Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Paediatric and adult malignant glioma: close relatives or distant cousins?

Abstract

Gliomas in children differ from their adult counterparts by their distribution of histological grade, site of presentation and rate of malignant transformation. Although rare in the paediatric population, patients with high-grade gliomas have, for the most part, a comparably dismal clinical outcome to older patients with morphologically similar lesions. Molecular profiling data have begun to reveal the major genetic alterations underpinning these malignant tumours in children. Indeed, the accumulation of large datasets on adult high-grade glioma has revealed key biological differences between the adult and paediatric disease. Furthermore, subclassifications within the childhood age group can be made depending on age at diagnosis and tumour site. However, challenges remain on how to reconcile clinical data from adult patients to tailor novel treatment strategies specifically for paediatric patients.

Key Points

  • Paediatric malignant gliomas, which are classified by morphological criteria that were designed specifically for adult tumours, have long been considered to be the same as adult disease

  • Diffusely infiltrating malignant lesions arising in the ventral pons—diffuse intrinsic pontine gliomas (DIPGs)—generally occur in children, and pose unique problems in surgical management, drug delivery and biological study

  • Differences in DNA copy number and gene-expression profiles have provided evidence that paediatric high-grade glioma (HGG) and DIPG have different developmental origins and are biologically distinct from the corresponding adult tumours

  • Specific mutations at key post-translationally modified residues in histones (H3F3A and HIST1H3B) and genes involved in chromatin remodelling (ATRX–DAXX) define the paediatric diseases

  • An improved range of biologically relevant preclinical models are required to overcome clinical failures of single-targeted agents in children based on extrapolation from data from adults with HGG

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Objective response rates of single-agent chemotherapy trials (of carboplatin,142, 143 cisplatin,144, 145 nitrosourea,145, 146, 147, 148, 149 etoposide,150, 151, 152 ifosfamide,152, 154 irinotecan155, 156, 157, 158 and temozolomide159, 160, 161, 162, 163, 164) in adult and paediatric (including DIPG) HGG.
Figure 2: Signalling pathways and clinically relevant targeted inhibitors in pHGG and DIPG.

Similar content being viewed by others

References

  1. Bailey, P. & Cushing, H. A. A classification of the tumours of the glioma group on a histogenetic basis, with a correlated study of prognosis (J. B. Lippincott, Philadelphia, 1926).

    Google Scholar 

  2. Louis, D. N. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114, 97–109 (2007).

    PubMed Central  PubMed  Google Scholar 

  3. Daumas-Duport, C., Scheithauer, B., O'Fallon, J. & Kelly, P. Grading of astrocytomas. A simple and reproducible method. Cancer 62, 2152–2165 (1988).

    CAS  PubMed  Google Scholar 

  4. Gilles, F. H. et al. Limitations of the World Health Organization classification of childhood supratentorial astrocytic tumors. Children Brain Tumor Consortium. Cancer 88, 1477–1483 (2000).

    CAS  PubMed  Google Scholar 

  5. Brown, W. D. et al. Prognostic limitations of the Daumas-Duport grading scheme in childhood supratentorial astroglial tumors. J. Neuropathol. Exp. Neurol. 57, 1035–1040 (1998).

    CAS  PubMed  Google Scholar 

  6. Puget, S. et al. Neuropathological and neuroradiological spectrum of pediatric malignant gliomas: correlation with outcome. Neurosurgery 69, 215–224 (2011).

    PubMed  Google Scholar 

  7. Arora, R. S. et al. Age-incidence patterns of primary CNS tumors in children, adolescents, and adults in England. Neuro. Oncol. 11, 403–413 (2009).

    PubMed Central  PubMed  Google Scholar 

  8. Rineer, J., Schreiber, D., Choi, K. & Rotman, M. Characterization and outcomes of infratentorial malignant glioma: a population-based study using the Surveillance Epidemiology and End-Results database. Radiother. Oncol. 95, 321–326 (2010).

    PubMed  Google Scholar 

  9. Central Brain Tumor Registry of the United States. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2004–2007 [online], (2011).

  10. Soffietti, R. et al. Guidelines on management of low-grade gliomas: report of an EFNS–EANO Task Force. Eur. J. Neurol. 17, 1124–1133 (2010).

    CAS  PubMed  Google Scholar 

  11. Broniscer, A. et al. Clinical and molecular characteristics of malignant transformation of low-grade glioma in children. J. Clin. Oncol. 25, 682–689 (2007).

    CAS  PubMed  Google Scholar 

  12. Qaddoumi, I., Sultan, I. & Gajjar, A. Outcome and prognostic features in pediatric gliomas: a review of 6212 cases from the Surveillance, Epidemiology, and End Results database. Cancer 115, 5761–5770 (2009).

    PubMed  Google Scholar 

  13. Hargrave, D., Bartels, U. & Bouffet, E. Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol. 7, 241–248 (2006).

    PubMed  Google Scholar 

  14. Kramm, C. M. et al. Thalamic high-grade gliomas in children: a distinct clinical subset? Neuro. Oncol. 13, 680–689 (2011).

    PubMed Central  PubMed  Google Scholar 

  15. Wolff, J. E. et al. Subpopulations of malignant gliomas in pediatric patients: analysis of the HIT-GBM database. J. Neurooncol. 87, 155–164 (2008).

    PubMed  Google Scholar 

  16. Wolff, B. et al. Pediatric high grade glioma of the spinal cord: results of the HIT-GBM database. J. Neurooncol. 107, 139–146 (2012).

    PubMed  Google Scholar 

  17. Finlay, J. L. et al. Randomized phase III trial in childhood high-grade astrocytoma comparing vincristine, lomustine, and prednisone with the eight-drugs-in-1-day regimen. Childrens Cancer Group. J. Clin. Oncol. 13, 112–123 (1995).

    CAS  PubMed  Google Scholar 

  18. Barrow, J. et al. Homozygous loss of ADAM3A revealed by genome-wide analysis of pediatric high-grade glioma and diffuse intrinsic pontine gliomas. Neuro. Oncol. 13, 212–222 (2011).

    CAS  PubMed  Google Scholar 

  19. Bax, D. A. et al. A distinct spectrum of copy number aberrations in paediatric high grade gliomas. Clin. Cancer Res. 16, 3368–3377 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Paugh, B. S. et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J. Clin. Oncol. 28, 3061–3068 (2010).

    PubMed Central  PubMed  Google Scholar 

  21. Puget, S. et al. Integrated genomics indentifies three high-grade glioma subtypes with distinct genetic profiles, pathway signatures, and clinicopathological features. Neuro. Oncol. 12, i11 (2010).

    Google Scholar 

  22. Qu, H. Q. et al. Genome-wide profiling using single-nucleotide polymorphism arrays identifies novel chromosomal imbalances in pediatric glioblastomas. Neuro. Oncol. 12, 153–163 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Schiffman, J. D. et al. Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas. Cancer Res. 70, 512–519 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Wong, K. K. et al. Genome-wide allelic imbalance analysis of pediatric gliomas by single nucleotide polymorphic allele array. Cancer Res. 66, 11172–11178 (2006).

    CAS  PubMed  Google Scholar 

  25. Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).

    CAS  PubMed  Google Scholar 

  26. Wu, G. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44, 251–253 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Johnson, R. A. et al. Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466, 632–636 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Li, M. et al. Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell 16, 533–546 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Perry, A. et al. Malignant gliomas with primitive neuroectodermal tumor-like components: a clinicopathologic and genetic study of 53 cases. Brain Pathol. 19, 81–90 (2009).

    PubMed  Google Scholar 

  30. Zarghooni, M. et al. Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor α and poly (ADP-ribose) polymerase as potential therapeutic targets. J. Clin. Oncol. 28, 1337–1344 (2010).

    CAS  PubMed  Google Scholar 

  31. McLendon, R. et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

    CAS  Google Scholar 

  32. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Bax, D. A. et al. EGFRvIII deletion mutations in pediatric high-grade glioma and response to targeted therapy in pediatric glioma cell lines. Clin. Cancer Res. 15, 5753–5761 (2009).

    CAS  PubMed  Google Scholar 

  34. Geoerger, B. et al. Innovative Therapies for Children with Cancer pediatric phase I study of erlotinib in brainstem glioma and relapsing/refractory brain tumors. Neuro. Oncol. 13, 109–118 (2011).

    CAS  PubMed  Google Scholar 

  35. Cheng, Y. et al. Genetic alterations in pediatric high-grade astrocytomas. Hum. Pathol. 30, 1284–1290 (1999).

    CAS  PubMed  Google Scholar 

  36. Jha, P. et al. Heterozygosity status of 1p and 19q and its correlation with p53 protein expression and EGFR amplification in patients with astrocytic tumors: novel series from India. Cancer Genet. Cytogenet. 198, 126–134 (2010).

    CAS  PubMed  Google Scholar 

  37. Kraus, J. A., Felsberg, J., Tonn, J. C., Reifenberger, G. & Pietsch, T. Molecular genetic analysis of the TP53, PTEN, CDKN2A, EGFR, CDK4 and MDM2 tumour-associated genes in supratentorial primitive neuroectodermal tumours and glioblastomas of childhood. Neuropathol. Appl. Neurobiol. 28, 325–333 (2002).

    CAS  PubMed  Google Scholar 

  38. Nakamura, M. et al. Molecular pathogenesis of pediatric astrocytic tumors. Neuro. Oncol. 9, 113–123 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Sung, T. et al. Preferential inactivation of the p53 tumor suppressor pathway and lack of EGFR amplification distinguish de novo high grade pediatric astrocytomas from de novo adult astrocytomas. Brain Pathol. 10, 249–259 (2000).

    CAS  PubMed  Google Scholar 

  40. Suri, V. et al. Pediatric glioblastomas: a histopathological and molecular genetic study. Neuro. Oncol. 11, 274–280 (2009).

    PubMed Central  PubMed  Google Scholar 

  41. Beroukhim, R. et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc. Natl Acad. Sci. USA 104, 20007–20012 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Maher, E. A. et al. Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities. Cancer Res. 66, 11502–11513 (2006).

    CAS  PubMed  Google Scholar 

  43. Liang, M. L. et al. Tyrosine kinase expression in pediatric high grade astrocytoma. J. Neurooncol. 87, 247–253 (2008).

    PubMed  Google Scholar 

  44. Thorarinsdottir, H. K. et al. Protein expression of platelet-derived growth factor receptor correlates with malignant histology and PTEN with survival in childhood gliomas. Clin. Cancer Res. 14, 3386–3394 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Faury, D. et al. Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors. J. Clin. Oncol. 25, 1196–1208 (2007).

    CAS  PubMed  Google Scholar 

  46. Haque, T. et al. Gene expression profiling from formalin-fixed paraffin-embedded tumors of pediatric glioblastoma. Clin. Cancer Res. 13, 6284–6292 (2007).

    CAS  PubMed  Google Scholar 

  47. Phillips, H. S. et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157–173 (2006).

    CAS  PubMed  Google Scholar 

  48. Verhaak, R. G. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Gaspar, N. et al. MGMT-independent temozolomide resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX/stem cell gene signature. Cancer Res 70, 9243–9252 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Antonelli, M. et al. Prognostic significance of histological grading, p53 status, YKL-40 expression, and IDH1 mutations in pediatric high-grade gliomas. J. Neurooncol. 99, 209–215 (2010).

    CAS  PubMed  Google Scholar 

  51. Sure, U. et al. Determination of p53 mutations, EGFR overexpression, and loss of p16 expression in pediatric glioblastomas. J. Neuropathol. Exp. Neurol. 56, 782–789 (1997).

    CAS  PubMed  Google Scholar 

  52. Badhe, P. B., Chauhan, P. P. & Mehta, N. K. Brainstem gliomas—a clinicopathological study of 45 cases with p53 immunohistochemistry. Indian J. Cancer 41, 170–174 (2004).

    PubMed  Google Scholar 

  53. Ganigi, P. M., Santosh, V., Anandh, B., Chandramouli, B. A. & Sastry Kolluri, V. R. Expression of p53, EGFR, pRb and bcl-2 proteins in pediatric glioblastoma multiforme: a study of 54 patients. Pediatr. Neurosurg. 41, 292–299 (2005).

    CAS  PubMed  Google Scholar 

  54. Pollack, I. F. et al. Expression of p53 and prognosis in children with malignant gliomas. N. Engl. J. Med. 346, 420–427 (2002).

    CAS  PubMed  Google Scholar 

  55. Pollack, I. F. et al. The relationship between TP53 mutations and overexpression of p53 and prognosis in malignant gliomas of childhood. Cancer Res. 57, 304–309 (1997).

    CAS  PubMed  Google Scholar 

  56. Pollack, I. F. et al. Age and TP53 mutation frequency in childhood malignant gliomas: results in a multi-institutional cohort. Cancer Res. 61, 7404–7407 (2001).

    CAS  PubMed  Google Scholar 

  57. Pollack, I. F. et al. IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children's Oncology Group. Childs Nerv. Syst. 27, 87–94 (2010).

    PubMed Central  PubMed  Google Scholar 

  58. De Carli, E., Wang, X. & Puget, S. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 2248 (2009).

    CAS  PubMed  Google Scholar 

  59. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465, 966 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Cervera, A. M., Bayley, J. P., Devilee, P. & McCreath, K. J. Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells. Mol. Cancer 8, 89 (2009).

    PubMed Central  PubMed  Google Scholar 

  61. Parsons, D. W. et al. The genetic landscape of the childhood cancer medulloblastoma. Science 331, 435–439 (2011).

    CAS  PubMed  Google Scholar 

  62. Nicolaides, T. P. et al. Targeted therapy for BRAFV600E malignant astrocytoma. Clin. Cancer Res. 17, 7595–7604 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Raabe, E. H. et al. BRAF activation induces transformation and then senescence in human neural stem cells: a pilocytic astrocytoma model. Clin. Cancer Res. 17, 3590–3599 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Jacob, K. et al. Genetic aberrations leading to MAPK pathway activation mediate oncogene-induced senescence in sporadic pilocytic astrocytomas. Clin. Cancer Res. 17, 4650–4660 (2011).

    CAS  PubMed  Google Scholar 

  65. Puget, S. et al. Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLoS ONE 7, e30313 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Roujeau, T. et al. Stereotactic biopsy of diffuse pontine lesions in children. J. Neurosurg. 107 (Suppl. 1), 1–4 (2007).

    PubMed  Google Scholar 

  67. Broniscer, A. et al. Prospective collection of tissue samples at autopsy in children with diffuse intrinsic pontine glioma. Cancer 116, 4632–4637 (2010).

    PubMed  Google Scholar 

  68. Paugh, B. S. et al. Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J. Clin. Oncol. 29, 3999–4006 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Warren, K. E. et al. Genomic aberrations in pediatric diffuse intrinsic pontine gliomas. Neuro. Oncol. 14, 326–332 (2011).

    PubMed Central  PubMed  Google Scholar 

  70. Grill, J. et al. Critical oncogenic mutations in newly diagnosed pediatric diffuse intrinsic pontine glioma. Pediatr. Blood Cancer 58, 489–491 (2012).

    PubMed  Google Scholar 

  71. Becher, O. J. et al. Preclinical evaluation of radiation and perifosine in a genetically and histologically accurate model of brainstem glioma. Cancer Res. 70, 2548–2557 (2010).

    CAS  PubMed  Google Scholar 

  72. Monje, M. et al. Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proc. Natl Acad. Sci. USA 108, 4453–4458 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095–1099 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Liu, C. et al. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146, 209–221 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Costa, B. M. et al. Reversing HOXA9 oncogene activation by PI3K inhibition: epigenetic mechanism and prognostic significance in human glioblastoma. Cancer Res. 70, 453–462 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Murat, A. et al. Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J. Clin. Oncol. 26, 3015–3024 (2008).

    CAS  PubMed  Google Scholar 

  77. Prognostic factors for high-grade malignant glioma: development of a prognostic index. A Report of the Medical Research Council Brain Tumour Working Party. J. Neurooncol. 9, 47–55 (1990).

  78. Wu, W. et al. Joint NCCTG and NABTC prognostic factors analysis for high-grade recurrent glioma. Neuro. Oncol. 12, 164–172 (2010).

    CAS  PubMed  Google Scholar 

  79. Grigsby, P. W., Thomas, P. R., Schwartz, H. G. & Fineberg, B. B. Multivariate analysis of prognostic factors in pediatric and adult thalamic and brainstem tumors. Int. J. Radiat. Oncol. Biol. Phys. 16, 649–655 (1989).

    CAS  PubMed  Google Scholar 

  80. Winger, M. J., Macdonald, D. R. & Cairncross, J. G. Supratentorial anaplastic gliomas in adults. The prognostic importance of extent of resection and prior low-grade glioma. J. Neurosurg. 71, 487–493 (1989).

    CAS  PubMed  Google Scholar 

  81. Wisoff, J. H. et al. Current neurosurgical management and the impact of the extent of resection in the treatment of malignant gliomas of childhood: a report of the Children's Cancer Group trial no. CCG-945. J. Neurosurg. 89, 52–59 (1998).

    CAS  PubMed  Google Scholar 

  82. Albright, A. L. et al. Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: a report from the Children's Cancer Group. Neurosurgery 33, 1026–1029; discussion 1029–1030 (1993).

    CAS  PubMed  Google Scholar 

  83. Hargrave, D. Pontine glioma. To biopsy or not to biopsy: that is the question. Br. J. Neurosurg. 22, 624 (2008).

    PubMed  Google Scholar 

  84. MacDonald, T. J. Diffuse intrinsic pontine glioma (DIPG): time to biopsy again? Pediatr. Blood Cancer 58, 487–488 (2012).

    PubMed  Google Scholar 

  85. Laperriere, N., Zuraw, L. & Cairncross, G. Cancer Care Ontario Practice Guidelines Initiative Neuro-Oncology Disease Site Group. Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. Radiother. Oncol. 64, 259–273 (2002).

    PubMed  Google Scholar 

  86. Thomas, R. et al. Hypofractionated radiotherapy as palliative treatment in poor prognosis patients with high grade glioma. Radiother. Oncol. 33, 113–116 (1994).

    CAS  PubMed  Google Scholar 

  87. Janssens, G. O. et al. The role of hypofractionation radiotherapy for diffuse intrinsic brainstem glioma in children: a pilot study. Int. J. Radiat. Oncol. Biol. Phys. 73, 722–726 (2009).

    PubMed  Google Scholar 

  88. Fine, H. A., Dear, K. B., Loeffler, J. S., Black, P. M. & Canellos, G. P. Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer 71, 2585–2597 (1993).

    CAS  PubMed  Google Scholar 

  89. Stupp, R. et al. Changing paradigms--an update on the multidisciplinary management of malignant glioma. Oncologist 11, 165–180 (2006).

    CAS  PubMed  Google Scholar 

  90. Levin, V. A. Chemotherapy for brain tumors of astrocytic and oligodendroglial lineage: the past decade and where we are heading. Neuro. Oncol. 1, 69–80 (1999).

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Pollack, I. F., Boyett, J. M. & Finlay, J. L. Chemotherapy for high-grade gliomas of childhood. Childs Nerv. Syst. 15, 529–544 (1999).

    CAS  PubMed  Google Scholar 

  92. Galanis, E. & Buckner, J. Chemotherapy for high-grade gliomas. Br. J. Cancer 82, 1371–1380 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Sposto, R. et al. The effectiveness of chemotherapy for treatment of high grade astrocytoma in children: results of a randomized trial. A report from the Childrens Cancer Study Group. J. Neurooncol. 7, 165–177 (1989).

    CAS  PubMed  Google Scholar 

  94. Jenkin, R. D. et al. Brain-stem tumors in childhood: a prospective randomized trial of irradiation with and without adjuvant CCNU, VCR, and prednisone. A report of the Childrens Cancer Study Group. J. Neurosurg. 66, 227–233 (1987).

    CAS  PubMed  Google Scholar 

  95. Pollack, I. F. et al. The influence of central review on outcome associations in childhood malignant gliomas: results from the CCG-945 experience. Neuro. Oncol. 5, 197–207 (2003).

    PubMed Central  PubMed  Google Scholar 

  96. Chastagner, P. et al. Outcome of children treated with preradiation chemotherapy for a high-grade glioma: results of a French Society of Pediatric Oncology (SFOP) Pilot Study. Pediatr. Blood Cancer 49, 803–807 (2007).

    CAS  PubMed  Google Scholar 

  97. Gilles, F. H. et al. Pathologist interobserver variability of histologic features in childhood brain tumors: results from the CCG-945 study. Pediatr. Dev. Pathol. 11, 108–117 (2008).

    PubMed  Google Scholar 

  98. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    CAS  PubMed  Google Scholar 

  99. Stupp, R. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10, 459–466 (2009).

    CAS  PubMed  Google Scholar 

  100. Cohen, K. J. et al. Temozolomide in the treatment of high-grade gliomas in children: a report from the Children's Oncology Group. Neuro. Oncol. 13, 317–323 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Cohen, K. J. et al. Temozolomide in the treatment of children with newly diagnosed diffuse intrinsic pontine gliomas: a report from the Children's Oncology Group. Neuro. Oncol. 13, 410–416 (2011).

    PubMed Central  PubMed  Google Scholar 

  102. Chassot, A. et al. Radiotherapy with concurrent and adjuvant temozolomide in children with newly diagnosed diffuse intrinsic pontine glioma. J. Neurooncol. 106, 399–407 (2012).

    CAS  PubMed  Google Scholar 

  103. Duffner, P. K. et al. The treatment of malignant brain tumors in infants and very young children: an update of the Pediatric Oncology Group experience. Neuro. Oncol. 1, 152–161 (1999).

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Dufour, C. et al. High-grade glioma in children under 5 years of age: a chemotherapy only approach with the BBSFOP protocol. Eur. J. Cancer 42, 2939–2945 (2006).

    CAS  PubMed  Google Scholar 

  105. Szerlip, N. J. et al. Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc. Natl Acad. Sci. USA 109, 3041–3046 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Little, S. E. et al. Receptor tyrosine kinase genes amplified in glioblastoma exhibit a mutual exclusivity in variable proportions reflective of individual tumor heterogeneity. Cancer Res. 72, 1614–1620 (2012).

    CAS  PubMed  Google Scholar 

  107. Snuderl, M. et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 20, 810–817 (2011).

    CAS  PubMed  Google Scholar 

  108. Yap, T. A. et al. Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr. Opin. Pharmacol. 8, 393–412 (2008).

    CAS  PubMed  Google Scholar 

  109. Bielen, A. et al. Enhanced efficacy of IGF1R inhibition in pediatric glioblastoma by combinatorial targeting of PDGFRα/β. Mol. Cancer Ther. 10, 1407–1418 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Pitter, K. L. et al. Perifosine and CCI 779 co-operate to induce cell death and decrease proliferation in PTEN-intact and PTEN-deficient PDGF-driven murine glioblastoma. PLoS ONE 6, e14545 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Gerstner, E. R. et al. Antiangiogenic agents for the treatment of glioblastoma. Expert Opin. Investig. Drugs 16, 1895–1908 (2007).

    CAS  PubMed  Google Scholar 

  112. Mellinghoff, I. K., Lassman, A. B. & Wen, P. Y. Signal transduction inhibitors and antiangiogenic therapies for malignant glioma. Glia 59, 1205–1212 (2011).

    PubMed  Google Scholar 

  113. van Vuurden, D. G. et al. PARP inhibition sensitizes childhood high grade glioma, medulloblastoma and ependymoma to radiation. Oncotarget. 2, 984–996 (2011).

    PubMed Central  PubMed  Google Scholar 

  114. Smith, S. J. et al. Pediatric high-grade glioma: identification of poly(ADP-ribose) polymerase as a potential therapeutic target. Neuro. Oncol. 13, 1171–1177 (2011).

    PubMed Central  PubMed  Google Scholar 

  115. Thomas, A. A., Ernstoff, M. S. & Fadul, C. E. Immunotherapy for the treatment of glioblastoma. Cancer J. 18, 59–68 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Rutkowski, S. et al. Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br. J. Cancer 91, 1656–1662 (2004).

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Zhou, J., Atsina, K. B., Himes, B. T., Strohbehn, G. W. & Saltzman, W. M. Novel delivery strategies for glioblastoma. Cancer J. 18, 89–99 (2012).

    PubMed  Google Scholar 

  118. Chow, L. M. & Baker, S. J. Capturing the molecular and biological diversity of high-grade astrocytoma in genetically engineered mouse models. Oncotarget 3, 67–77 (2012).

    PubMed Central  PubMed  Google Scholar 

  119. Eglen, R. M., Gilchrist, A. & Reisine, T. The use of immortalized cell lines in GPCR screening: the good, bad and ugly. Comb. Chem. High Throughput Screen. 11, 560–565 (2008).

    CAS  PubMed  Google Scholar 

  120. Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003).

    CAS  PubMed  Google Scholar 

  121. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    CAS  PubMed  Google Scholar 

  122. De Witt Hamer, P. C. et al. The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene 27, 2091–2096 (2008).

    CAS  PubMed  Google Scholar 

  123. Neale, G. et al. Molecular characterization of the pediatric preclinical testing panel. Clin. Cancer Res. 14, 4572–4583 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Shu, Q. et al. Direct orthotopic transplantation of fresh surgical specimen preserves CD133+ tumor cells in clinically relevant mouse models of medulloblastoma and glioma. Stem Cells 26, 1414–1424 (2008).

    PubMed  Google Scholar 

  125. Singh, S. K., Clarke, I. D., Hide, T. & Dirks, P. B. Cancer stem cells in nervous system tumors. Oncogene 23, 7267–7273 (2004).

    CAS  PubMed  Google Scholar 

  126. Thirant, C. et al. Clinical relevance of tumor cells with stem-like properties in pediatric brain tumors. PLoS ONE 6, e16375 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Fael Al-Mayhani, T. M. et al. An efficient method for derivation and propagation of glioblastoma cell lines that conserves the molecular profile of their original tumours. J. Neurosci. Methods 176, 192–199 (2009).

    CAS  PubMed  Google Scholar 

  128. Pollard, S. M. et al. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4, 568–580 (2009).

    CAS  PubMed  Google Scholar 

  129. Lee, J. et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9, 391–403 (2006).

    CAS  PubMed  Google Scholar 

  130. Hovinga, K. E. et al. Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells 28, 1019–1029 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Houghton, P. J. et al. The pediatric preclinical testing program: description of models and early testing results. Pediatr. Blood Cancer 49, 928–940 (2007).

    PubMed  Google Scholar 

  132. Maris, J. M. et al. Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program. Pediatr. Blood Cancer 50, 581–587 (2008).

    PubMed  Google Scholar 

  133. Kolb, E. A. et al. Combination testing (stage 2) of the Anti-IGF-1 receptor antibody IMC-A12 with rapamycin by the pediatric preclinical testing program. Pediatr. Blood Cancer 58, 729–735 (2012).

    PubMed  Google Scholar 

  134. Morton, C. L. et al. Combination testing of cediranib (AZD2171) against childhood cancer models by the pediatric preclinical testing program. Pediatr. Blood Cancer 58, 566–571 (2012).

    PubMed  Google Scholar 

  135. Claes, A., Idema, A. J. & Wesseling, P. Diffuse glioma growth: a guerilla war. Acta Neuropathol. 114, 443–458 (2007).

    PubMed Central  PubMed  Google Scholar 

  136. Caretti, V. et al. Monitoring of tumor growth and post-irradiation recurrence in a diffuse intrinsic pontine glioma mouse model. Brain Pathol. 21, 441–451 (2011).

    PubMed  Google Scholar 

  137. Aoki, Y. et al. An experimental xenograft mouse model of diffuse pontine glioma designed for therapeutic testing. J. Neurooncol. 108, 29–35 (2012).

    PubMed  Google Scholar 

  138. Hashizume, R. et al. A human brainstem glioma xenograft model enabled for bioluminescence imaging. J. Neurooncol. 96, 151–159 (2010).

    PubMed  Google Scholar 

  139. Hambardzumyan, D., Parada, L. F., Holland, E. C. & Charest, A. Genetic modeling of gliomas in mice: new tools to tackle old problems. Glia 59, 1155–1168 (2011).

    PubMed Central  PubMed  Google Scholar 

  140. Heyer, J., Kwong, L. N., Lowe, S. W. & Chin, L. Non-germline genetically engineered mouse models for translational cancer research. Nat. Rev. Cancer 10, 470–480 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Chow, L. M. et al. Cooperativity within and among Pten, p53, and Rb pathways induces high-grade astrocytoma in adult brain. Cancer Cell 19, 305–316 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Poisson, M., Péréon, Y., Chiras, J. & Delattre, J. Y. Treatment of recurrent malignant supratentorial gliomas with carboplatin (CBDCA). J. Neurooncol. 10, 139–144 (1991).

    CAS  PubMed  Google Scholar 

  143. Gaynon, P. S. et al. Carboplatin in childhood brain tumors. A Children's Cancer Study Group phase II trial. Cancer 66, 2465–2469 (1990).

    CAS  PubMed  Google Scholar 

  144. Stewart, D. J., O'Bryan, R. M., Al-Sarraf, M., Costanzi, J. J. & Oishi, N. Phase II study of cisplatin in recurrent astrocytomas in adults: a Southwest Oncology Group Study. J. Neurooncol. 1, 145–147 (1983).

    CAS  PubMed  Google Scholar 

  145. Walker, R. W. & Allen, J. C. Cisplatin in the treatment of recurrent childhood primary brain tumors. J. Clin. Oncol. 6, 62–66 (1988).

    CAS  PubMed  Google Scholar 

  146. Komp, D. M., Land, V. J., Nitschke, R., Cangir, A. & Dyment, P. 5-[3,3-Bis(2-chloroethyl)-1-triazeno]imidazole-4-carboxamide (NSC-82196) in the treatment of childhood malignancy. Cancer Chemother. Rep. 59, 371–376 (1975).

    CAS  PubMed  Google Scholar 

  147. Levin, V. A. et al. PCNU treatment for recurrent malignant gliomas. Cancer Treat. Rep. 68, 969–973 (1984).

    CAS  PubMed  Google Scholar 

  148. Levin, V. A. & Wilson, C. B. Nitrosourea chemotherapy for primary malignant gliomas. Cancer Treat. Rep. 60, 719–724 (1976).

    CAS  PubMed  Google Scholar 

  149. Allen, J. C., Hancock, C., Walker, R. & Tan, C. PCNU and recurrent childhood brain tumors. J. Neurooncol. 5, 241–244 (1987).

    CAS  PubMed  Google Scholar 

  150. Fulton, D., Urtasun, R. & Forsyth, P. Phase II study of prolonged oral therapy with etoposide (VP16) for patients with recurrent malignant glioma. J. Neurooncol. 27, 149–155 (1996).

    CAS  PubMed  Google Scholar 

  151. Chamberlain, M. C. Recurrent brainstem gliomas treated with oral VP-16. J. Neurooncol. 15, 133–139 (1993).

    CAS  PubMed  Google Scholar 

  152. Chamberlain, M. C. Recurrent supratentorial malignant gliomas in children. Long-term salvage therapy with oral etoposide. Arch. Neurol. 54, 554–558 (1997).

    CAS  PubMed  Google Scholar 

  153. Elliott, T. E. et al. Phase II study of ifosfamide with mesna in adult patients with recurrent diffuse astrocytoma. J. Neurooncol. 10, 27–30 (1991).

    CAS  PubMed  Google Scholar 

  154. Chastagner, P. et al. Phase II study of ifosfamide in childhood brain tumors: a report by the French Society of Pediatric Oncology (SFOP). Med. Pediatr. Oncol. 21, 49–53 (1993).

    CAS  PubMed  Google Scholar 

  155. Turner, C. D. et al. Phase II study of irinotecan (CPT-11) in children with high-risk malignant brain tumors: the Duke experience. Neuro. Oncol. 4, 102–108 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Friedman, H. S. et al. Irinotecan therapy in adults with recurrent or progressive malignant glioma. J. Clin. Oncol. 17, 1516–1525 (1999).

    CAS  PubMed  Google Scholar 

  157. Prados, M. D. et al. A phase 2 trial of irinotecan (CPT-11) in patients with recurrent malignant glioma: a North American Brain Tumor Consortium study. Neuro. Oncol. 8, 189–193 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Bomgaars, L. R. et al. Phase II trial of irinotecan in children with refractory solid tumors: a Children's Oncology Group Study. J. Clin. Oncol. 25, 4622–4627 (2007).

    CAS  PubMed  Google Scholar 

  159. Bower, M. et al. Multicentre CRC phase II trial of temozolomide in recurrent or progressive high-grade glioma. Cancer Chemother. Pharmacol. 40, 484–488 (1997).

    CAS  PubMed  Google Scholar 

  160. Brandes, A. A. et al. Temozolomide as a second-line systemic regimen in recurrent high-grade glioma: a phase II study. Ann. Oncol. 12, 255–257 (2001).

    CAS  PubMed  Google Scholar 

  161. Brada, M. et al. Multicenter phase II trial of temozolomide in patients with glioblastoma multiforme at first relapse. Ann. Oncol. 12, 259–266 (2001).

    CAS  PubMed  Google Scholar 

  162. Lashford, L. S. et al. Temozolomide in malignant gliomas of childhood: a United Kingdom Children's Cancer Study Group and French Society for Pediatric Oncology Intergroup Study. J. Clin. Oncol. 20, 4684–4691 (2002).

    CAS  PubMed  Google Scholar 

  163. Nicholson, H. S. et al. Phase 2 study of temozolomide in children and adolescents with recurrent central nervous system tumors: a report from the Children's Oncology Group. Cancer 110, 1542–1550 (2007).

    CAS  PubMed  Google Scholar 

  164. Ruggiero, A. et al. Phase II trial of temozolomide in children with recurrent high-grade glioma. J. Neurooncol. 77, 89–94 (2006).

    CAS  PubMed  Google Scholar 

  165. De Witt Hamer, P. C. Small molecule kinase inhibitors in glioblastoma: a systematic review of clinical studies. Neuro. Oncol. 12, 304–316 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Broniscer, A. et al. Phase I and pharmacokinetic studies of erlotinib administered concurrently with radiotherapy for children, adolescents, and young adults with high-grade glioma. Clin. Cancer Res. 15, 701–707 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Geyer, J. R. et al. A phase I and biology study of gefitinib and radiation in children with newly diagnosed brain stem gliomas or supratentorial malignant gliomas. Eur. J. Cancer 46, 3287–3293 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Pollack, I. F. et al. A phase II study of gefitinib and irradiation in children with newly diagnosed brainstem gliomas: a report from the Pediatric Brain Tumor Consortium. Neuro. Oncol. 13, 290–297 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Massimino, M., Bode, U., Biassoni, V. & Fleischhack, G. Nimotuzumab for pediatric diffuse intrinsic pontine gliomas. Expert Opin. Biol. Ther. 11, 247–256 (2011).

    CAS  PubMed  Google Scholar 

  170. Lam, C., Bouffet, E. & Bartels, U. Nimotuzumab in pediatric glioma. Future Oncol. 5, 1349–1361 (2009).

    CAS  PubMed  Google Scholar 

  171. Pollack, I. F. et al. Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: a Pediatric Brain Tumor Consortium report. Neuro. Oncol. 9, 145–160 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Baruchel, S. et al. A Canadian paediatric brain tumour consortium (CPBTC) phase II molecularly targeted study of imatinib in recurrent and refractory paediatric central nervous system tumours. Eur. J. Cancer 45, 2352–2359 (2009).

    CAS  PubMed  Google Scholar 

  173. Broniscer, A. et al. Phase I study of vandetanib during and after radiotherapy in children with diffuse intrinsic pontine glioma. J. Clin. Oncol. 28, 4762–4768 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Gururangan, S. et al. Lack of efficacy of bevacizumab plus irinotecan in children with recurrent malignant glioma and diffuse brainstem glioma: a Pediatric Brain Tumor Consortium study. J. Clin. Oncol. 28, 3069–3075 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Geoerger, B. et al. Phase II trial of temsirolimus in children with high-grade glioma, neuroblastoma and rhabdomyosarcoma. Eur. J. Cancer 48, 253–262 (2012).

    CAS  PubMed  Google Scholar 

  176. Haas-Kogan, D. A. et al. Phase I trial of tipifarnib in children with newly diagnosed intrinsic diffuse brainstem glioma. Neuro. Oncol. 10, 341–347 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

C. Jones and L. Perryman acknowledge support from the Specialist Biomedical Research Centre for Cancer at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research. D. Hargrave acknowledges support from the Great Ormond Street Hospital/Institute of Child Health, Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data and wrote the article, as well as contributed to discussions of its content and edited the manuscript before submission.

Corresponding author

Correspondence to Chris Jones.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, C., Perryman, L. & Hargrave, D. Paediatric and adult malignant glioma: close relatives or distant cousins?. Nat Rev Clin Oncol 9, 400–413 (2012). https://doi.org/10.1038/nrclinonc.2012.87

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2012.87

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer