Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integrin signalling adaptors: not only figurants in the cancer story

Key Points

  • In cancer cells, integrin and growth factor receptor crosstalk leads to the recruitment of integrin signalling adaptors to assemble intracellular signalling platforms that result in cellular transformation and the control of migration and invasion. The biological effects that are regulated by integrin adaptors are dependent on their expression levels and on their phosphorylation status, which determine the association with binding effectors.

  • p130 Crk-associated substrate (p130CAS; also known as BCAR1), neural precursor cell expressed, developmentally down-regulated 9 (NEDD9; also known as HEF1), CRK, the integrin-linked kinase (ILK)–pinch–parvin (IPP) complex and p140 Cas-associated protein (p140CAP; also known as SRCIN1) integrin adaptors have a profound influence on all aspects of cancer progression, including initiation, progression and metastasis. Transgenic and xenograft animal models support the crucial role of these integrin adaptors in tumorigenesis.

  • In several human tumours, high expression of p130CAS, NEDD9, CRK, ILK, PINCH1 and PINCH2 correlates with increased disease progression, and the levels of parvin-β and p140CAP proteins are inversely correlated with malignancy. Current knowledge also implicates integrin adaptors in acquired resistance to cancer treatment.

  • In cancer cells, at the molecular level, these adaptors regulate signalling pathways that are required for the control of cell proliferation, survival and for actin cytoskeleton organization and extracellular matrix degradation. These events are fundamental for transformation and cancer progression, highlighting the integrin adaptors as key players in the onset of tumorigenesis.

  • Targeting integrin adaptors by modulating their expression levels or their activity in different types of cancer has been proven to be effective for interfering with malignancy, making the integrin adaptors suitable targets for cancer therapy.

Abstract

Current evidence highlights the ability of adaptor (or scaffold) proteins to create signalling platforms that drive cellular transformation upon integrin-dependent adhesion and growth factor receptor activation. The understanding of the biological effects that are regulated by these adaptors in tumours might be crucial for the identification of new targets and the development of innovative therapeutic strategies for human cancer. In this Review we discuss the relevance of adaptor proteins in signalling that originates from integrin-mediated cell–extracellular matrix (ECM) adhesion and growth factor stimulation in the context of cell transformation and tumour progression. We specifically underline the contribution of p130 Crk-associated substrate (p130CAS; also known as BCAR1), neural precursor cell expressed, developmentally down-regulated 9 (NEDD9; also known as HEF1), CRK and the integrin-linked kinase (ILK)–pinch–parvin (IPP) complex to cancer, along with the more recently identified p140 Cas-associated protein (p140CAP; also known as SRCIN1).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Main structural features and interactors of integrin adaptors.
Figure 2: p130 CAS and NEDD9 signalling.
Figure 3: The signalling platform formed by the IPP complex.
Figure 4: p140CAP regulation of intracellular signalling.

Similar content being viewed by others

References

  1. Desgrosellier, J. S. & Cheresh, D. A. Integrins in cancer: biological implications and therapeutic opportunities. Nature Rev. Cancer 10, 9–22 (2010).

    Article  CAS  Google Scholar 

  2. Cabodi, S. et al. Integrins and signal transduction. Adv. Exp. Med. Biol. 674, 43–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Tikhmyanova, N., Little, J. L. & Golemis, E. A. CAS proteins in normal and pathological cell growth control. Cell. Mol. Life Sci. 67, 1025–1048 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Defilippi, P., Di Stefano, P. & Cabodi, S. p130Cas: a versatile scaffold in signaling networks. Trends Cell Biol. 16, 257–263 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Birge, R. B., Kalodimos, C., Inagaki, F. & Tanaka, S. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Cell Commun. Signal. 7, 13 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wickstrom, S. A., Lange, A., Montanez, E. & Fassler, R. The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase! EMBO J. 29, 281–291 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Singh, M. K. et al. A novel Cas family member, HEPL, regulates FAK and cell spreading. Mol. Biol. Cell 19, 1627–1636 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ishino, M., Ohba, T., Sasaki, H. & Sasaki, T. Molecular cloning of a cDNA encoding a phosphoprotein, Efs, which contains a Src homology 3 domain and associates with Fyn. Oncogene 11, 2331–2338 (1995).

    CAS  PubMed  Google Scholar 

  9. Honda, H. et al. Cardiovascular anomaly, impaired actin bundling and resistance to Src-induced transformation in mice lacking p130Cas. Nature Genet. 19, 361–365 (1998). This paper describes the essential role of p130CAS in development and SRC-induced transformation.

    Article  CAS  PubMed  Google Scholar 

  10. Ambrogio, C. et al. p130Cas mediates the transforming properties of the anaplastic lymphoma kinase. Blood 106, 3907–3916 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cabodi, S. et al. p130Cas is an essential transducer element in ErbB2 transformation. FASEB J. 10, 3796–3808 (2010). The preclinical studies reported in this paper highlight the potential use of p130CAS as a novel therapeutic target in ERBB2-positive breast cancers.

    Article  CAS  Google Scholar 

  12. Pylayeva, Y. et al. Ras- and PI3K-dependent breast tumorigenesis in mice and humans requires focal adhesion kinase signaling. J. Clin. Invest. 119, 252–266 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cabodi, S. et al. p130Cas as a new regulator of mammary epithelial cell proliferation, survival, and HER2-neu oncogene-dependent breast tumorigenesis. Cancer Res. 66, 4672–4680 (2006). This paper establishes the relevance of p130CAS in ERBB2-mediated tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  14. Tornillo, G. et al. p130Cas promotes invasiveness of three dimensional ErbB2-transformed mammary acinar structures by enhanced activation of mTOR/p70S6K and Rac1. Euro. J. Cell Biol. 18 Oct 2010 (doi:10.1016/j.ejcb.2010.09.002).

  15. van der Flier, S. et al. BCAR1/p130Cas expression in untreated and acquired tamoxifen-resistant human breast carcinomas. Int. J. Cancer 89, 465–468 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. van der Flier, S. et al. Immunohistochemical study of the BCAR1/p130Cas protein in non-malignant and malignant human breast tissue. Int. J. Biol. Markers 16, 172–178 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Dorssers, L. C. et al. The prognostic value of BCAR1 in patients with primary breast cancer. Clin. Cancer Res. 10, 6194–6202 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Chin, L. Modeling malignant melanoma in mice: pathogenesis and maintenance. Oncogene 18, 5304–5310 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, M. et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 125, 1269–1281 (2006). This paper identifies and validates NEDD9 as a highly relevant cancer gene governing metastatic potential in human melanoma.

    Article  CAS  PubMed  Google Scholar 

  20. Lucas, J. T., Salimath, B. P., Slomiany, M. G. & Rosenzweig, S. A. Regulation of invasive behavior by vascular endothelial growth factor is HEF1-dependent. Oncogene 29, 4449–4459 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Izumchenko, E. et al. NEDD9 promotes oncogenic signaling in mammary tumor development. Cancer Res. 69, 7198–7206 (2009). This study provides the first in vivo evidence of a role for NEDD9 in breast cancer progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matsuda, M. et al. Two species of human CRK cDNA encode proteins with distinct biological activities. Mol. Cell. Biol. 12, 3482–3489 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. ten Hoeve, J., Morris, C., Heisterkamp, N. & Groffen, J. Isolation and chromosomal localization of CRKL, a human crk-like gene. Oncogene 8, 2469–2474 (1993).

    CAS  PubMed  Google Scholar 

  24. Miller, C. T. et al. Increased C-CRK proto-oncogene expression is associated with an aggressive phenotype in lung adenocarcinomas. Oncogene 22, 7950–7957 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. Nishihara, H. et al. Molecular and immunohistochemical analysis of signaling adaptor protein Crk in human cancers. Cancer Lett. 180, 55–61 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Takino, T. et al. CrkI adapter protein modulates cell migration and invasion in glioblastoma. Cancer Res. 63, 2335–2337 (2003).

    CAS  PubMed  Google Scholar 

  27. Wang, L. et al. Signaling adaptor protein Crk is indispensable for malignant feature of glioblastoma cell line KMG4. Biochem. Biophys. Res. Commun. 362, 976–981 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Fathers, K. E. et al. CrkII transgene induces atypical mammary gland development and tumorigenesis. Am. J. Pathol. 176, 446–460 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eke, I., Hehlgans, S. & Cordes, N. There's something about ILK. Int. J. Radiat. Biol. 85, 929–936 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. McDonald, P. C., Fielding, A. B. & Dedhar, S. Integrin-linked kinase-essential roles in physiology and cancer biology. J. Cell Sci. 121, 3121–3132 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Hannigan, G., Troussard, A. A. & Dedhar, S. Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nature Rev. Cancer 5, 51–63 (2005).

    Article  CAS  Google Scholar 

  32. Haase, M. et al. Expression of integrin-linked kinase is increased in differentiated cells. J. Histochem. Cytochem. 56, 819–829 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. White, D. E., Cardiff, R. D., Dedhar, S. & Muller, W. J. Mammary epithelial-specific expression of the integrin-linked kinase (ILK) results in the induction of mammary gland hyperplasias and tumors in transgenic mice. Oncogene 20, 7064–7072 (2001). This article provides the first direct demonstration of a potential oncogenic role for ILK.

    Article  CAS  PubMed  Google Scholar 

  34. Pontier, S. M. et al. Integrin-linked kinase has a critical role in ErbB2 mammary tumor progression: implications for human breast cancer. Oncogene 29, 3374–3385 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Oloumi, A. et al. Cooperative signaling between Wnt1 and integrin-linked kinase induces accelerated breast tumor development. Breast Cancer Res. 12, R38 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mongroo, P. S. et al. β-parvin inhibits integrin-linked kinase signaling and is downregulated in breast cancer. Oncogene 23, 8959–8970 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Wang-Rodriguez, J., Dreilinger, A. D., Alsharabi, G. M. & Rearden, A. The signaling adapter protein PINCH is up-regulated in the stroma of common cancers, notably at invasive edges. Cancer 95, 1387–1395 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Gao, J., Arbman, G., Rearden, A. & Sun, X. F. Stromal staining for PINCH is an independent prognostic indicator in colorectal cancer. Neoplasia 6, 796–801 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Damiano, L. et al. p140Cap dual regulation of E-cadherin/EGFR cross-talk and Ras signalling in tumour cell scatter and proliferation. Oncogene 29, 3677–3690 (2010). This study shows that p140CAP mechanistically behaves as a tumour suppressor and its expression is lost in more aggressive human breast cancers.

    Article  CAS  PubMed  Google Scholar 

  40. Di Stefano, P. et al. p140Cap protein suppresses tumour cell properties, regulating Csk and Src kinase activity. EMBO J. 26, 2843–2855 (2007). This paper establishes that p140CAP regulates SRC kinase activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Di Stefano, P. et al. P130Cas-associated protein (p140Cap) as a new tyrosine-phosphorylated protein involved in cell spreading. Mol. Biol. Cell 15, 787–800 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chin, L. S., Nugent, R. D., Raynor, M. C., Vavalle, J. P. & Li, L. SNIP, a novel SNAP-25-interacting protein implicated in regulated exocytosis. J. Biol. Chem. 275, 1191–1200 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Semba, K. et al. A novel murine gene, Sickle tail, linked to the Danforth's short tail locus, is required for normal development of the intervertebral disc. Genetics 172, 445–456 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Karasugi, T. et al. Association of the tag SNPs in the human SKT gene (KIAA1217) with lumbar disc herniation. J. Bone Miner. Res. 24, 1537–1543 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ito, H. et al. Characterization of a multidomain adaptor protein, p140Cap, as part of a pre-synaptic complex. J. Neurochem. 107, 161–172 (2008).

    Article  CAS  Google Scholar 

  46. DeGiorgis, J. A. et al. Phosphoproteomic analysis of synaptosomes from human cerebral cortex. J. Proteome Res. 4, 306–315 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Collins, M. O. et al. Proteomic analysis of in vivo phosphorylated synaptic proteins. J. Biol. Chem. 280, 5972–5982 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Kennedy, S. et al. SNIP/p140Cap mRNA expression is an unfavourable prognostic factor in breast cancer and is not expressed in normal breast tissue. Br. J. Cancer 98, 1641–1645 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Katoh, M. Evolutionary recombination hotspot around GSDML-GSDM locus is closely linked to the oncogenomic recombination hotspot around the PPP1R1B-ERBB2-GRB7 amplicon. Int. J. Oncol. 24, 757–763 (2004).

    CAS  PubMed  Google Scholar 

  50. Ruest, P. J., Shin, N. Y., Polte, T. R., Zhang, X. & Hanks, S. K. Mechanisms of CAS substrate domain tyrosine phosphorylation by FAK and Src. Mol. Cell. Biol. 21, 7641–7652 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nature Rev. Mol. Cell Biol. 9, 690–701 (2008).

    Article  CAS  Google Scholar 

  52. Soderling, S. H. Grab your partner with both hands: cytoskeletal remodeling by Arp2/3 signaling. Sci. Signal 2, pe5 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Petrie, R. J., Doyle, A. D. & Yamada, K. M. Random versus directionally persistent cell migration. Nature Rev. Mol. Cell Biol. 10, 538–549 (2009).

    Article  CAS  Google Scholar 

  54. Kobashigawa, Y. et al. Structural basis for the transforming activity of human cancer-related signaling adaptor protein CRK. Nature Struct. Mol. Biol. 14, 503–510 (2007). This study determines the solution structures of CRK proteins and the molecular mechanism that gives rise to their activities.

    Article  CAS  Google Scholar 

  55. Holcomb, M., Rufini, A., Barila, D. & Klemke, R. L. Deregulation of proteasome function induces Abl-mediated cell death by uncoupling p130CAS and c-CrkII. J. Biol. Chem. 281, 2430–2440 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Janssen, H. & Marynen, P. Interaction partners for human ZNF384/CIZ/NMP4-zyxin as a mediator for p130CAS signaling? Exp. Cell Res. 312, 1194–1204 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Pratt, S. J. et al. The LIM protein Ajuba influences p130Cas localization and Rac1 activity during cell migration. J. Cell Biol. 168, 813–824 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yi, J. et al. Members of the Zyxin family of LIM proteins interact with members of the p130Cas family of signal transducers. J. Biol. Chem. 277, 9580–9589 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Nakamoto, T. et al. CIZ, a zinc finger protein that interacts with p130(cas) and activates the expression of matrix metalloproteinases. Mol. Cell. Biol. 20, 1649–1658 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brabek, J. et al. Crk-associated substrate tyrosine phosphorylation sites are critical for invasion and metastasis of SRC-transformed cells. Mol. Cancer Res. 3, 307–315 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Vultur, A. et al. SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells. Mol. Cancer Ther. 7, 1185–1194 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yu, H., Mouw, J. K. & Weaver, V. M. Forcing form and function: biomechanical regulation of tumor evolution. Trends Cell Biol. 24 Sep 2010 (doi:10.1016/j.tcb.2010.08.015).

  63. Moore, S. W., Roca-Cusachs, P. & Sheetz, M. P. Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. Dev. Cell 19, 194–206 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015–1026 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kostic, A. & Sheetz, M. P. Fibronectin rigidity response through Fyn and p130Cas recruitment to the leading edge. Mol. Biol. Cell 17, 2684–2695 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sanz-Moreno, V. et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell 135, 510–523 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Natarajan, M. et al. HEF1 is a necessary and specific downstream effector of FAK that promotes the migration of glioblastoma cells. Oncogene 25, 1721–1732 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Simpson, K. J. et al. Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nature Cell Biol. 10, 1027–1038 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Massague, J. TGFβ in Cancer. Cell 134, 215–230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, H. et al. Transforming growth factor-β1-induced apoptosis is blocked by β1-integrin-mediated mitogen-activated protein kinase activation in human hepatoma cells. Cancer Sci. 95, 878–886 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Kim, W. et al. The integrin-coupled signaling adaptor p130Cas suppresses Smad3 function in transforming growth factor-β signaling. Mol. Biol. Cell 19, 2135–2146 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wendt, M. K., Smith, J. A. & Schiemann, W. P. p130Cas is required for mammary tumor growth and transforming growth factor-β-mediated metastasis through regulation of Smad2/3 activity. J. Biol. Chem. 284, 34145–34156 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Giampieri, S. et al. Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nature Cell Biol. 11, 1287–1296 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial-mesenchymal transitions. Nature Rev. Mol. Cell Biol. 7, 131–142 (2006).

    Article  CAS  Google Scholar 

  76. Shintani, Y., Hollingsworth, M. A., Wheelock, M. J. & Johnson, K. R. Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH2-terminal kinase 1 and up-regulating N-cadherin expression. Cancer Res. 66, 11745–11753 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Shintani, Y., Wheelock, M. J. & Johnson, K. R. Phosphoinositide-3 kinase-Rac1-c-Jun NH2-terminal kinase signaling mediates collagen I-induced cell scattering and up-regulation of N-cadherin expression in mouse mammary epithelial cells. Mol. Biol. Cell 17, 2963–2975 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shintani, Y. et al. Collagen I-mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. J. Cell Biol. 180, 1277–1289 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bhattacharya, S., Guo, H., Ray, R. M. & Johnson, L. R. Basic helix-loop-helix protein E47-mediated p21Waf1/Cip1 gene expression regulates apoptosis of intestinal epithelial cells. Biochem. J. 407, 243–254 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim, W., Kook, S., Kim, D. J., Teodorof, C. & Song, W. K. The 31-kDa caspase-generated cleavage product of p130cas functions as a transcriptional repressor of E2A in apoptotic cells. J. Biol. Chem. 279, 8333–8342 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Law, S. F., O'Neill, G. M., Fashena, S. J., Einarson, M. B. & Golemis, E. A. The docking protein HEF1 is an apoptotic mediator at focal adhesion sites. Mol. Cell. Biol. 20, 5184–5195 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Daouti, S. et al. A selective phosphatase of regenerating liver phosphatase inhibitor suppresses tumor cell anchorage-independent growth by a novel mechanism involving p130Cas cleavage. Cancer Res. 68, 1162–1169 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Achiwa, H. & Lazo, J. S. PRL-1 tyrosine phosphatase regulates c-Src levels, adherence, and invasion in human lung cancer cells. Cancer Res. 67, 643–650 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Wendt, M. K., Drury, L. J., Vongsa, R. A. & Dwinell, M. B. Constitutive CXCL12 expression induces anoikis in colorectal carcinoma cells. Gastroenterology 135, 508–517 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Gasparini, G., Longo, R., Sarmiento, R. & Morabito, A. Inhibitors of cyclo-oxygenase 2: a new class of anticancer agents? Lancet Oncol. 4, 605–615 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Casanova, I. et al. Celecoxib induces anoikis in human colon carcinoma cells associated with the deregulation of focal adhesions and nuclear translocation of p130Cas. Int. J. Cancer 118, 2381–2389 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Casanova, I. et al. A celecoxib derivative inhibits focal adhesion signaling and induces caspase-8-dependent apoptosis in human acute myeloid leukemia cells. Int. J. Cancer 123, 217–226 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Sakai, R., Nakamoto, T., Ozawa, K., Aizawa, S. & Hirai, H. Characterization of the kinase activity essential for tyrosine phosphorylation of p130Cas in fibroblasts. Oncogene 14, 1419–1426 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Iwahara, T., Akagi, T., Fujitsuka, Y. & Hanafusa, H. CrkII regulates focal adhesion kinase activation by making a complex with Crk-associated substrate, p130Cas. Proc. Natl Acad. Sci. USA 101, 17693–17698 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Akagi, T., Shishido, T., Murata, K. & Hanafusa, H. v-Crk activates the phosphoinositide 3-kinase/AKT pathway in transformation. Proc. Natl Acad. Sci. USA 97, 7290–7295 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Watanabe, T. et al. Crk adaptor protein-induced phosphorylation of Gab1 on tyrosine 307 via Src is important for organization of focal adhesions and enhanced cell migration. Cell Res. 19, 638–650 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Watanabe, T. et al. Adaptor molecule Crk is required for sustained phosphorylation of Grb2-associated binder 1 and hepatocyte growth factor-induced cell motility of human synovial sarcoma cell lines. Mol. Cancer Res. 4, 499–510 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Crawford, M. et al. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochem. Biophys. Res. Commun. 373, 607–612 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Legate, K. R., Montanez, E., Kudlacek, O. & Fassler, R. ILK, PINCH and parvin: the tIPP of integrin signalling. Nature Rev. Mol. Cell Biol. 7, 20–31 (2006).

    Article  CAS  Google Scholar 

  95. Attwell, S., Mills, J., Troussard, A., Wu, C. & Dedhar, S. Integration of cell attachment, cytoskeletal localization, and signaling by integrin-linked kinase (ILK), CH-ILKBP, and the tumor suppressor PTEN. Mol. Biol. Cell 14, 4813–4825 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yamaji, S. et al. A novel integrin-linked kinase-binding protein, affixin, is involved in the early stage of cell-substrate interaction. J. Cell Biol. 153, 1251–1264 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lange, A. et al. Integrin-linked kinase is an adaptor with essential functions during mouse development. Nature 461, 1002–1006 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Maydan, M. et al. Integrin-linked kinase is a functional Mn2+-dependent protein kinase that regulates glycogen synthase kinase-3β (GSK-3β) phosphorylation. PLoS ONE 5, e12356 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Fukuda, K., Gupta, S., Chen, K., Wu, C. & Qin, J. The pseudoactive site of ILK is essential for its binding to α-Parvin and localization to focal adhesions. Mol. Cell 36, 819–830 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Somasiri, A., Howarth, A., Goswami, D., Dedhar, S. & Roskelley, C. D. Overexpression of the integrin-linked kinase mesenchymally transforms mammary epithelial cells. J. Cell Sci. 114, 1125–1136 (2001).

    CAS  PubMed  Google Scholar 

  101. Filipenko, N. R., Attwell, S., Roskelley, C. & Dedhar, S. Integrin-linked kinase activity regulates Rac- and Cdc42-mediated actin cytoskeleton reorganization via α-PIX. Oncogene 24, 5837–5849 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Troussard, A. A. et al. The integrin linked kinase (ILK) induces an invasive phenotype via AP-1 transcription factor-dependent upregulation of matrix metalloproteinase 9 (MMP-9). Oncogene 19, 5444–5452 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Fielding, A. B., Dobreva, I., McDonald, P. C., Foster, L. J. & Dedhar, S. Integrin-linked kinase localizes to the centrosome and regulates mitotic spindle organization. J. Cell Biol. 180, 681–689 (2008). These data demonstrate an unexpected function for ILK in the organization of centrosomal protein complexes during mitotic spindle assembly and DNA segregation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fielding, A. B., Lim, S., Montgomery, K., Dobreva, I. & Dedhar, S. A critical role of integrin-linked kinase, ch-TOG and TACC3 in centrosome clustering in cancer cells. Oncogene. 13 Sep 2010 (doi:10.1038/onc.2010.431).

  105. Durbin, A. D., Hannigan, G. E. & Malkin, D. Oncogenic ILK, tumor suppression and all that JNK. Cell Cycle 8, 4060–4066 (2009). This work provides a mechanism for interconversion of oncogenic and tumour suppressor functions of ILK in RMS.

    Article  CAS  PubMed  Google Scholar 

  106. Troussard, A. A. et al. Preferential dependence of breast cancer cells versus normal cells on integrin-linked kinase for protein kinase B/Akt activation and cell survival. Cancer Res. 66, 393–403 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Durbin, A. D. et al. JNK1 determines the oncogenic or tumor-suppressive activity of the integrin-linked kinase in human rhabdomyosarcoma. J. Clin. Invest. 119, 1558–1570 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wexler, L. H., Crist, W. M. & Helman, L. J. in In Principles and Practice of Pediatric Oncology (eds Pizzo, P. A. & Poplack, D. G.) 939–971 (Lippincott Williams & Wilkins., Philadelphia, Pennsylvania, 2002).

    Google Scholar 

  109. Fukuda, T., Chen, K., Shi, X. & Wu, C. PINCH-1 is an obligate partner of integrin-linked kinase (ILK) functioning in cell shape modulation, motility, and survival. J. Biol. Chem. 278, 51324–51333 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Johnstone, C. N. et al. Parvin-β inhibits breast cancer tumorigenicity and promotes CDK9-mediated peroxisome proliferator-activated receptor γ1 phosphorylation. Mol. Cell. Biol. 28, 687–704 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Castellvi-Bel, S. et al. Evaluation of PARVG located on 22q13 as a candidate tumor suppressor gene for colorectal and breast cancer. Cancer Genet. Cytogenet. 144, 80–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Chen, K. et al. PINCH-1 regulates the ERK-Bim pathway and contributes to apoptosis resistance in cancer cells. J. Biol. Chem. 283, 2508–2517 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Liang, X. et al. Pinch1 is required for normal development of cranial and cardiac neural crest-derived structures. Circ. Res. 100, 527–535 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Latour, S. & Veillette, A. Proximal protein tyrosine kinases in immunoreceptor signaling. Curr. Opin. Immunol. 13, 299–306 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Perrais, M., Chen, X., Perez-Moreno, M. & Gumbiner, B. M. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions. Mol. Biol. Cell 18, 2013–2025 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Qian, X., Karpova, T., Sheppard, A. M., McNally, J. & Lowy, D. R. E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J. 23, 1739–1748 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Takahashi, K. & Suzuki, K. Density-dependent inhibition of growth involves prevention of EGF receptor activation by E-cadherin-mediated cell-cell adhesion. Exp. Cell Res. 226, 214–222 (1996).

    Article  CAS  PubMed  Google Scholar 

  118. Prescott, J. et al. Androgen receptor-mediated repression of novel target genes. Prostate 67, 1371–1383 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Jaworski, J. et al. Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 61, 85–100 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Cabodi, S. et al. p130Cas interacts with estrogen receptor α and modulates non-genomic estrogen signaling in breast cancer cells. J. Cell Sci. 117, 1603–1611 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Brinkman, A., van der Flier, S., Kok, E. M. & Dorssers, L. C. BCAR1, a human homologue of the adapter protein p130Cas, and antiestrogen resistance in breast cancer cells. J. Natl Cancer Inst. 92, 112–120 (2000). This paper correlates p130CAS expression with anti-oestrogen therapy resistance in breast cancer.

    Article  CAS  PubMed  Google Scholar 

  122. van Agthoven, T. et al. Identification of BCAR3 by a random search for genes involved in antiestrogen resistance of human breast cancer cells. EMBO J. 17, 2799–2808 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dorssers, L. C. et al. Tamoxifen resistance in breast cancer: elucidating mechanisms. Drugs 61, 1721–1733 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Gotoh, T., Cai, D., Tian, X., Feig, L. A. & Lerner, A. p130Cas regulates the activity of AND-34, a novel Ral, Rap1, and R-Ras guanine nucleotide exchange factor. J. Biol. Chem. 275, 30118–30123 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Makkinje, A. et al. AND-34/BCAR3 regulates adhesion-dependent p130Cas serine phosphorylation and breast cancer cell growth pattern. Cell. Signal. 21, 1423–1435 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Brinkman, A. et al. The substrate domain of BCAR1 is essential for anti-estrogen-resistant proliferation of human breast cancer cells. Breast Cancer Res. Treat 120, 401–408 (2009).

    Article  PubMed  CAS  Google Scholar 

  127. Ta, H. Q., Thomas, K. S., Schrecengost, R. S. & Bouton, A. H. A novel association between p130Cas and resistance to the chemotherapeutic drug adriamycin in human breast cancer cells. Cancer Res. 68, 8796–804 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Thao le, B. et al. Cas-L was overexpressed in imatinib-resistant gastrointestinal stromal tumor cells. Cancer Biol. Ther. 8, 683–688 (2009).

    Article  PubMed  Google Scholar 

  129. Edwards, L. A. et al. Inhibition of ILK in PTEN-mutant human glioblastomas inhibits PKB/Akt activation, induces apoptosis, and delays tumor growth. Oncogene 24, 3596–3605 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Wong, R. P., Ng, P., Dedhar, S. & Li, G. The role of integrin-linked kinase in melanoma cell migration, invasion, and tumor growth. Mol. Cancer Ther. 6, 1692–1700 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Edwards, L. A. et al. Suppression of VEGF secretion and changes in glioblastoma multiforme microenvironment by inhibition of integrin-linked kinase (ILK). Mol. Cancer Ther. 7, 59–70 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Liu, J. et al. Integrin-linked kinase inhibitor KP-392 demonstrates clinical benefits in an orthotopic human non-small cell lung cancer model. J. Thorac. Oncol. 1, 771–779 (2006).

    Article  PubMed  Google Scholar 

  133. Yau, C. Y., Wheeler, J. J., Sutton, K. L. & Hedley, D. W. Inhibition of integrin-linked kinase by a selective small molecule inhibitor, QLT0254, inhibits the PI3K/PKB/mTOR, Stat3, and FKHR pathways and tumor growth, and enhances gemcitabine-induced apoptosis in human orthotopic primary pancreatic cancer xenografts. Cancer Res. 65, 1497–1504 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Wisniewska, M. et al. The 1.1 A resolution crystal structure of the p130cas SH3 domain and ramifications for ligand selectivity. J. Mol. Biol. 347, 1005–1014 (2005). This study reports the first crystal structure of the p130CAS SH3 domain, enabling modelling of the docking interactions and supporting structure-based drug design of inhibitors of the Cas–FAK interaction.

    Article  CAS  PubMed  Google Scholar 

  135. Assoian, R. K. & Klein, E. A. Growth control by intracellular tension and extracellular stiffness. Trends Cell Biol. 18, 347–352 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Streuli, C. H. & Akhtar, N. Signal co-operation between integrins and other receptor systems. Biochem. J. 418, 491–506 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Desgrosellier, J. S. et al. An integrin αvβ3-c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nature Med. 15, 1163–1169 (2009). This paper describes a role for unligated integrin αvβ3 in increasing anchorage-independent survival and metastasis through an integrin αvβ3–SRC signalling module.

    Article  CAS  PubMed  Google Scholar 

  138. Brakebusch, C. & Fassler, R. β1 integrin function in vivo: adhesion, migration and more. Cancer Metastasis Rev. 24, 403–411 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Christofori, G. New signals from the invasive front. Nature 441, 444–450 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Nam, J. M., Chung, Y., Hsu, H. C. & Park, C. C. β1 integrin targeting to enhance radiation therapy. Int. J. Radiat. Biol. 85, 923–928 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Defilippi, P. et al. β1 Integrin and IL-3R coordinately regulate STAT5 activation and anchorage-dependent proliferation. J. Cell Biol. 168, 1099–1108 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Uberti, B., Dentelli, P., Rosso, A., Defilippi, P., & Brizzi, M. F. Inhibition of β1 Integrin and IL-3 β common subunit interaction hinders tumor angiogenesis. Oncogene 30 Aug 2010 (doi:10.1038/onc.2010.384).

  143. Caswell, P. T., Vadrevu, S. & Norman, J. C. Integrins: masters and slaves of endocytic transport. Nature Rev. Mol. Cell Biol. 10, 843–853 (2009).

    Article  CAS  Google Scholar 

  144. Muller, P. A. et al. Mutant p53 drives invasion by promoting integrin recycling. Cell 139, 1327–1341 (2009).

    Article  PubMed  Google Scholar 

  145. Salgia, R. et al. p130CAS forms a signaling complex with the adapter protein CRKL in hematopoietic cells transformed by the BCR/ABL oncogene. J. Biol. Chem. 271, 25198–25203 (1996).

    Article  CAS  PubMed  Google Scholar 

  146. Iwata, S. et al. HTLV-I Tax induces and associates with Crk-associated substrate lymphocyte type (Cas-L). Oncogene 24, 1262–1271 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Bravou, V., Klironomos, G., Papadaki, E., Taraviras, S. & Varakis, J. ILK over-expression in human colon cancer progression correlates with activation of β-catenin, down-regulation of E-cadherin and activation of the Akt-FKHR pathway. J. Pathol. 208, 91–99 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Dai, D. L. et al. Increased expression of integrin-linked kinase is correlated with melanoma progression and poor patient survival. Clin. Cancer Res. 9, 4409–4414 (2003).

    CAS  PubMed  Google Scholar 

  149. Takanami, I. Increased expression of integrin-linked kinase is associated with shorter survival in non-small cell lung cancer. BMC Cancer 5, 1 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Sawai, H. et al. Integrin-linked kinase activity is associated with interleukin-1 α-induced progressive behavior of pancreatic cancer and poor patient survival. Oncogene 25, 3237–3246 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Graff, J. R. et al. Integrin-linked kinase expression increases with prostate tumor grade. Clin. Cancer Res. 7, 1987–1991 (2001).

    CAS  PubMed  Google Scholar 

  152. Huang, H. C. et al. Thymosin β4 triggers an epithelial-mesenchymal transition in colorectal carcinoma by upregulating integrin-linked kinase. Oncogene 26, 2781–2790 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Ahmed, N. et al. Integrin-linked kinase expression increases with ovarian tumour grade and is sustained by peritoneal tumour fluid. J. Pathol. 201, 229–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  154. Watzka, S. B. et al. Reactivity of integrin-linked kinase in human mesothelial cell proliferation. Interact. Cardiovasc. Thorac. Surg. 7, 107–110 (2008).

    Article  PubMed  Google Scholar 

  155. Chung, D. H. et al. ILK (β1-integrin-linked protein kinase): a novel immunohistochemical marker for Ewing's sarcoma and primitive neuroectodermal tumour. Virchows Arch. 433, 113–117 (1998).

    Article  CAS  PubMed  Google Scholar 

  156. Zhu, Z. et al. PINCH expression and its significance in esophageal squamous cell carcinoma. Dis. Markers 25, 75–80 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wang, M. W. et al. Expression of PINCH protein in gliomas and its clinicopathological significance. Oncology 72, 343–346 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Zhang, J. T. et al. Up-regulation of PINCH in the stroma of oral squamous cell carcinoma predicts nodal metastasis. Oncol. Rep. 14, 1519–1522 (2005).

    CAS  PubMed  Google Scholar 

  159. Zhao, Z. R. et al. Particularly interesting new cysteine-histidine rich protein expression in colorectal adenocarcinomas. World J. Gastroenterol. 12, 298–301 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of the AIRC, AICR, EU FP7 Metafight program, MIUR (PRIN and FIRB, Futuro in Ricerca), Progetto Alfieri, Regione Piemonte (Oncoprot, Druidi, PiStem and BioTher), Regione Piemonte Sanità to M.d.P.C.-L. is supported by the AICR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Defilippi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary

bosutinib

celecoxib

doxorubicin

fulvestrant

imatinib

tamoxifen

FURTHER INFORMATION

Paola Defilippi's homepage

Glossary

G3 index

In the classification of human breast cancer, grade 3 (G3) indicates that the cancer has spread to lymph nodes, regardless of its size.

Podosome

A type of ECM contact that is different from focal complexes and focal adhesions. It is built around an actin filament core, surrounded by a ring structure of integrin adhesive complexes.

Amoeboid movement

This movement is characterized by high speeds, a lack of stable polarity and an amorphous cell shape, and it is frequently exhibited by cancer cells. It does not require stable integrin-dependent adhesion for traction but depends on RHOA to increase actomyosin contractility and allow invasion in the absence of extracellular proteolysis.

Mesenchymal movement

The movement of cells with elongated morphology and a front-back polarity, with traction generated through integrin-dependent adhesion. This type of motility requires extracellular proteolysis for cell invasion and is thought to depend on RAC1.

Collective motility

The migration of cells as a cohesive group, a hallmark of tissue remodelling during wound repair and cancer invasion. It is characterized by cells moving as sheets, strands, clusters or ducts rather than individually.

Actin stress fibres

Self-assembling, structural components of the cytoskeleton that typically appear as long, thick actin bundles that span across the cell body and lie along the ventral surface. By binding to myosin, they produce traction forces and resting tension.

Cortical actin

A concentrated layer of actin filaments that lie longitudinally and roughly parallel to each other just beneath the plasma membrane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabodi, S., del Pilar Camacho-Leal, M., Di Stefano, P. et al. Integrin signalling adaptors: not only figurants in the cancer story. Nat Rev Cancer 10, 858–870 (2010). https://doi.org/10.1038/nrc2967

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2967

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer