Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The mini-driver model of polygenic cancer evolution

Abstract

Much of cancer genetics research has focused on the identification of the most-important somatic mutations ('major drivers') that cause tumour growth. However, many mutations found in cancer might not be major drivers or 'passenger' mutations, but instead might have relatively weak tumour-promoting effects. Our aim is to highlight the existence of these mutations (termed 'mini drivers' herein), as multiple mini-driver mutations might substitute for a major-driver change, especially in the presence of genomic instability or high mutagen exposure. The mini-driver model has clinical implications: for example, the effects of therapeutically targeting such genes may be limited. However, the main importance of the model lies in helping to provide a complete understanding of tumorigenesis, especially as we anticipate that an increasing number of mini-driver mutations will be found by cancer genome sequencing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schemas of some mini-driver scenarios.
Figure 2: Ratio of NS/S mutations and mutational load in colorectal cancers according to their mutation burden.

Similar content being viewed by others

References

  1. Garraway, L. A. & Lander, E. S. Lessons from the cancer genome. Cell 153, 17–37 (2013).

    Article  CAS  Google Scholar 

  2. Leiserson, M. D. et al. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat. Genet. 47, 106–114 (2015).

    Article  CAS  Google Scholar 

  3. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  Google Scholar 

  4. Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009).

    Article  CAS  Google Scholar 

  5. Marx, V. Cancer genomes: discerning drivers from passengers. Nat. Methods 11, 375–379 (2014).

    Article  CAS  Google Scholar 

  6. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    Article  CAS  Google Scholar 

  7. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  CAS  Google Scholar 

  8. Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6, 924–935 (2006).

    Article  CAS  Google Scholar 

  9. Amos-Landgraf, J. M. et al. Sex disparity in colonic adenomagenesis involves promotion by male hormones, not protection by female hormones. Proc. Natl Acad. Sci. USA 111, 16514–16519 (2014).

    Article  CAS  Google Scholar 

  10. Figueiredo, J. C. et al. Genome-wide diet–gene interaction analyses for risk of colorectal cancer. PLoS Genet. 10, e1004228 (2014).

    Article  Google Scholar 

  11. Beerenwinkel, N. et al. Genetic progression and the waiting time to cancer. PLoS Comput. Biol. 3, e225 (2007).

    Article  Google Scholar 

  12. Bansal, V., Libiger, O., Torkamani, A. & Schork, N. J. Statistical analysis strategies for association studies involving rare variants. Nat. Rev. Genet. 11, 773–785 (2010).

    Article  CAS  Google Scholar 

  13. Bodmer, W. & Bonilla, C. Common and rare variants in multifactorial susceptibility to common diseases. Nat. Genet. 40, 695–701 (2008).

    Article  CAS  Google Scholar 

  14. Hindorff, L. A., Gillanders, E. M. & Manolio, T. A. Genetic architecture of cancer and other complex diseases: lessons learned and future directions. Carcinogenesis 32, 945–954 (2011).

    Article  CAS  Google Scholar 

  15. Cheetham, S. W., Gruhl, F., Mattick, J. S. & Dinger, M. E. Long noncoding RNAs and the genetics of cancer. Br. J. Cancer 108, 2419–2425 (2013).

    Article  CAS  Google Scholar 

  16. Fredriksson, N. J., Ny, L., Nilsson, J. A. & Larsson, E. Systematic analysis of noncoding somatic mutations and gene expression alterations across 14 tumor types. Nat. Genet. 46, 1258–1263 (2014).

    Article  CAS  Google Scholar 

  17. Hayes, J., Peruzzi, P. P. & Lawler, S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol. Med. 20, 460–469 (2014).

    Article  CAS  Google Scholar 

  18. Horn, S. et al. TERT promoter mutations in familial and sporadic melanoma. Science 339, 959–961 (2013).

    Article  CAS  Google Scholar 

  19. Huang, F. W. et al. Highly recurrent TERT promoter mutations in human melanoma. Science 339, 957–959 (2013).

    Article  CAS  Google Scholar 

  20. Weinhold, N., Jacobsen, A., Schultz, N., Sander, C. & Lee, W. Genome-wide analysis of noncoding regulatory mutations in cancer. Nat. Genet. 46, 1160–1165 (2014).

    Article  CAS  Google Scholar 

  21. Zeron-Medina, J. et al. A polymorphic p53 response element in KIT ligand influences cancer risk and has undergone natural selection. Cell 155, 410–422 (2013).

    Article  CAS  Google Scholar 

  22. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  Google Scholar 

  23. Imamura, Y. et al. Analyses of clinicopathological, molecular, and prognostic associations of KRAS codon 61 and codon 146 mutations in colorectal cancer: cohort study and literature review. Mol. Cancer 13, 135 (2014).

    Article  Google Scholar 

  24. Sansom, O. Tissue-specific tumour suppression by APC. Adv. Exp. Med. Biol. 656, 107–118 (2009).

    Article  CAS  Google Scholar 

  25. The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

  26. Lamlum, H. et al. The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson's 'two-hit' hypothesis. Nat. Med. 5, 1071–1075 (1999).

    Article  CAS  Google Scholar 

  27. Albuquerque, C. et al. The 'just-right' signaling model: APC somatic mutations are selected based on a specific level of activation of the β-catenin signaling cascade. Hum. Mol. Genet. 11, 1549–1560 (2002).

    Article  CAS  Google Scholar 

  28. Schneikert, J., Grohmann, A. & Behrens, J. Truncated APC regulates the transcriptional activity of β-catenin in a cell cycle dependent manner. Hum. Mol. Genet. 16, 199–209 (2007).

    Article  CAS  Google Scholar 

  29. Segditsas, S. et al. APC and the three-hit hypothesis. Oncogene 28, 146–155 (2009).

    Article  CAS  Google Scholar 

  30. Tuupanen, S. et al. Allelic imbalance at rs6983267 suggests selection of the risk allele in somatic colorectal tumor evolution. Cancer Res. 68, 14–17 (2008).

    Article  CAS  Google Scholar 

  31. Dewhurst, S. M. et al. Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov. 4, 175–185 (2014).

    Article  CAS  Google Scholar 

  32. Pugh, C. W. & Ratcliffe, P. J. The von Hippel–Lindau tumor suppressor, hypoxia-inducible factor-1 (HIF-1) degradation, and cancer pathogenesis. Semin. Cancer Biol. 13, 83–89 (2003).

    Article  CAS  Google Scholar 

  33. Shen, C. et al. Genetic and functional studies implicate HIF1α as a 14q kidney cancer suppressor gene. Cancer Discov. 1, 222–235 (2011).

    Article  CAS  Google Scholar 

  34. McFarland, C. D., Korolev, K. S., Kryukov, G. V., Sunyaev, S. R. & Mirny, L. A. Impact of deleterious passenger mutations on cancer progression. Proc. Natl Acad. Sci. USA 110, 2910–2915 (2013).

    Article  CAS  Google Scholar 

  35. Favero, F. et al. Glioblastoma adaptation traced through decline of an IDH1 clonal driver and macroevolution of a double minute chromosome. Ann. Oncol. 26, 880–887 (2015).

    Article  CAS  Google Scholar 

  36. Korolev, K. S., Xavier, J. B. & Gore, J. Turning ecology and evolution against cancer. Nat. Rev. Cancer 14, 371–380 (2014).

    Article  CAS  Google Scholar 

  37. Marusyk, A. et al. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 514, 54–58 (2014).

    Article  CAS  Google Scholar 

  38. Reilly, K. M. & Van Dyke, T. It takes a (dysfunctional) village to raise a tumor. Cell 135, 408–410 (2008).

    Article  CAS  Google Scholar 

  39. Tabassum, D. P. & Polyak, K. Tumorigenesis: it takes a village. Nat. Rev. Cancer 15, 473–483 (2015).

    Article  CAS  Google Scholar 

  40. Tomlinson, I. P. Game-theory models of interactions between tumour cells. Eur. J. Cancer 33, 1495–1500 (1997).

    Article  CAS  Google Scholar 

  41. Tomlinson, I. P. & Bodmer, W. F. Modelling the consequences of interactions between tumour cells. Br. J. Cancer 75, 157–160 (1997).

    Article  CAS  Google Scholar 

  42. Miller, B. E., Miller, F. R., Wilburn, D. & Heppner, G. H. Dominance of a tumor subpopulation line in mixed heterogeneous mouse mammary tumors. Cancer Res. 48, 5747–5753 (1988).

    CAS  PubMed  Google Scholar 

  43. Axelrod, R., Axelrod, D. E. & Pienta, K. J. Evolution of cooperation among tumor cells. Proc. Natl Acad. Sci. USA 103, 13474–13479 (2006).

    Article  CAS  Google Scholar 

  44. Cleary, A. S., Leonard, T. L., Gestl, S. A. & Gunther, E. J. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature 508, 113–117 (2014).

    Article  CAS  Google Scholar 

  45. Inda, M. M. et al. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev. 24, 1731–1745 (2010).

    Article  CAS  Google Scholar 

  46. Turke, A. B. et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17, 77–88 (2010).

    Article  CAS  Google Scholar 

  47. Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110–1122 (2014).

    Article  CAS  Google Scholar 

  48. Calbo, J. et al. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell 19, 244–256 (2011).

    Article  CAS  Google Scholar 

  49. Marusyk, A. & Polyak, K. Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 1805, 105–117 (2010).

    CAS  PubMed  Google Scholar 

  50. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  Google Scholar 

  51. Mardis, E. R. et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 361, 1058–1066 (2009).

    Article  CAS  Google Scholar 

  52. Davoli, T. et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948–962 (2013).

    Article  CAS  Google Scholar 

  53. Creixell, P. et al. Pathway and network analysis of cancer genomes. Nat. Methods 12, 615–621 (2015).

    Article  CAS  Google Scholar 

  54. Krogan, N. J., Lippman, S., Agard, D. A., Ashworth, A. & Ideker, T. The cancer cell map initiative: defining the hallmark networks of cancer. Mol. Cell 58, 690–698 (2015).

    Article  CAS  Google Scholar 

  55. Pe'er, D. & Hacohen, N. Principles and strategies for developing network models in cancer. Cell 144, 864–873 (2011).

    Article  CAS  Google Scholar 

  56. Gonzalez-Perez, A. & Lopez-Bigas, N. Functional impact bias reveals cancer drivers. Nucleic Acids Res. 40, e169 (2012).

    Article  CAS  Google Scholar 

  57. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  Google Scholar 

  58. Tamborero, D., Lopez-Bigas, N. & Gonzalez-Perez, A. Oncodrive-CIS: a method to reveal likely driver genes based on the impact of their copy number changes on expression. PLoS ONE 8, e55489 (2013).

    Article  CAS  Google Scholar 

  59. Gundem, G. et al. IntOGen: integration and data mining of multidimensional oncogenomic data. Nat. Methods 7, 92–93 (2010).

    Article  CAS  Google Scholar 

  60. Salk, J. J., Fox, E. J. & Loeb, L. A. Mutational heterogeneity in human cancers: origin and consequences. Annu. Rev. Pathol. 5, 51–75 (2010).

    Article  CAS  Google Scholar 

  61. Balmain, A., Gray, J. & Ponder, B. The genetics and genomics of cancer. Nat. Genet. 33, 238–244 (2003).

    Article  CAS  Google Scholar 

  62. Heitzer, E. & Tomlinson, I. Replicative DNA polymerase mutations in cancer. Curr. Opin. Genet. Dev. 24, 107–113 (2014).

    Article  CAS  Google Scholar 

  63. Anderson, A. R., Weaver, A. M., Cummings, P. T. & Quaranta, V. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127, 905–915 (2006).

    Article  CAS  Google Scholar 

  64. Sidow, A. & Spies, N. Concepts in solid tumor evolution. Trends Genet. 31, 208–214 (2015).

    Article  CAS  Google Scholar 

  65. Reiter, J. G., Bozic, I., Allen, B., Chatterjee, K. & Nowak, M. A. The effect of one additional driver mutation on tumor progression. Evol. Appl. 6, 34–45 (2013).

    Article  CAS  Google Scholar 

  66. Bozic, I. et al. Accumulation of driver and passenger mutations during tumor progression. Proc. Natl Acad. Sci. USA 107, 18545–18550 (2010).

    Article  CAS  Google Scholar 

  67. Crespi, B. The evolutionary biology of child health. Proc. Biol. Sci. 278, 1441–1449 (2011).

    Article  Google Scholar 

  68. Peer, P. G., van Dijck, J. A., Hendriks, J. H., Holland, R. & Verbeek, A. L. Age-dependent growth rate of primary breast cancer. Cancer 71, 3547–3551 (1993).

    Article  CAS  Google Scholar 

  69. Egeblad, M., Nakasone, E. S. & Werb, Z. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884–901 (2010).

    Article  CAS  Google Scholar 

  70. Kandoth, C. et al. Integrated genomic characterization of endometrial carcinoma. Nature 497, 67–73 (2013).

    Article  Google Scholar 

  71. Abbott, K. L. et al. The Candidate Cancer Gene Database: a database of cancer driver genes from forward genetic screens in mice. Nucleic Acids Res. 43, D844–D848 (2015).

    Article  CAS  Google Scholar 

  72. Shain, A. & Pollack, J. The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS ONE 8, e55119 (2013).

    Article  Google Scholar 

  73. Church D. N. et al. Prognostic significance of POLE proofreading mutations in endometrial cancer. J. Natl Cancer Inst. 107, dju402 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to T. Graham for comments and criticism. F.C.-G. and I.T. were supported by the Oxford National Institute for Health Research Comprehensive Biomedical Research Centre. Core funding to the Wellcome Trust Centre for Human Genetics was provided by the Wellcome Trust (090532/Z/09/Z).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Ratcliffe or Ian Tomlinson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Giner, F., Ratcliffe, P. & Tomlinson, I. The mini-driver model of polygenic cancer evolution. Nat Rev Cancer 15, 680–685 (2015). https://doi.org/10.1038/nrc3999

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3999

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer