Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research

Abstract

Malignant ascites presents a considerable clinical challenge to the management of ovarian cancer, but also provides a wealth of opportunities for translational research. The accessibility of ascitic fluid and its cellular components make it an excellent source of tumour tissue for the investigation of prognostic and predictive biomarkers, pharmacodynamic markers and for molecular profiling analysis. In this Opinion article, we discuss recent advances in our understanding of its pathophysiology, the development of new methods to characterize its molecular features and how these findings can be used to improve the treatment of malignant ascites, particularly in the context of ovarian cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The peritoneum, peritoneal membrane and ascites.

Similar content being viewed by others

References

  1. Runyon, B. A. Care of patients with ascites. N. Engl. J. Med. 330, 337–342 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Parsons, S. L., Lang, M. W. & Steele, R. J. Malignant ascites: a 2-year review from a teaching hospital. Eur. J. Surg. Oncol. 22, 237–239 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Ayantunde, A. & Parsons, S. Pattern and prognostic factors in patients with malignant ascites: a retrospective study. Ann. Oncol. 18, 945–949 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Garrison, R. N., Kaelin, L. D., Galloway, R. H. & Heuser, L. S. Malignant ascites. Clinical and experimental observations. Ann. Surg. 203, 644–651 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Howlader, N. et al. SEER Cancer Statistics Review, 1975–2009 (Vintage 2009 Populations). National Cancer Institute [online], (2012).

  6. Lopez, R. I. et al. Prognostic factor analysis, for patients with no evidence of disease after initial chemotherapy for advanced epithelial ovarian carcinoma. Int. J. Gynecol. Cancer 6, 8–14 (1996).

    Article  Google Scholar 

  7. Tan, D. S., Agarwal, R. & Kaye, S. B. Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncol. 7, 925–934 (2006).

    Article  PubMed  Google Scholar 

  8. Bagnato, A. & Rosano, L. Epithelial-mesenchymal transition in ovarian cancer progression: a crucial role for the endothelin axis. Cells Tissues Organs 185, 85–94 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Auersperg, N., Wong, A. S., Choi, K. C., Kang, S. K. & Leung, P. C. Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr. Rev. 22, 255–288 (2001).

    CAS  PubMed  Google Scholar 

  10. Gardner, M. J., Catterall, J. B., Jones, L. M. & Turner, G. A. Human ovarian tumour cells can bind hyaluronic acid via membrane CD44: a possible step in peritoneal metastasis. Clin. Exp. Metastasis 14, 325–334 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Strobel, T., Swanson, L. & Cannistra, S. A. In vivo inhibition of CD44 limits intra-abdominal spread of a human ovarian cancer xenograft in nude mice: a novel role for CD44 in the process of peritoneal implantation. Cancer Res. 57, 1228–1232 (1997).

    CAS  PubMed  Google Scholar 

  12. Wagner, B. J. et al. Simvastatin reduces tumor cell adhesion to human peritoneal mesothelial cells by decreased expression of VCAM-1 and β1 integrin. Int. J. Oncol. 39, 1593–1600 (2011).

    CAS  PubMed  Google Scholar 

  13. Rump, A. et al. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J. Biol. Chem. 279, 9190–9198 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Gubbels, J. A. et al. Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors. Mol. Cancer 566, 50 (2006).

    Article  CAS  Google Scholar 

  15. Renkin, E. M. Some consequences of capillary permeability to macromolecules: Starling's hypothesis reconsidered. Am. J. Physiol. 250, H706–710 (1986).

    CAS  PubMed  Google Scholar 

  16. Mutsaers, S. E. The mesothelial cell. Int. J. Biochem. Cell Biol. 36, 9–16 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Mutsaers, S. E. Mesothelial cells: their structure, function and role in serosal repair. Respirology 7, 171–191 (2002).

    Article  PubMed  Google Scholar 

  18. von Recklinghausen, F. T. Zur fettre sorption. Arch. Pathol. Anat. Physiol. 2666, 172 (1863).

    Article  Google Scholar 

  19. Sodek, K. L., Murphy, K. J., Brown, T. J. & Ringuette, M. J. Cell-cell and cell-matrix dynamics in intraperitoneal cancer metastasis. Cancer Metastasis Rev. 31, 397–414 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Holm-Nielsen, P. Pathogenesis of ascites in peritoneal carcinomatosis. Acta Pathol. Microbiol. Scand. 33, 10–21 (1953).

    Article  CAS  PubMed  Google Scholar 

  21. Feldman, G. B., Knapp, R. C., Order, S. E. & Hellman, S. The role of lymphatic obstruction in the formation of ascites in a murine ovarian carcinoma. Cancer Res. 32, 1663–1666 (1972).

    CAS  PubMed  Google Scholar 

  22. Nagy, J. A., Herzberg, K. T., Dvorak, J. M. & Dvorak, H. F. Pathogenesis of malignant ascites formation: initiating events that lead to fluid accumulation. Cancer Res. 53, 2631–2643 (1993).

    CAS  PubMed  Google Scholar 

  23. Garrison, R. N., Galloway, R. H. & Heuser, L. S. Mechanisms of malignant ascites production. J. Surg. Res. 42, 126–132 (1987).

    Article  CAS  PubMed  Google Scholar 

  24. Hirabayashi, K. & Graham, J. Genesis of ascites in ovarian cancer. Am. J. Obstet. Gynecol. 106, 492–497 (1970).

    Article  CAS  PubMed  Google Scholar 

  25. Senger, D. R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985 (1983).

    Article  CAS  PubMed  Google Scholar 

  26. Neufeld, G., Cohen, T., Gengrinovitch, S. & Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13, 9–22 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Geva, E. & Jaffe, R. B. Role of vascular endothelial growth factor in ovarian physiology and pathology. Fertil. Steril. 74, 429–438 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Zebrowski, B. K. et al. Markedly elevated levels of vascular endothelial growth factor in malignant ascites. Ann. Surg. Oncol. 6, 373–378 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Barton, D. P. et al. Angiogenic protein expression in advanced epithelial ovarian cancer. Clin. Cancer Res. 3, 1579–1586 (1997).

    CAS  PubMed  Google Scholar 

  30. Kassim, S. K. et al. Vascular endothelial growth factor and interleukin-8 are associated with poor prognosis in epithelial ovarian cancer patients. Clin. Biochem. 37, 363–369 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Paley, P. J. et al. Vascular endothelial growth factor expression in early stage ovarian carcinoma. Cancer 80, 98–106 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Bamias, A. et al. Correlation of NK T-like CD3+CD56+ cells and CD4+CD25+(hi) regulatory T cells with VEGF and TNFα in ascites from advanced ovarian cancer: association with platinum resistance and prognosis in patients receiving first-line, platinum-based chemotherapy. Gynecol. Oncol. 108, 421–427 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Santin, A. D. et al. Secretion of vascular endothelial growth factor in ovarian cancer. Eur. J. Gynaecol. Oncol. 20, 177–181 (1999).

    CAS  PubMed  Google Scholar 

  34. Schumacher, J. J. et al. Modulation of angiogenic phenotype alters tumorigenicity in rat ovarian epithelial cells. Cancer Res. 67, 3683–3690 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Byrne, A. T. et al. Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin. Cancer Res. 9, 5721–5728 (2003).

    CAS  PubMed  Google Scholar 

  36. Mesiano, S., Ferrara, N. & Jaffe, R. B. Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am. J. Pathol. 153, 1249–1256 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yukita, A., Asano, M., Okamoto, T., Mizutani, S. & Suzuki, H. Suppression of ascites formation and re-accumulation associated with human ovarian cancer by an anti-VPF monoclonal antibody in vivo. Anticancer Res. 20, 155–160 (2000).

    CAS  PubMed  Google Scholar 

  38. Herr, D. et al. VEGF induces ascites in ovarian cancer patients via increasing peritoneal permeability by downregulation of Claudin 5. Gynecol. Oncol. 127, 210–216 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Rodewald, M. et al. Regulation of tight junction proteins occludin and claudin 5 in the primate ovary during the ovulatory cycle and after inhibition of vascular endothelial growth factor. Mol. Hum. Reprod. 13, 781–789 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Saitou, M. et al. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol. Biol. Cell 11, 4131–4142 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dejana, E. Endothelial cell-cell junctions: happy together. Nature Rev. Mol. Cell Biol. 5, 261–270 (2004).

    Article  CAS  Google Scholar 

  42. Takahashi, A., Kondoh, M., Kodaka, M. & Yagi, K. Peptides as tight junction modulators. Curr. Pharm. Des. 17, 2699–2703 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Nitta, T. et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J. Cell Biol. 161, 653–660 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dvorak, H. F., Nagy, J. A., Feng, D., Brown, L. F. & Dvorak, A. M. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr. Top. Microbiol. Immunol. 237, 97–132 (1999).

    CAS  PubMed  Google Scholar 

  45. Esser, S., Lampugnani, M. G., Corada, M., Dejana, E. & Risau, W. Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J. Cell Sci. 111, 1853–1865 (1998).

    CAS  PubMed  Google Scholar 

  46. Horiuchi, A. et al. Hypoxia-induced changes in the expression of VEGF, HIF-1 α and cell cycle-related molecules in ovarian cancer cells. Anticancer Res. 22, 2697–2702 (2002).

    CAS  PubMed  Google Scholar 

  47. Hu, Y. L. et al. Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. J. Natl Cancer Inst. 93, 762–768 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Kulbe, H. et al. The inflammatory cytokine tumor necrosis factor-α generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res. 67, 585–592 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Salani, D. et al. Role of endothelin-1 in neovascularization of ovarian carcinoma. Am. J. Pathol. 157, 1537–1547 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gupta, R. A. et al. Cyclooxygenase-1 is overexpressed and promotes angiogenic growth factor production in ovarian cancer. Cancer Res. 63, 906–911 (2003).

    CAS  PubMed  Google Scholar 

  51. Stadlmann, S. et al. Ovarian carcinoma cells and IL-1β-activated human peritoneal mesothelial cells are possible sources of vascular endothelial growth factor in inflammatory and malignant peritoneal effusions. Gynecol. Oncol. 97, 784–789 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Belotti, D. et al. Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res. 63, 5224–5229 (2003).

    CAS  PubMed  Google Scholar 

  53. Chen, Y., Gou, X., Ke, X., Cui, H. & Chen, Z. Human tumor cells induce angiogenesis through positive feedback between CD147 and insulin-like growth factor-I. PLoS ONE 766, e40965 (2012).

    Article  CAS  Google Scholar 

  54. Liu, L. Z. et al. Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1α expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic. Biol. Med. 41, 1521–1533 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Matei, D. et al. PDGF BB induces VEGF secretion in ovarian cancer. Cancer Biol. Ther. 6, 1951–1959 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Liao, S. et al. TGF-β blockade controls ascites by preventing abnormalization of lymphatic vessels in orthotopic human ovarian carcinoma models. Clin. Cancer Res. 17, 1415–1424 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mills, G. B., May, C., McGill, M., Roifman, C. M. & Mellors, A. A. Putative new growth factor in ascitic fluid from ovarian cancer patients: identification, characterization, and mechanism of action. Cancer Res. 48, 1066–1071 (1988).

    CAS  PubMed  Google Scholar 

  58. Fang, X. et al. Mechanisms for lysophosphatidic acid-induced cytokine production in ovarian cancer cells. J. Biol. Chem. 279, 9653–9661 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Murph, M. M. et al. Lysophosphatidic acid-induced transcriptional profile represents serous epithelial ovarian carcinoma and worsened prognosis. PLoS ONE 4, e5583 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Jankowski, M. Autotaxin: its role in biology of melanoma cells and as a pharmacological target. Enzyme Res. 19, 48–57 (2011).

    Google Scholar 

  61. Bast, R. C. Jr, Hennessy, B. & Mills, G. B. The biology of ovarian cancer: new opportunities for translation. Nature Rev. Cancer 9, 415–428 (2009).

    Article  CAS  Google Scholar 

  62. Mills, G. B. & Moolenaar, W. H. The emerging role of lysophosphatidic acid in cancer. Nature Rev. Cancer 3, 582–591 (2003).

    Article  CAS  Google Scholar 

  63. Abrahams, V. M. et al. Epithelial ovarian cancer cells secrete functional Fas ligand. Cancer Res. 63, 5573–5581 (2003).

    CAS  PubMed  Google Scholar 

  64. Bjorge, L. et al. Ascitic complement system in ovarian cancer. Br. J. Cancer 92, 895–905 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Webb, T. J. et al. Molecular identification of GD3 as a suppressor of the innate immune response in ovarian cancer. Cancer Res. 72, 3744–3752 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Milliken, D., Scotton, C., Raju, S., Balkwill, F. & Wilson, J. Analysis of chemokines and chemokine receptor expression in ovarian cancer ascites. Clin. Cancer Res. 8, 1108–1114 (2002).

    CAS  PubMed  Google Scholar 

  67. Guo, Y. et al. Effects of siltuximab on the IL-6-induced signaling pathway in ovarian cancer. Clin. Cancer Res. 16, 5759–5769 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Matte, I., Lane, D., Laplante, C., Rancourt, C. & Piche, A. Profiling of cytokines in human epithelial ovarian cancer ascites. Am. J. Cancer Res. 2, 566–580 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Penson, R. T. et al. Cytokines IL-1β, IL-2, IL-6, IL-8, MCP-1, GM-CSF and TNFα in patients with epithelial ovarian cancer and their relationship to treatment with paclitaxel. Int. J. Gynecol. Cancer 10, 33–41 (2000).

    Article  PubMed  Google Scholar 

  70. Kryczek, I., Grybos, M., Karabon, L., Klimczak, A. & Lange, A. IL-6 production in ovarian carcinoma is associated with histiotype and biological characteristics of the tumour and influences local immunity. Br. J. Cancer 82, 621–628 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Huang, S., Robinson, J. B., DeGuzman, A., Bucana, C. D. & Fidler, I. J. Blockade of nuclear factor-κB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res. 60, 5334–5339 (2000).

    CAS  PubMed  Google Scholar 

  72. Yoneda, J. et al. Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J. Natl Cancer Institute 90, 447–454 (1998).

    Article  CAS  Google Scholar 

  73. Obata, N., Tamakoshi, K., Shibata, K., Kikkawa, F. & Tomoda, Y. Effects of interleukin-6 on in vitro cell attachment, migration and invasion of human carcinoma. Anticancer Res. 17, 337–342 (1997).

    CAS  PubMed  Google Scholar 

  74. Woolery, K. T. & Kruk, P. A. Ovarian epithelial-stromal interactions: role of interleukins 1 and 6. Obstet. Gynecol. Int. 35, 84–93 (2011).

    Google Scholar 

  75. Nilsson, M. B., Langley, R. R. & Fidler, I. J. Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res. 65, 10794–10800 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Alberti, C. et al. Ligand-dependent EGFR activation induces the co-expression of IL-6 and PAI-1 via the NFkB pathway in advanced-stage epithelial ovarian cancer. Oncogene 31, 4139–4149 (2011).

    Article  PubMed  CAS  Google Scholar 

  77. Lane, D., Matte, I., Rancourt, C. & Piche, A. Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer 1166, 210 (2011).

    Article  CAS  Google Scholar 

  78. Naldini, A. et al. Identification of thrombin-like activity in ovarian cancer associated ascites and modulation of multiple cytokine networks. Thromb. Haemost. 106, 705–711 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Gubbels, J. A. et al. MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells. Mol. Cancer 966, 11 (2010).

    Article  CAS  Google Scholar 

  80. Sica, A., Saccani, A. & Mantovani, A. Tumor-associated macrophages: a molecular perspective. Int. Immunopharmacol. 2, 1045–1054 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Hagemann, T. et al. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J. Immunol. 176, 5023–5032 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Balkwill, F. Cancer and the chemokine network. Nature Rev. Cancer 4, 540–550 (2004).

    Article  CAS  Google Scholar 

  83. Wang, E. et al. Peritoneal and subperitoneal stroma may facilitate regional spread of ovarian cancer. Clin. Cancer Res. 11, 113–122 (2005).

    CAS  PubMed  Google Scholar 

  84. Lin, Y. G. et al. EphA2 overexpression is associated with angiogenesis in ovarian cancer. Cancer 109, 332–340 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Niu, G. et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21, 2000–2008 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Rosen, D. G. et al. The role of constitutively active signal transducer and activator of transcription 3 in ovarian tumorigenesis and prognosis. Cancer 107, 2730–2740 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Lane, D., Robert, V., Grondin, R., Rancourt, C. & Piche, A. Malignant ascites protect against TRAIL-induced apoptosis by activating the PI3K/Akt pathway in human ovarian carcinoma cells. Int. J. Cancer 121, 1227–1237 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Lane, D., Goncharenko-Khaider, N., Rancourt, C. & Piche, A. Ovarian cancer ascites protects from TRAIL-induced cell death through αvβ5 integrin-mediated focal adhesion kinase and Akt activation. Oncogene 29, 3519–3531 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Goncharenko-Khaider, N., Matte, I., Lane, D., Rancourt, C. & Piche, A. Ovarian cancer ascites increase Mcl-1 expression in tumor cells through ERK1/2-Elk-1 signaling to attenuate TRAIL-induced apoptosis. Mol. Cancer 1166, 84 (2012).

    Article  CAS  Google Scholar 

  90. Peart, T. M., Correa, R. J., Valdes, Y. R., Dimattia, G. E. & Shepherd, T. G. BMP signalling controls the malignant potential of ascites-derived human epithelial ovarian cancer spheroids via AKT kinase activation. Clin. Exp. Metastasis 29, 293–313 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Bookman, M. A. et al. Evaluation of new platinum-based treatment regimens in advanced-stage ovarian cancer: a Phase III Trial of the Gynecologic Cancer Intergroup. J. Clin. Oncol. 27, 1419–1425 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. De Placido, S. et al. Topotecan compared with no therapy after response to surgery and carboplatin/paclitaxel in patients with ovarian cancer: Multicenter Italian Trials in Ovarian Cancer (MITO-1) randomized study. J. Clin. Oncol. 22, 2635–2642 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. du Bois, A. et al. Addition of epirubicin as a third drug to carboplatin-paclitaxel in first-line treatment of advanced ovarian cancer: a prospectively randomized gynecologic cancer intergroup trial by the Arbeitsgemeinschaft Gynaekologische Onkologie Ovarian Cancer Study Group and the Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens. J. Clin. Oncol. 24, 1127–1135 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Perren, T. J. et al. A phase 3 trial of bevacizumab in ovarian cancer. New Engl. J. Med. 365, 2484–2496 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Burger, R. A. et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. New Engl. J. Med. 365, 2473–2483 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Kristensen, G. P. et al. Result of interim analysis of overall survival in the GCIG ICON7 phase III randomized trial of bevacizumab in women with newly diagnosed ovarian cancer. J. Clin. Oncol. Abstr. 29, LBA5006 (2011).

    Article  Google Scholar 

  97. Aghajanian, C. et al. OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. J. Clin. Oncol. 30, 2039–2045 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pujade-Lauraine, E. et al. AURELIA: a randomized phase III trial evaluating bevacizumab (BEV) plus chemotherapy (CT) for platinum (PT)-resistant recurrent ovarian cancer (OC). J. Clin. Oncol. Abstr. 30, LBA5002 (2012).

    Article  Google Scholar 

  99. Sennino, B. & McDonald, D. M. Controlling escape from angiogenesis inhibitors. Nature Rev. Cancer 12, 699–709 (2012).

    Article  CAS  Google Scholar 

  100. Runyon, B. A. Management of adult patients with ascites due to cirrhosis: an update. Hepatology 49, 2087–2107 (2009).

    Article  PubMed  Google Scholar 

  101. Lee, C. W., Bociek, G. & Faught, W. A survey of practice in management of malignant ascites. J. Pain Symptom Manage. 16, 96–101 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Becker, G., Galandi, D. & Blum, H. E. Malignant ascites: systematic review and guideline for treatment. Eur. J. Cancer 42, 589–597 (2006).

    Article  PubMed  Google Scholar 

  103. Pockros, P. J., Esrason, K. T., Nguyen, C., Duque, J. & Woods, S. Mobilization of malignant ascites with diuretics is dependent on ascitic fluid characteristics. Gastroenterology 103, 1302–1306 (1992).

    Article  CAS  PubMed  Google Scholar 

  104. Cavazzoni, E., Bugiantella, W., Graziosi, L., Franceschini, M. S. & Donini, A. Malignant ascites: pathophysiology and treatment. Int. J. Clin. Oncol. 31 Mar 2012 (doi:10.1007/s10147-012-0396-6).

  105. Kalambokis, G. et al. Renal effects of treatment with diuretics, octreotide or both, in non-azotemic cirrhotic patients with ascites. Nephrol. Dial. Transplant. 20, 1623–1629 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Jatoi, A. et al. A pilot study of long-acting octreotide for symptomatic malignant ascites. Oncology 82, 315–320 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Dedrick, R. L., Myers, C. E., Bungay, P. M. & DeVita, V. T. Jr. Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat. Rep. 62, 1–11 (1978).

    CAS  PubMed  Google Scholar 

  108. Armstrong, D. K. et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N. Engl. J. Med. 354, 34–43 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Ostrowski, M. J. An assessment of the long-term results of controlling the reaccumulation of malignant effusions using intracavity bleomycin. Cancer 57, 721–727 (1986).

    Article  CAS  PubMed  Google Scholar 

  110. Maiche, A. G. Management of peritoneal effusions with intracavitary mitoxantrone or bleomycin. Anticancer Drugs 5, 305–308 (1994).

    Article  CAS  PubMed  Google Scholar 

  111. Link, K. H. et al. Intraperitoneal chemotherapy with mitoxantrone in malignant ascites. Surg. Oncol. Clin. N. Am. 12, 865–872 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Schilsky, R. L. et al. Phase I clinical and pharmacologic study of intraperitoneal cisplatin and fluorouracil in patients with advanced intraabdominal cancer. J. Clin. Oncol. 8, 2054–2061 (1990).

    Article  CAS  PubMed  Google Scholar 

  113. Mackey, J. R., Wood, L., Nabholtz, J., Jensen, J. & Venner, P. A phase II trial of triamcinolone hexacetanide for symptomatic recurrent malignant ascites. J. Pain Symptom Manage. 19, 193–199 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Stuart, G. C., Nation, J. G., Snider, D. D. & Thunberg, P. Intraperitoneal interferon in the management of malignant ascites. Cancer 71, 2027–2030 (1993).

    Article  CAS  PubMed  Google Scholar 

  115. Rath, U. et al. Effect of intraperitoneal recombinant human tumour necrosis factor α on malignant ascites. Eur. J. Cancer 27, 121–125 (1991).

    Article  CAS  PubMed  Google Scholar 

  116. Heiss, M. M. et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int. J. Cancer 127, 2209–2221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ott, M. G. et al. Humoral response to catumaxomab correlates with clinical outcome: results of the pivotal phase II/III study in patients with malignant ascites. Int. J. Cancer 130, 2195–2203 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Beattie, G. J. & Smyth, J. F. Phase I study of intraperitoneal metalloproteinase inhibitor BB94 in patients with malignant ascites. Clin. Cancer Res. 4, 1899–1902 (1998).

    CAS  PubMed  Google Scholar 

  119. Numnum, T. M., Rocconi, R. P., Whitworth, J. & Barnes, M. N. The use of bevacizumab to palliate symptomatic ascites in patients with refractory ovarian carcinoma. Gynecol. Oncol. 102, 425–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. El-Shami, K., Elsaid, A. & El-Kerm, Y. Open-label safety and efficacy pilot trial of intraperitoneal bevacizumab as palliative treatment in refractory malignant ascites. J. Clin. Oncol. 25, 9043 (2007).

    Google Scholar 

  121. Hamilton, C. A. et al. Intraperitoneal bevacizumab for the palliation of malignant ascites in refractory ovarian cancer. Gynecol. Oncol. 111, 530–532 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Bellati, F. et al. Complete remission of ovarian cancer induced intractable malignant ascites with intraperitoneal bevacizumab. Immunological observations and a literature review. Invest. New Drugs 28, 887–894 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Holash, J. et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc. Natl Acad. Sci. 99, 11393–11398 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Colombo, N. et al. A phase II study of aflibercept in patients with advanced epithelial ovarian cancer and symptomatic malignant ascites. Gynecol. Oncol. 125, 42–47 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Gotlieb, W. H. et al. Intravenous aflibercept for treatment of recurrent symptomatic malignant ascites in patients with advanced ovarian cancer: a phase 2, randomised, double-blind, placebo-controlled study. Lancet Oncol. 13, 154–162 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. LeVeen, H. H. et al. Peritoneo-venous shunting for ascites. Ann. Surg. 180, 580–591 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mamada, Y. et al. Peritoneovenous shunts for palliation of malignant ascites. J. Nippon Med. Sch. 74, 355–358 (2007).

    Article  PubMed  Google Scholar 

  128. White, M. A., Agle, S. C., Padia, R. K. & Zervos, E. E. Denver peritoneovenous shunts for the management of malignant ascites: a review of the literature in the post LeVeen Era. Am. Surg. 77, 1070–1075 (2011).

    PubMed  Google Scholar 

  129. Saiz-Mendiguren, R. et al. Permanent tunneled drainage for malignant ascites: initial experience with the PleurX® catheter. Radiologia 52, 541–545 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Fleming, N. D., Alvarez-Secord, A., Von Gruenigen, V., Miller, M. J. & Abernethy, A. P. Indwelling catheters for the management of refractory malignant ascites: a systematic literature overview and retrospective chart review. J. Pain Symptom Manage. 38, 341–349 (2009).

    Article  PubMed  Google Scholar 

  131. Tapping, C. R., Ling, L. & Razack, A. PleurX drain use in the management of malignant ascites: safety, complications, long-term patency and factors predictive of success. Br. J. Radiol 85, 623–628 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kmietowicz, Z. Cancer patients should have access to device to treat fluid retention at home, says NICE. BMJ 344, e2272 (2012).

    Article  PubMed  Google Scholar 

  133. Puiffe, M.-L. et al. Characterization of ovarian cancer ascites on cell. Invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer. Neoplasia 9, 820–829 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lee, J. m. & Kohn, E. C. Proteomics as a guiding tool for more effective personalized therapy. Ann. Oncol. 21, 205–210 (2010).

    Article  Google Scholar 

  135. Morozova, O. & Marra, M. A. Applications of next-generation sequencing technologies in functional genomics. Genomics 92, 255–264 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Hetland, T. E. et al. Class III β-tubulin expression in advanced-stage serous ovarian carcinoma effusions is associated with poor survival and primary chemoresistance. Hum. Pathol. 42, 1019–1026 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Gillet, J.-P. et al. Clinical relevance of multidrug resistance gene expression in ovarian serous carcinoma effusions. Mol. Pharm. 8, 2080–2088 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shepherd, T. G., Thériault, B. L., Campbell, E. J. & Nachtigal, M. W. Primary culture of ovarian surface epithelial cells and ascites-derived ovarian cancer cells from patients. Nature Protoc. 1, 2643–2649 (2007).

    Article  CAS  Google Scholar 

  139. Hu, L., McArthur, C. & Jaffe, R. B. Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant. Br. J. Cancer 102, 1276–1283 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mukhopadhyay, A. et al. Development of a functional assay for homologous recombination status in primary cultures of epithelial ovarian tumor and correlation with sensitivity to poly(ADP-ribose) polymerase inhibitors. Clin. Cancer Res. 16, 2344–2351 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Fong, P. C. et al. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J. Clin. Oncol. 28, 2512–2519 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Elattar, A. et al. Androgen receptor expression is a biological marker for androgen sensitivity in high grade serous epithelial ovarian cancer. Gynecol. Oncol. 124, 142–147 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Carden, C. P. et al. The association of PI3 kinase signaling and chemoresistance in advanced ovarian cancer. Mol. Cancer Ther. 11, 1609–1617 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rizzo, S. et al. Ovarian cancer stem cell-like side populations are enriched following chemotherapy and overexpress EZH2. Mol. Cancer Ther. 10, 325–335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Moserle, L. et al. The side population of ovarian cancer cells is a primary target of IFN-α antitumor effects. Cancer Res. 68, 5658–5668 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Meirelles, K. et al. Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance. Proc. Natl Acad. Sci. USA 109, 2358–2363 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Latifi, A. et al. Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: molecular phenotype of chemoresistant ovarian tumors. PLoS ONE 766, e46858 (2012).

    Article  CAS  Google Scholar 

  148. Davidson, B. Proteomic analysis of malignant ovarian cancer effusions as a tool for biologic and prognostic profiling. Clin. Cancer Res. 12, 791–799 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Yap, T. A., Carden, C. P. & Kaye, S. B. Beyond chemotherapy: targeted therapies in ovarian cancer. Nature Rev. Cancer 9, 167–181 (2009).

    Article  CAS  Google Scholar 

  150. Lee, J.-M., Han, J. J., Altwerger, G. & Kohn, E. C. Proteomics and biomarkers in clinical trials for drug development. J. Proteomics 74, 2632–2641 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Runyon, B. A. et al. The serum-ascites albumin gradient is superior to the exudate-transudate concept in the differential diagnosis of ascites. Ann. Intern. Med. 117, 215–220 (1992).

    Article  CAS  PubMed  Google Scholar 

  152. Sheid, B. Angiogenic effects of macrophages isolated from ascitic fluid aspirated from women with advanced ovarian cancer. Cancer Lett. 62, 153–158 (1992).

    Article  CAS  PubMed  Google Scholar 

  153. Starling, E. H. On the absorption of fluids from the connective tissue spaces. J. Physiol. 19, 312–326 (1896).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cattau, E. L. Jr, Benjamin, S. B., Knuff, T. E. & Castell, D. O. The accuracy of the physical examination in the diagnosis of suspected ascites. JAMA 247, 1164–1166 (1982).

    Article  PubMed  Google Scholar 

  155. Inadomi, J., Cello, J. P. & Koch, J. Ultrasonographic determination of ascitic volume. Hepatology 24, 549–551 (1996).

    Article  CAS  PubMed  Google Scholar 

  156. Akriviadis, E. A. Hemoperitoneum in patients with ascites. Am. J. Gastroenterol. 92, 567–575 (1997).

    CAS  PubMed  Google Scholar 

  157. von Riedenauer, W. B., Janjua, S. A., Kwon, D. S., Zhang, Z. & Velanovich, V. Immunohistochemical identification of primary peritoneal serous cystadenocarcinoma mimicking advanced colorectal carcinoma: a case report. J. Med. Case Rep. 166, 150 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The Drug Development Unit, the Institute of Cancer Research and the Royal Marsden Hospital NHS Foundation Trust acknowledge support from Cancer Research UK, through core support and an Experimental Cancer Medicine Centre grant and from the National Institute of Health Research, as a Biomedical Research Centre. E.K. acknowledges support from the Wellcome Trust as a clinical research fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stan B. Kaye.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Omentum

A fold of peritoneum connecting or supporting abdominal structures, such as the stomach and liver.

Paracentesis

The procedure to remove fluid that has accumulated in the abdominal cavity (peritoneal fluid) by inserting a wide-bore needle through the abdominal wall.

Satiety

A condition of being full beyond capacity.

Starling's hypothesis of capillary haemodynamics

The direction and rate of fluid transfer between blood plasma in the capillary and fluid in the tissue spaces depend on the hydrostatic pressure on each side of the capillary wall, on the osmotic pressure of protein in plasma and in tissue fluid, and on the properties of the capillary walls as a filtering membrane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kipps, E., Tan, D. & Kaye, S. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat Rev Cancer 13, 273–282 (2013). https://doi.org/10.1038/nrc3432

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3432

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer