proc. Natl Acad. Sci. USA 102, 2874–2879 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Trendelenburg, G. et al. Serial analysis of gene expression identifies metallothionein-II as major neuroprotective gene in mouse focal cerebral ischemia. J. Neurosci. 22, 5879–5888 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Eming, S. A., Krieg, T. & Davidson, J. M. Inflammation in wound repair: molecular and cellular mechanisms. J. Invest. Dermatol. 127, 514–525 (2007).

    CAS  PubMed  Google Scholar 

  93. Werner, S. & Grose, R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 83, 835–870 (2003).

    CAS  PubMed  Google Scholar 

  94. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  95. de Visser, K. E., Eichten, A. & Coussens, L. M. Paradoxical roles of the immune system during cancer development. Nature Rev. Cancer 6, 24–37 (2006).

    CAS  Google Scholar 

  96. Winkles, J. A. et al. Role of TWEAK and Fn14 in tumor biology. Front. Biosci. 12, 2761–2771 (2007).

    CAS  PubMed  Google Scholar 

  97. Kaduka, Y. et al. TWEAK mediates anti-tumor effect of tumor-infiltrating macrophage. Biochem. Biophys. Res. Commun. 331, 384–390 (2005).

    CAS  PubMed  Google Scholar 

  98. Witz, I. P. Yin-yang activities and vicious cycles in the tumor microenvironment. Cancer Res. 68, 9–13 (2008).

    CAS  PubMed  Google Scholar 

  99. Bergers, G. & Benjamin, L. E. Tumorigenesis and the angiogenic switch. Nature Rev. Cancer 3, 401–410 (2003).

    CAS  PubMed  Google Scholar 

  100. Tonini, T., Rossi, F. & Claudio, P. P. Molecular basis of angiogenesis and cancer. Oncogene 22, 6549–6556 (2003).

    CAS  PubMed  Google Scholar 

  101. Lu, H., Ouyang, W. & Huang, C. Inflammation, a key event in cancer development. Mol. Cancer Res. 4, 221–233 (2006).

    PubMed  Google Scholar 

  102. Albini, A., Tosetti, F., Benelli, R. & Noonan, D. M. Tumor inflammatory angiogenesis and its chemoprevention. Cancer Res. 65, 10637–10641 (2005).

    CAS  PubMed  Google Scholar 

  103. Jakubowski, A. et al. Dual role for TWEAK in angiogenic regulation. J. Cell Sci. 115, 267–274 (2002).

    CAS  PubMed  Google Scholar 

  104. Eccles, S. A. & Welch, D. R. Metastasis: recent discoveries and novel treatment strategies. Lancet 369, 1742–1757 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gupta, G. P. & Massague, J. Cancer metastasis: building a framework. Cell 127, 679–695 (2006).

    CAS  PubMed  Google Scholar 

  106. Steeg, P. S. Tumor metastasis: mechanistic insights and clinical challenges. Nature Med. 12, 895–904 (2006).

    CAS  PubMed  Google Scholar 

  107. Hoelzinger, D. B., Demuth, T. & Berens, M. E. Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J. Natl Cancer Inst. 99, 1583–1593 (2007).

    CAS  PubMed  Google Scholar 

  108. Paleolog, E. M. Angiogenesis in rheumatoid arthritis. Arthritis Res. 4 (Suppl. 3), S81–S90 (2002).

    PubMed  PubMed Central  Google Scholar 

  109. McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nature Rev. Immunol. 7, 429–442 (2007).

    CAS  Google Scholar 

  110. Rovin, B. H. The chemokine network in systemic lupus erythematous nephritis. Front. Biosci. 13, 904–922 (2008).

    CAS  PubMed  Google Scholar 

  111. Campbell, S., Michaelson, J., Burkly, L. & Putterman, C. The role of TWEAK/Fn14 in the pathogenesis of inflammation and systemic autoimmunity. Front. Biosci. 9, 2273–2284 (2004).

    CAS  PubMed  Google Scholar 

  112. Schwartz, N. et al. Urinary TWEAK and the activity of lupus nephritis. J. Autoimmun. 27, 242–250 (2006).

    CAS  PubMed  Google Scholar 

  113. Hafler, D. A. et al. Multiple sclerosis. Immunol. Rev. 204, 208–231 (2005).

    CAS  PubMed  Google Scholar 

  114. Baxter, A. G. The origin and application of experimental autoimmune encephalomyelitis. Nature Rev. Immunol. 7, 904–912 (2007).

    CAS  Google Scholar 

  115. Dirnagl, U., Iadecola, C. & Moskowitz, M. A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22, 391–397 (1999).

    CAS  PubMed  Google Scholar 

  116. Huang, J., Upadhyay, U. M. & Tamargo, R. J. Inflammation in stroke and focal cerebral ischemia. Surg. Neurol. 66, 232–245 (2006).

    PubMed  Google Scholar 

  117. Simard, J. M., Kent, T. A., Chen, M., Tarasov, K. V. & Gerzanich, V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol. 6, 258–268 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Yepes, M. & Winkles, J. A. Inhibition of TWEAK activity as a new treatment for inflammatory and degenerative diseases. Drug News Perspect. 19, 589–595 (2006).

    CAS  PubMed  Google Scholar 

  119. Yepes, M. TWEAK and the central nervous system. Mol. Neurobiol. 35, 255–265 (2007).

    CAS  PubMed  Google Scholar 

  120. Yepes, M. Tweak and Fn14 in central nervous system health and disease. Front. Biosci. 12, 2772–2781 (2007).

    CAS  PubMed  Google Scholar 

  121. Nash, P.T & Florin, T. H. J. Tumour necrosis factor inhibitors. Med. J. Austr. 183, 205–208 (2005).

    Google Scholar 

  122. Pastan, I., Hassan, R., Fitzgerald, D. J. & Kreitman, R. J. Immunotoxin therapy of cancer. Nature Rev. Cancer 6, 559–565 (2006).

    CAS  Google Scholar 

  123. Sun, M. & Fink, P. J. A new class of reverse signaling costimulators belongs to the TNF family. J. Immunol. 179, 4307–4312 (2007).

    CAS  PubMed  Google Scholar 

  124. Hansson, G. K., Robertson, A. K. & Soderberg-Naucler, C. Inflammation and atherosclerosis. Annu. Rev. Pathol. 1, 297–329 (2006).

    CAS  PubMed  Google Scholar 

  125. Munoz-Garcia, B. et al. Fn14 is upregulated in cytokine-stimulated vascular smooth muscle cells and is expressed in human carotid atherosclerotic plaques: modulation by atorvastatin. Stroke 37, 2044–2053 (2006).

    CAS  PubMed  Google Scholar 

  126. Sack, M. Tumor necrosis factor-α in cardiovascular biology and the potential role for anti-tumor necrosis factor-α therapy in heart disease. Pharmacol. Ther. 94, 123–135 (2002).

    CAS  PubMed  Google Scholar 

  127. Gius, D. et al. Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates. Cancer Res. 67, 7113–7123 (2007).

    CAS  PubMed  Google Scholar 

  128. Almstrup, K. et al. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling. Cancer Res. 64, 4736–4743 (2004).

    CAS  PubMed  Google Scholar 

  129. Hamill, C. A., Michaelson, J. S., Hahm, K., Burkly, L. C. & Kessler, J. A. Age-dependent effects of TWEAK/Fn14 receptor activation on neural progenitor cells. J. Neurosci. Res. 85, 3535–3544 (2007).

    CAS  PubMed  Google Scholar 

  130. Felli, N. et al. Multiple members of the TNF superfamily contribute to IFN-γ-mediated inhibition of erythropoiesis. J. Immunol. 175, 1464–1472 (2005).

    CAS  PubMed  Google Scholar 

  131. Kaplan, M. J. et al. The apoptotic ligands TRAIL, TWEAK, and Fas ligand mediate monocyte death induced by autologous Lupus T cells. J. Immunol. 169, 6020–6029 (2002).

    CAS  PubMed  Google Scholar 

  132. Ren, R. et al. Gene expression profiles identify a role for cyclooxygenase 2-dependent prostanoid generation in BMP6-induced angiogenic responses. Blood 109, 2847–2853 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank my laboratory manager S. Brown and all of my other laboratory colleagues for their important contributions to our TWEAK–Fn14 studies. I also thank my external TWEAK–Fn14 research collaborators (in particular, M. Berens of the Translational Genomics Research Institute and M. Yepes of Emory University School of Medicine) for involving my laboratory in their various projects. I am also grateful to A. Keegan, M. Williams and three anonymous referees for their helpful comments on this article. Research in the author's laboratory is supported by NIH grants R01-HL39727 and R01-NS55126 and Susan G. Komen for the Cure grant BCTR0503968.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author has applied for patents describing methods for therapeutic inhibition of Fn14 signalling in diseased tissues.

Related links

Related links

DATABASES

OMIM

Ischaemic stroke

multiple sclerosis

rheumatoid arthritis

systemic lupus erythematosus

FURTHER INFORMATION

Jeffrey A. Winkle's homepage

Glossary

Type II transmembrane protein

An integral membrane protein that is composed of an amino-terminal intracellular region, a transmembrane domain and a carboxy-terminal extracellular region (for example, Ly49).

Type I transmembrane protein

An integral membrane protein that is composed of an amino-terminal extracellular region, a transmembrane domain and a carboxy-terminal intracellular region (for example, T-cell receptors).

Type III transmembrane protein

An integral membrane protein with a similar orientation as a Type I protein but lacking a signal peptide (for example, B-cell maturation antigen (BCMA)).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkles, J. The TWEAK–Fn14 cytokine–receptor axis: discovery, biology and therapeutic targeting. Nat Rev Drug Discov 7, 411–425 (2008). https://doi.org/10.1038/nrd2488

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2488

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing