Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy?

Key Points

  • Angiogenesis inhibitors that target vascular endothelial growth factor (VEGF) signalling pathways have proved successful for the clinical treatment of various types of cancer. However, a substantial fraction of tumours is resistant or escapes current anti-angiogenic therapies. Moreover, VEGFA is a trophic factor for healthy vessels, and therefore anti-angiogenic therapies cause side effects that although well managed, can also lead to life-threatening conditions in a subset of patients with cancer.

  • VEGFR2 (also known as FLK1) is the primary receptor that binds VEGFA, and therefore controls angiogenesis in both healthy and diseased tissues. By contrast, VEGFR1 (also known as FLT1) binds VEGFA, VEGFB and placental growth factor (PlGF). The expression of FLT1 and its two ligands, PlGF and VEGFB, is increased in various tumours, which correlates with disease progression and can predict poor prognosis, metastasis and recurrent disease in humans.

  • PlGF signals directly through FLT1 in various cell types, including endothelial cells, smooth-muscle cells, fibroblasts, angiogenesis-competent myeloid progenitors, macrophages and tumour cells, and thereby promotes tumour angiogenesis, lymphangiogenesis, tumour growth and the formation of the premetastatic niche. Therefore deletion of tyrosine-kinase activity in Flt1TK−/− mice or treatment with FLT1- and PlGF-specific inhibitors, such as a monoclonal antibody against PlGF (αPlGF), impairs inflammation and pathological angiogenesis, and suppresses tumour growth and metastasis.

  • Myeloid cells confer resistance to therapies that target VEGF by secreting additional pro-angiogenic factors. αPlGF enhances the responsiveness to VEGF-targeted therapies by inhibiting macrophage recruitment. Therefore, owing to its complementary activities, αPlGF eliminates the source of angiogenic factors that contributes to anti-angiogenic escape of tumours.

  • Gene-deletion studies have revealed that PlGF is redundant for vascular development and physiological vessel maintenance in healthy adults, but contributes to the angiogenic and inflammatory switch in cancer. In support of the concept that PlGF is a disease-specific factor, αPlGF selectively inhibits pathological angiogenesis without affecting healthy vessels and thus does not cause the side effects that are typically observed during current anti-angiogenic therapies.

  • Genetic and pharmacological studies have thus identified FLT1 and PlGF as attractive therapeutic targets for anticancer therapy, which might provide an answer to some of the challenges and unmet needs that are faced by current anti-angiogenic therapies: how to increase efficacy, avoid resistance and minimize toxicity.

Abstract

Less than 5 years ago, it was still not clear whether anti-angiogenic drugs would prove successful in the clinic. After numerous patients with cancer or age-related macular degeneration have been treated with these drugs, they have now become part of the standard range of therapeutic tools. Despite this milestone, anti-angiogenic therapy still faces a number of clinical hurdles, such as improving efficacy, avoiding escape and resistance, and minimizing toxicity. Hopefully, other agents with complementary mechanisms, such as those that target placental growth factor, will offer novel opportunities for improved treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Indirect and direct angiogenic effects of vascular endothelial growth factor B (VEGFB) and placental growth factor (PlGF) on endothelial cells.
Figure 2: Pleiotropic cellular activities of vascular endothelial growth factor B (VEGFB) and placental growth factor (PlGF).
Figure 3: Molecular mechanisms of placental growth factor (PlGF).
Figure 4: Pleiotropic roles of placental growth factor (PlGF) in tumour growth, angiogenesis and metastasis.
Figure 5: Mechanisms of resistance or escape from anti-placental growth factor (PlGF) and anti-vascular endothelial growth factor (VEGF) therapies.
Figure 6: Anti-placental growth factor (PlGF) does not prune quiescent vessels.

Similar content being viewed by others

References

  1. Ellis, L. M. & Hicklin, D. J. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nature Rev. Cancer 8, 579–591 (2008).

    Article  CAS  Google Scholar 

  2. Jain, R. K., Duda, D. G., Clark, J. W. & Loeffler, J. S. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nature Clin. Pract. Oncol. 3, 24–40 (2006).

    Article  CAS  Google Scholar 

  3. Burris, H. & Rocha-Lima, C. New therapeutic directions for advanced pancreatic cancer: targeting the epidermal growth factor and vascular endothelial growth factor pathways. Oncologist 13, 289–298 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Bergers, G. & Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nature Rev. Cancer 8, 592–603 (2008).

    Article  CAS  Google Scholar 

  5. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004). This seminal study reports the results of the first phase III clinical trial that showed the beneficial effect of bevacizumab in combination with chemotherapy in patients with metastatic colorectal cancer.

    Article  CAS  PubMed  Google Scholar 

  6. Verheul, H. M. & Pinedo, H. M. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nature Rev. Cancer 7, 475–485 (2007).

    Article  CAS  Google Scholar 

  7. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Casanovas, O., Hicklin, D. J., Bergers, G. & Hanahan, D. Drug resistance by evasion of anti-angiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8, 299–309 (2005). This article describes rescue mechanisms of RipTag pancreatic tumours to FLK1 blockade by compensatory upregulation of FGF2, which drives tumour angiogenesis independently of VEGFA.

    Article  CAS  PubMed  Google Scholar 

  9. Fischer, C. et al. Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131, 463–475 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Franco, M. et al. Targeted anti-vascular endothelial growth factor receptor 2 therapy leads to short-term and long-term impairment of vascular function and increase in tumor hypoxia. Cancer Res. 66, 3639–3648 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nozawa, H., Chiu, C. & Hanahan, D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc. Natl Acad. Sci. USA 103, 12493–12498 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shojaei, F. et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotech. 25, 911–920 (2007). This work shows that CD11b+Gr1+ myeloid cells that are recruited to the tumour microenvironment in a Bv8-dependent mechanism help tumours to escape from anti-VEGF therapy.

    Article  CAS  Google Scholar 

  14. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol. 2, 737–744 (2000). This study shows that neutrophil-derived MMP9 plays a major part in the angiogenic switch by liberating biologically active VEGF from the extracellular matrix.

    Article  CAS  PubMed  Google Scholar 

  15. Shojaei, F. et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450, 825–831 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Baffert, F. et al. Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am. J. Physiol. Heart Circ. Physiol. 290, H547–H559 (2006). This work shows that quiescent vessels regress after pharmacological inhibition of VEGF.

    Article  CAS  PubMed  Google Scholar 

  17. Gerber, H. P. et al. VEGF is required for growth and survival in neonatal mice. Development 126, 1149–1159 (1999).

    CAS  PubMed  Google Scholar 

  18. Lee, S. et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell 130, 691–703 (2007). This work highlights the functional importance of the maintenance of VEGFA levels for physiological blood-vessel homeostasis. Deprivation of VEGFA results in vessel dysfunction, which leads to thrombosis and bleeding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rudge, J. S. et al. Inaugural Article: VEGF trap complex formation measures production rates of VEGF, providing a biomarker for predicting efficacious angiogenic blockade. Proc. Natl Acad. Sci. USA 104, 18363–18370 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eremina, V. et al. VEGF inhibition and renal thrombotic microangiopathy. N. Engl. J. Med. 358, 1129–1136 (2008). The authors used conditional gene targeting to delete VEGFA from renal podocytes in adult mice. Deprivation of VEGFA causes thrombotic glomerular microangiopathy, which could explain the glomerular injury that occurs in patients who are treated with anti-VEGF therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shibuya, M. Vascular endothelial growth factor receptor family genes: when did the three genes phylogenetically segregate? Biol. Chem. 383, 1573–1579 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Shibuya, M. et al. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 5, 519–524 (1990).

    CAS  PubMed  Google Scholar 

  23. Keyt, B. A. et al. Identification of vascular endothelial growth factor determinants for binding KDR and FLT-1 receptors. Generation of receptor-selective VEGF variants by site-directed mutagenesis. J. Biol. Chem. 271, 5638–5646 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Sawano, A. et al. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte–macrophages in humans. Blood 97, 785–791 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Seetharam, L. et al. A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene 10, 135–147 (1995).

    CAS  PubMed  Google Scholar 

  26. Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., Shibuya, M. & Heldin, C. H. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J. Biol. Chem. 269, 26988–26995 (1994).

    CAS  PubMed  Google Scholar 

  27. Gille, H. et al. A repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR-1) constitutively inhibits vascular endothelial growth factor-dependent phosphatidylinositol 3′-kinase activation and endothelial cell migration. EMBO J. 19, 4064–4073 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Park, J. E., Chen, H. H., Winer, J., Houck, K. A. & Ferrara, N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem. 269, 25646–25654 (1994).

    CAS  PubMed  Google Scholar 

  29. Kearney, J. B., Kappas, N. C., Ellerstrom, C., DiPaola, F. W. & Bautch, V. L. The VEGF receptor flt-1 (VEGFR-1) is a positive modulator of vascular sprout formation and branching morphogenesis. Blood 103, 4527–4535 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Fong, G. H., Rossant, J., Gertsenstein, M. & Breitman, M. L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Hiratsuka, S., Minowa, O., Kuno, J., Noda, T. & Shibuya, M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc. Natl Acad. Sci. USA 95, 9349–9354 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hiratsuka, S. et al. Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor1) in pathological angiogenesis. Cancer Res. 61, 1207–1213 (2001).

    CAS  PubMed  Google Scholar 

  33. Hiratsuka, S. et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2, 289–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Kami, J. et al. Inhibition of choroidal neovascularization by blocking vascular endothelial growth factor receptor tyrosine kinase. Jpn. J. Ophthalmol. 52, 91–98 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Murakami, M. et al. Signaling of vascular endothelial growth factor receptor-1 tyrosine kinase promotes rheumatoid arthritis through activation of monocytes/macrophages. Blood 108, 1849–1856 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Kerber, M. et al. Flt-1 signaling in macrophages promotes glioma growth in vivo. Cancer Res. 68, 7342–7351 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Autiero, M. et al. Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nature Med. 9, 936–943 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Bates, R. C. et al. Flt-1-dependent survival characterizes the epithelial–mesenchymal transition of colonic organoids. Curr. Biol. 13, 1721–1727 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Maru, Y., Yamaguchi, S. & Shibuya, M. Flt-1, a receptor for vascular endothelial growth factor, has transforming and morphogenic potentials. Oncogene 16, 2585–2595 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Fan, F. et al. Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene 24, 2647–2653 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Taylor, A. P. & Goldenberg, D. M. Role of placenta growth factor in malignancy and evidence that an antagonistic PlGF/Flt-1 peptide inhibits the growth and metastasis of human breast cancer xenografts. Mol. Cancer Ther. 6, 524–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Clauss, M. et al. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J. Biol. Chem. 271, 17629–17634 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Bellik, L., Vinci, M. C., Filippi, S., Ledda, F. & Parenti, A. Intracellular pathways triggered by the selective FLT-1-agonist placental growth factor in vascular smooth muscle cells exposed to hypoxia. Br. J. Pharmacol. 146, 568–575 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gille, H. et al. Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific vascular endothelial growth factor mutants. J. Biol. Chem. 276, 3222–3230 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Luttun, A. et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nature Med. 8, 831–840 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Ghanem, M. A. et al. Expression and prognostic relevance of vascular endothelial growth factor (VEGF) and its receptor (FLT-1) in nephroblastoma. J. Clin. Pathol. 56, 107–113 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Plate, K. H., Breier, G., Weich, H. A., Mennel, H. D. & Risau, W. Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int. J. Cancer 59, 520–529 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Andre, T. et al. Vegf, Vegf-B, Vegf-C and their receptors KDR, FLT-1 and FLT-4 during the neoplastic progression of human colonic mucosa. Int. J. Cancer 86, 174–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Hagedorn, A. et al. Immunohistochemical study about the Flt-1/VEGFR1 expression in the gastrointestinal tract of mouse, rat, dog, swine and monkey. Exp. Toxicol. Pathol. 57, 149–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Witmer, A. N., Dai, J., Weich, H. A., Vrensen, G. F. & Schlingemann, R. O. Expression of vascular endothelial growth factor receptors 1, 2, and 3 in quiescent endothelia. J. Histochem. Cytochem. 50, 767–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Plate, K. H., Breier, G., Millauer, B., Ullrich, A. & Risau, W. Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res. 53, 5822–5827 (1993).

    CAS  PubMed  Google Scholar 

  52. Kato, H. et al. Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) in esophageal squamous cell carcinoma. Anticancer Res. 22, 3977–3984 (2002).

    CAS  PubMed  Google Scholar 

  53. Jackson, M. W. et al. A potential autocrine role for vascular endothelial growth factor in prostate cancer. Cancer Res. 62, 854–859 (2002).

    CAS  PubMed  Google Scholar 

  54. Seto, T. et al. Prognostic value of expression of vascular endothelial growth factor and its flt-1 and KDR receptors in stage I non-small-cell lung cancer. Lung Cancer 53, 91–96 (2006).

    Article  PubMed  Google Scholar 

  55. Mylona, E. et al. The prognostic value of vascular endothelial growth factors (VEGFs)-A and -B and their receptor, VEGFR-1, in invasive breast carcinoma. Gynecol. Oncol. 104, 557–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Fragoso, R. et al. VEGFR-1 (FLT-1) activation modulates acute lymphoblastic leukemia localization and survival within the bone marrow, determining the onset of extramedullary disease. Blood 107, 1608–1616 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Osada, H. et al. Overexpression of the neuropilin 1 (NRP1) gene correlated with poor prognosis in human glioma. Anticancer Res. 24, 547–552 (2004).

    CAS  PubMed  Google Scholar 

  58. Kreuter, M. et al. Correlation of neuropilin-1 overexpression to survival in acute myeloid leukemia. Leukemia 20, 1950–1954 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Sawano, A., Takahashi, T., Yamaguchi, S., Aonuma, M. & Shibuya, M. Flt-1 but not KDR/Flk-1 tyrosine kinase is a receptor for placenta growth factor, which is related to vascular endothelial growth factor. Cell Growth Differ. 7, 213–221 (1996).

    CAS  PubMed  Google Scholar 

  60. Kendall, R. L. & Thomas, K. A. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Natl Acad. Sci. USA 90, 10705–10709 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kappas, N. C. et al. The VEGF receptor Flt-1 spatially modulates Flk-1 signaling and blood vessel branching. J. Cell. Biol. 181, 847–858 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bando, H. et al. Association between intratumoral free and total VEGF, soluble VEGFR-1, VEGFR-2 and prognosis in breast cancer. Br. J. Cancer 92, 553–561 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hu, Q. et al. Soluble vascular endothelial growth factor receptor 1, and not receptor 2, is an independent prognostic factor in acute myeloid leukemia and myelodysplastic syndromes. Cancer 100, 1884–1891 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Chang, Y. T. et al. Serum vascular endothelial growth factor/soluble vascular endothelial growth factor receptor 1 ratio is an independent prognostic marker in pancreatic cancer. Pancreas 37, 145–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Bae, D. G., Kim, T. D., Li, G., Yoon, W. H. & Chae, C. B. Anti-flt1 peptide, a vascular endothelial growth factor receptor 1-specific hexapeptide, inhibits tumor growth and metastasis. Clin. Cancer Res. 11, 2651–2661 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Wu, Y. et al. Anti-vascular endothelial growth factor receptor-1 antagonist antibody as a therapeutic agent for cancer. Clin. Cancer Res. 12, 6573–6584 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Pavco, P. A. et al. Antitumor and antimetastatic activity of ribozymes targeting the messenger RNA of vascular endothelial growth factor receptors. Clin. Cancer Res. 6, 2094–2103 (2000).

    CAS  PubMed  Google Scholar 

  68. Holash, J. et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc. Natl Acad. Sci. USA 99, 11393–11398 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wulff, C., Wilson, H., Wiegand, S. J., Rudge, J. S. & Fraser, H. M. Prevention of thecal angiogenesis, antral follicular growth, and ovulation in the primate by treatment with vascular endothelial growth factor trap R1R2. Endocrinology 143, 2797–2807 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Goldman, C. K. et al. Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate. Proc. Natl Acad. Sci. USA 95, 8795–8800 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lai, C. M. et al. Long-term evaluation of AAV-mediated sFlt-1 gene therapy for ocular neovascularization in mice and monkeys. Mol. Ther. 12, 659–668 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Afuwape, A. O., Feldmann, M. & Paleolog, E. M. Adenoviral delivery of soluble VEGF receptor 1 (sFlt-1) abrogates disease activity in murine collagen-induced arthritis. Gene Ther. 10, 1950–1960 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Ferrara, N. et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nature Med. 4, 336–340 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. El-Mousawi, M. et al. A vascular endothelial growth factor high affinity receptor 1-specific peptide with antiangiogenic activity identified using a phage display peptide library. J. Biol. Chem. 278, 46681–46691 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Ponticelli, S. et al. Modulation of angiogenesis by a tetrameric tripeptide that antagonizes vascular endothelial growth factor receptor 1. J. Biol. Chem. 15 Oct 2008 (doi:10.1074/jbc.M806607200).

  76. Lacal, P. M. et al. Inhibition of endothelial cell migration and angiogenesis by a vascular endothelial growth factor receptor-1 derived peptide. Eur. J. Cancer 44, 1914–1921 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Itokawa, T. et al. Antiangiogenic effect by SU5416 is partly attributable to inhibition of Flt-1 receptor signaling. Mol. Cancer Ther. 1, 295–302 (2002).

    CAS  PubMed  Google Scholar 

  78. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med. 7, 1194–1201 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Gille, J. et al. Simultaneous blockade of VEGFR-1 and VEGFR-2 activation is necessary to efficiently inhibit experimental melanoma growth and metastasis formation. Int. J. Cancer 120, 1899–1908 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Olofsson, B. et al. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc. Natl Acad. Sci. USA 93, 2576–2581 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Neufeld, G., Kessler, O. & Herzog, Y. The interaction of Neuropilin-1 and Neuropilin-2 with tyrosine-kinase receptors for VEGF. Adv. Exp. Med. Biol. 515, 81–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Nash, A. D., Baca, M., Wright, C. & Scotney, P. D. The biology of vascular endothelial growth factor-B (VEGF-B). Pulm. Pharmacol. Ther. 19, 61–69 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Li, X., Aase, K., Li, H., von Euler, G. & Eriksson, U. Isoform-specific expression of VEGF-B in normal tissues and tumors. Growth Factors 19, 49–59 (2001).

    Article  PubMed  Google Scholar 

  84. Olofsson, B. et al. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc. Natl Acad. Sci. USA 95, 11709–11714 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Silvestre, J. S. et al. Vascular endothelial growth factor-B promotes in vivo angiogenesis. Circ. Res. 93, 114–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Ikuta, T., Ariga, H. & Matsumoto, K. Extracellular matrix tenascin-X in combination with vascular endothelial growth factor B enhances endothelial cell proliferation. Genes Cells 5, 913–927 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Li, X. et al. Re-evaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium. Arterioscler. Thromb. Vasc. Biol. 28, 1614–1620 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Aase, K. et al. Vascular endothelial growth factor-B-deficient mice display an atrial conduction defect. Circulation 104, 358–364 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Bellomo, D. et al. Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ. Res. 86, E29–E35 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Donnini, S., Machein, M. R., Plate, K. H. & Weich, H. A. Expression and localization of placenta growth factor and PlGF receptors in human meningiomas. J. Pathol. 189, 66–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Niki, T. et al. Expression of vascular endothelial growth factors A, B, C, and D and their relationships to lymph node status in lung adenocarcinoma. Clin. Cancer Res. 6, 2431–2439 (2000).

    CAS  PubMed  Google Scholar 

  92. Hanrahan, V. et al. The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma–carcinoma sequence during colorectal cancer progression. J. Pathol. 200, 183–194 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Gunningham, S. P. et al. Vascular endothelial growth factor-B and vascular endothelial growth factor-C expression in renal cell carcinomas: regulation by the von Hippel-Lindau gene and hypoxia. Cancer Res. 61, 3206–3211 (2001).

    CAS  PubMed  Google Scholar 

  94. Eggert, A. et al. High-level expression of angiogenic factors is associated with advanced tumor stage in human neuroblastomas. Clin. Cancer Res. 6, 1900–1908 (2000).

    CAS  PubMed  Google Scholar 

  95. Kanda, M. et al. Correlations of the expression of vascular endothelial growth factor B and its isoforms in hepatocellular carcinoma with clinico-pathological parameters. J. Surg. Oncol. 98, 190–196 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Shintani, S. et al. Expression of vascular endothelial growth factor A, B, C, and D in oral squamous cell carcinoma. Oral Oncol. 40, 13–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Mould, A. W. et al. Prophylactic but not therapeutic activity of a monoclonal antibody that neutralizes the binding of VEGF-B to VEGFR-1 in a murine collagen-induced arthritis model. Rheumatology 47, 263–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Maglione, D., Guerriero, V., Viglietto, G., Delli-Bovi, P. & Persico, M. G. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc. Natl Acad. Sci. USA 88, 9267–9271 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Persico, M. G., Vincenti, V. & DiPalma, T. Structure, expression and receptor-binding properties of placenta growth factor (PlGF). Curr. Top. Microbiol. Immunol. 237, 31–40 (1999).

    CAS  PubMed  Google Scholar 

  100. Migdal, M. et al. Neuropilin-1 is a placenta growth factor-2 receptor. J. Biol. Chem. 273, 22272–22278 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Adini, A., Kornaga, T., Firoozbakht, F. & Benjamin, L. E. Placental growth factor is a survival factor for tumor endothelial cells and macrophages. Cancer Res. 62, 2749–2752 (2002).

    CAS  PubMed  Google Scholar 

  102. Carmeliet, P. et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nature Med. 7, 575–583 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Ziche, M. et al. Placenta growth factor-1 is chemotactic, mitogenic, and angiogenic. Lab. Invest. 76, 517–531 (1997).

    CAS  PubMed  Google Scholar 

  104. Yonekura, H. et al. Placenta growth factor and vascular endothelial growth factor B and C expression in microvascular endothelial cells and pericytes. Implication in autocrine and paracrine regulation of angiogenesis. J. Biol. Chem. 274, 35172–35178 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Hattori, K. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment. Nature Med. 8, 841–849 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Pipp, F. et al. VEGFR-1-selective VEGF homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ. Res. 92, 378–385 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Scholz, D. et al. Bone marrow transplantation abolishes inhibition of arteriogenesis in placenta growth factor (PlGF)−/− mice. J. Mol. Cell. Cardiol. 35, 177–184 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Rafii, S. et al. Angiogenic factors reconstitute hematopoiesis by recruiting stem cells from bone marrow microenvironment. Ann. NY Acad. Sci. 996, 49–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Selvaraj, S. K. et al. Mechanism of monocyte activation and expression of proinflammatory cytochemokines by placenta growth factor. Blood 102, 1515–1524 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Marcellini, M. et al. Increased melanoma growth and metastasis spreading in mice overexpressing placenta growth factor. Am. J. Pathol. 169, 643–654 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Roy, H. et al. Adenovirus-mediated gene transfer of placental growth factor to perivascular tissue induces angiogenesis via upregulation of the expression of endogenous vascular endothelial growth factor-A. Hum. Gene Ther. 16, 1422–1428 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Schoenfeld, J. et al. Bioinformatic analysis of primary endothelial cell gene array data illustrated by the analysis of transcriptome changes in endothelial cells exposed to VEGF-A and PlGF. Angiogenesis 7, 143–156 (2004). Using microarrays, this study shows that PlGF and VEGFA induce non-overlapping transcripts in human umbilical vein endothelial cells, suggesting that PlGF induces its own signals directly through FLT1 and switches on its own programme of angiogenic genes independently of VEGFA.

    Article  CAS  PubMed  Google Scholar 

  113. Odorisio, T., Cianfarani, F., Failla, C. M. & Zambruno, G. The placenta growth factor in skin angiogenesis. J. Dermatol. Sci. 41, 11–19 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Babiak, A. et al. Coordinated activation of VEGFR-1 and VEGFR-2 is a potent arteriogenic stimulus leading to enhancement of regional perfusion. Cardiovasc. Res. 61, 789–795 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Roncal, C. et al. Beneficial effects of prolonged systemic administration of PlGF on late outcome of post-ischaemic myocardial performance. J. Pathol. 216, 236–244 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Cianfarani, F. et al. Placenta growth factor in diabetic wound healing: altered expression and therapeutic potential. Am. J. Pathol. 169, 1167–1182 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gargioli, C., Coletta, M., De Grandis, F., Cannata, S. M. & Cossu, G. PlGF-MMP-9-expressing cells restore microcirculation and efficacy of cell therapy in aged dystrophic muscle. Nature Med. 14, 973–978 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Khurana, R. et al. Placental growth factor promotes atherosclerotic intimal thickening and macrophage accumulation. Circulation 111, 2828–2836 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Oura, H. et al. A critical role of placental growth factor in the induction of inflammation and edema formation. Blood 101, 560–567 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Fujii, T. et al. VEGF function for upregulation of endogenous PlGF expression during FGF-2-mediated therapeutic angiogenesis. Atherosclerosis 200, 51–57 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Failla, C. M. et al. Placenta growth factor is induced in human keratinocytes during wound healing. J. Invest. Dermatol. 115, 388–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Fiedler, J., Leucht, F., Waltenberger, J., Dehio, C. & Brenner, R. E. VEGF-A and PlGF-1 stimulate chemotactic migration of human mesenchymal progenitor cells. Biochem. Biophys. Res. Commun. 334, 561–568 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wu, Y. et al. The vascular endothelial growth factor receptor (VEGFR-1) supports growth and survival of human breast carcinoma. Int. J. Cancer 119, 1519–1529 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Lin, Y. L., Liang, Y. C. & Chiang, B. L. Placental growth factor down-regulates type 1 T helper immune response by modulating the function of dendritic cells. J. Leukoc. Biol. 82, 1473–1480 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Li, B. et al. VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J. 20, 1495–1497 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Xu, L. et al. Placenta growth factor overexpression inhibits tumor growth, angiogenesis, and metastasis by depleting vascular endothelial growth factor homodimers in orthotopic mouse models. Cancer Res. 66, 3971–3977 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Schomber, T. et al. Placental growth factor-1 attenuates vascular endothelial growth factor-A-dependent tumor angiogenesis during beta cell carcinogenesis. Cancer Res. 67, 10840–10848 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Eriksson, A. et al. Placenta growth factor-1 antagonizes VEGF-induced angiogenesis and tumor growth by the formation of functionally inactive PlGF-1/VEGF heterodimers. Cancer Cell 1, 99–108 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Bjorndahl, M., Cao, R., Eriksson, A. & Cao, Y. Blockage of VEGF-induced angiogenesis by preventing VEGF secretion. Circ. Res. 94, 1443–1450 (2004).

    Article  PubMed  CAS  Google Scholar 

  131. Cao, Y., Linden, P., Shima, D., Browne, F. & Folkman, J. In vivo angiogenic activity and hypoxia induction of heterodimers of placenta growth factor/vascular endothelial growth factor. J. Clin. Invest. 98, 2507–2511 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gigante, B., Tarsitano, M., Cimini, V., De Falco, S. & Persico, M. G. Placenta growth factor is not required for exercise-induced angiogenesis. Angiogenesis 7, 277–284 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Malik, A. K. et al. Redundant roles of VEGF-B and PlGF during selective VEGF-A blockade in mice. Blood 107, 550–557 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  136. Marrony, S., Bassilana, F., Seuwen, K. & Keller, H. Bone morphogenetic protein 2 induces placental growth factor in mesenchymal stem cells. Bone 33, 426–433 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Ribatti, D. The discovery of the placental growth factor and its role in angiogenesis: a historical review. Angiogenesis 11, 215–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Kendall, R. L., Wang, G. & Thomas, K. A. Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem. Biophys. Res. Commun. 226, 324–328 (1996).

    Article  CAS  PubMed  Google Scholar 

  139. Tayade, C. et al. Genetic deletion of placenta growth factor in mice alters uterine NK cells. J. Immunol. 178, 4267–4275 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Gigante, B., Morlino, G., Gentile, M. T., Persico, M. G. & De Falco, S. Plgf−/−eNos−/− mice show defective angiogenesis associated with increased oxidative stress in response to tissue ischemia. FASEB J. 20, 970–972 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Maes, C. et al. Placental growth factor mediates mesenchymal cell development, cartilage turnover, and bone remodeling during fracture repair. J. Clin. Invest. 116, 1230–1242 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rakic, J. M. et al. Placental growth factor, a member of the VEGF family, contributes to the development of choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 44, 3186–3193 (2003).

    Article  PubMed  Google Scholar 

  143. Lijnen, H. R. et al. Impaired adipose tissue development in mice with inactivation of placental growth factor function. Diabetes 55, 2698–2704 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Luttun, A. et al. Loss of placental growth factor protects mice against vascular permeability in pathological conditions. Biochem. Biophys. Res. Commun. 295, 428–434 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Green, C. J. et al. Placenta growth factor gene expression is induced by hypoxia in fibroblasts: a central role for metal transcription factor-1. Cancer Res. 61, 2696–2703 (2001).

    CAS  PubMed  Google Scholar 

  146. Miyamoto, N. et al. Placental growth factor-1 and epithelial haemato–retinal barrier breakdown: potential implication in the pathogenesis of diabetic retinopathy. Diabetologia 50, 461–470 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Hollborn, M. et al. Human retinal epithelium produces and responds to placenta growth factor. Graefe's Arch. Clin. Exp. Ophthalmol. 244, 732–741 (2006).

    Article  CAS  Google Scholar 

  148. Mohammed, K. A., Nasreen, N., Tepper, R. S. & Antony, V. B. Cyclic stretch induces PlGF expression in bronchial airway epithelial cells via nitric oxide release. Am. J. Physiol. Lung Cell. Mol. Physiol. 292, L559–L566 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Wei, S. C. et al. Placenta growth factor expression is correlated with survival of patients with colorectal cancer. Gut 54, 666–672 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Parr, C., Watkins, G., Boulton, M., Cai, J. & Jiang, W. G. Placenta growth factor is over-expressed and has prognostic value in human breast cancer. Eur. J. Cancer 41, 2819–2827 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. De Ceuninck, F., Dassencourt, L. & Anract, P. The inflammatory side of human chondrocytes unveiled by antibody microarrays. Biochem. Biophys. Res. Commun. 323, 960–969 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Larcher, F. et al. Modulation of the angiogenesis response through Ha-ras control, placenta growth factor, and angiopoietin expression in mouse skin carcinogenesis. Mol. Carcinog. 37, 83–90 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Yao, Y. G., Yang, H. S., Cao, Z., Danielsson, J. & Duh, E. J. Upregulation of placental growth factor by vascular endothelial growth factor via a post-transcriptional mechanism. FEBS Lett. 579, 1227–1234 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Gerber, H. P., Condorelli, F., Park, J. & Ferrara, N. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J. Biol. Chem. 272, 23659–23667 (1997).

    Article  CAS  PubMed  Google Scholar 

  155. Chen, C. N. et al. The significance of placenta growth factor in angiogenesis and clinical outcome of human gastric cancer. Cancer Lett. 213, 73–82 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Zhang, L., Chen, J., Ke, Y., Mansel, R. E. & Jiang, W. G. Expression of placenta growth factor (PlGF) in non-small cell lung cancer (NSCLC) and the clinical and prognostic significance. World J. Surg. Oncol. 3, 68 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Ho, M. C. et al. Placenta growth factor not vascular endothelial growth factor A or C can predict the early recurrence after radical resection of hepatocellular carcinoma. Cancer Lett. 251, 43–52 (2007).

    Article  PubMed  CAS  Google Scholar 

  158. Matsumoto, K. et al. Prognostic significance of plasma placental growth factor levels in renal cell cancer: an association with clinical characteristics and vascular endothelial growth factor levels. Anticancer Res. 23, 4953–4958 (2003).

    CAS  PubMed  Google Scholar 

  159. Nomura, M. et al. Placenta growth factor (PlGF) mRNA expression in brain tumors. J. Neurooncol. 40, 123–130 (1998).

    Article  CAS  PubMed  Google Scholar 

  160. Viglietto, G. et al. Upregulation of vascular endothelial growth factor (VEGF) and downregulation of placenta growth factor (PlGF) associated with malignancy in human thyroid tumors and cell lines. Oncogene 11, 1569–1579 (1995).

    CAS  PubMed  Google Scholar 

  161. Sowter, H. M. et al. Expression and localization of the vascular endothelial growth factor family in ovarian epithelial tumors. Lab. Invest. 77, 607–614 (1997).

    CAS  PubMed  Google Scholar 

  162. Hatva, E. et al. Vascular growth factors and receptors in capillary hemangioblastomas and hemangiopericytomas. Am. J. Pathol. 148, 763–775 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Xu, L. & Jain, R. K. Down-regulation of placenta growth factor by promoter hypermethylation in human lung and colon carcinoma. Mol. Cancer Res. 5, 873–880 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Willett, C. G. et al. Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J. Clin. Oncol. 23, 8136–8139 (2005).

    Article  PubMed  Google Scholar 

  165. Rini, B. I. et al. Antitumor activity and biomarker analysis of sunitinib in patients with bevacizumab-refractory metastatic renal cell carcinoma. J. Clin. Oncol. 26, 3743–3748 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Batchelor, T. T. et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11, 83–95 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ebos, J. M., Lee, C. R., Christensen, J. G., Mutsaers, A. J. & Kerbel, R. S. Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc. Natl Acad. Sci. USA 104, 17069–17074 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Taylor, A. P., Rodriguez, M., Adams, K., Goldenberg, D. M. & Blumenthal, R. D. Altered tumor vessel maturation and proliferation in placenta growth factor-producing tumors: potential relationship to post-therapy tumor angiogenesis and recurrence. Int. J. Cancer 105, 158–164 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005). This study describes the vessel normalization hypothesis in anti-angiogenic therapy and the available data that supports this hypothesis.

    Article  CAS  PubMed  Google Scholar 

  170. Tong, R. T. et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 64, 3731–3736 (2004).

    Article  CAS  PubMed  Google Scholar 

  171. Shaked, Y. et al. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313, 1785–1787 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Force, T., Krause, D. S. & Van Etten, R. A. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nature Rev. Cancer 7, 332–344 (2007). This paper summarizes what is known about the cardiotoxicity of cancer drugs that target receptor tyrosine kinases and reveals the mechanisms by which interruption of signalling pathways triggers cardiomyocyte dysfunction.

    Article  CAS  Google Scholar 

  173. Murakami, M. et al. VEGFR1 tyrosine kinase signaling promotes lymphangiogenesis as well as angiogenesis indirectly via macrophage recruitment. Arterioscler. Thromb. Vasc. Biol. 28, 658–664 (2008).

    Article  CAS  PubMed  Google Scholar 

  174. Cursiefen, C. et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J. Clin. Invest. 113, 1040–1050 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Schoppmann, S. F. et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am. J. Pathol. 161, 947–956 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wirzenius, M. et al. Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J. Exp. Med. 204, 1431–1440 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sato, Y. VEGFR1 for lymphangiogenesis: an alternative signaling pathway? Arterioscler. Thromb. Vasc. Biol. 28, 604–605 (2008).

    Article  CAS  PubMed  Google Scholar 

  178. Pollard, J. W. Tumour-educated macrophages promote tumour progression and metastasis. Nature Rev. Cancer 4, 71–78 (2004). A comprehensive review of the biology of tumour-associated macrophages.

    Article  CAS  Google Scholar 

  179. Lin, E. Y. et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 66, 11238–11246 (2006). This study provides evidence that tumour-infiltrating macrophages regulate both the angiogenic switch and the progression to malignancy in a transgenic mammary tumour model.

    Article  CAS  PubMed  Google Scholar 

  180. De Palma, M. et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211–226 (2005). This study shows that Tie2+ monocytes are a distinct myeloid cell population that promotes tumour angiogenesis.

    Article  CAS  PubMed  Google Scholar 

  181. Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. De Bandt, M. et al. Blockade of vascular endothelial growth factor receptor I (VEGF-RI), but not VEGF-RII, suppresses joint destruction in the K/BxN model of rheumatoid arthritis. J. Immunol. 171, 4853–4859 (2003).

    Article  CAS  PubMed  Google Scholar 

  183. Dineen, S. P. et al. Vascular endothelial growth factor receptor 2 mediates macrophage infiltration into orthotopic pancreatic tumors in mice. Cancer Res. 68, 4340–4346 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Kamba, T. et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am. J. Physiol. Heart Circ. Physiol. 290, H560–H576 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Zhao, Q. et al. Essential role of vascular endothelial growth factor and Flt-1 signals in neointimal formation after periadventitial injury. Arterioscler. Thromb. Vasc. Biol. 24, 2284–2289 (2004).

    Article  CAS  PubMed  Google Scholar 

  186. Sun, Y. et al. Vascular endothelial growth factor-B (VEGFB) stimulates neurogenesis: evidence from knockout mice and growth factor administration. Dev. Biol. 289, 329–335 (2006).

    Article  CAS  PubMed  Google Scholar 

  187. Tirziu, D. et al. Myocardial hypertrophy in the absence of external stimuli is induced by angiogenesis in mice. J. Clin. Inves.t 117, 3188–3197 (2007).

    Article  CAS  Google Scholar 

  188. Rissanen, T. T. et al. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ. Res. 92, 1098–1106 (2003).

    Article  CAS  PubMed  Google Scholar 

  189. Wafai, R., Tudor, E. M., Angus, J. A. & Wright, C. E. Vascular effects of FGF-2 and VEGF-B in rabbits with bilateral hind limb ischemia. J. Vasc. Res. 46, 45–54 (2008).

    Article  PubMed  CAS  Google Scholar 

  190. Reichelt, M. et al. Vascular endothelial growth factor-B and retinal vascular development in the mouse. Clin. Experiment. Ophthalmol. 31, 61–65 (2003).

    Article  PubMed  Google Scholar 

  191. Wanstall, J. C. et al. Vascular endothelial growth factor-B-deficient mice show impaired development of hypoxic pulmonary hypertension. Cardiovasc. Res. 55, 361–368 (2002).

    Article  CAS  PubMed  Google Scholar 

  192. Louzier, V. et al. Role of VEGF-B in the lung during development of chronic hypoxic pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 284, L926–L937 (2003).

    Article  CAS  PubMed  Google Scholar 

  193. Bhardwaj, S. et al. Angiogenic responses of vascular endothelial growth factors in periadventitial tissue. Hum. Gene Ther. 14, 1451–1462 (2003).

    Article  CAS  PubMed  Google Scholar 

  194. Leppanen, P. et al. Gene transfers of vascular endothelial growth factor-A, vascular endothelial growth factor-B, vascular endothelial growth factor-C, and vascular endothelial growth factor-D have no effects on atherosclerosis in hypercholesterolemic low-density lipoprotein-receptor/apolipoprotein B48-deficient mice. Circulation 112, 1347–1352 (2005).

    Article  PubMed  CAS  Google Scholar 

  195. Tomanek, R. J. et al. VEGF family members regulate myocardial tubulogenesis and coronary artery formation in the embryo. Circ. Res. 98, 947–953 (2006).

    Article  CAS  PubMed  Google Scholar 

  196. Mould, A. W. et al. Transgenic overexpression of vascular endothelial growth factor-B isoforms by endothelial cells potentiates postnatal vessel growth in vivo and in vitro. Circ. Res. 97, e60–e70 (2005).

    Article  CAS  PubMed  Google Scholar 

  197. Mould, A. W. et al. Vegfb gene knockout mice display reduced pathology and synovial angiogenesis in both antigen-induced and collagen-induced models of arthritis. Arthritis Rheum. 48, 2660–2669 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. Kolakowski, S. Jr et al. Placental growth factor provides a novel local angiogenic therapy for ischemic cardiomyopathy. J. Card. Surg. 21, 559–564 (2006).

    Article  PubMed  Google Scholar 

  199. Shih, S. C., Ju, M., Liu, N. & Smith, L. E. Selective stimulation of VEGFR-1 prevents oxygen-induced retinal vascular degeneration in retinopathy of prematurity. J. Clin. Invest. 112, 50–57 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Feeney, S. A. et al. Role of vascular endothelial growth factor and placental growth factors during retinal vascular development and hyaloid regression. Invest. Ophthalmol. Vis. Sci. 44, 839–847 (2003).

    Article  PubMed  Google Scholar 

  201. Carlo-Stella, C. et al. Placental growth factor-1 potentiates hematopoietic progenitor cell mobilization induced by granulocyte colony-stimulating factor in mice and nonhuman primates. Stem Cells 25, 252–261 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Fragoso, R. et al. VEGF signaling on hematopoietic precursors restricts B-lymphoid commitment in vitro and in vivo. Exp. Hematol. 36, 1329–1336 (2008).

    Article  CAS  PubMed  Google Scholar 

  203. Nagura, S., Katoh, R., Miyagi, E., Shibuya, M. & Kawaoi, A. Expression of vascular endothelial growth factor (VEGF) and VEGF receptor-1 (Flt-1) in Graves disease possibly correlated with increased vascular density. Hum. Pathol. 32, 10–17 (2001).

    Article  CAS  PubMed  Google Scholar 

  204. Xu, X. et al. Expression of vascular endothelial growth factor and its receptors is increased, but microvascular relaxation is impaired in patients after acute myocardial ischemia. J. Thorac. Cardiovasc. Surg. 121, 735–742 (2001).

    Article  CAS  PubMed  Google Scholar 

  205. Sasso, F. C. et al. Increased vascular endothelial growth factor expression but impaired vascular endothelial growth factor receptor signaling in the myocardium of type 2 diabetic patients with chronic coronary heart disease. J. Am. Coll. Cardiol. 46, 827–834 (2005).

    Article  CAS  PubMed  Google Scholar 

  206. Abraham, D. et al. Selective downregulation of VEGF-A165, VEGF-R1, and decreased capillary density in patients with dilative but not ischemic cardiomyopathy. Circ. Res. 87, 644–647 (2000).

    Article  CAS  PubMed  Google Scholar 

  207. Kakehashi, A. et al. Relationship among VEGF, VEGF receptor, AGEs, and macrophages in proliferative diabetic retinopathy. Diabetes Res. Clin. Pract. 79, 438–445 (2008).

    Article  CAS  PubMed  Google Scholar 

  208. Thomas, S. et al. Vascular endothelial growth factor receptors in human mesangium in vitro and in glomerular disease. J. Am. Soc. Nephrol. 11, 1236–1243 (2000).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Carmeliet.

Related links

Related links

FURTHER INFORMATION

Peter Carmeliet's homepages

Clinical trials

Glossary

Ribozyme

An RNA molecule that actsas an enzyme that catalyses the cleavage of other RNA molecules. Ribozymes are used in genetic research and gene therapy.

Tenascin X

An extracellular matrix glycoprotein that is primarily found in loose connective tissues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, C., Mazzone, M., Jonckx, B. et al. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy?. Nat Rev Cancer 8, 942–956 (2008). https://doi.org/10.1038/nrc2524

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2524

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing