Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MYB function in normal and cancer cells

Key Points

  • The MYB oncogene is associated with leukaemogenesis in several species including humans. MYB can be activated by overexpression or inappropriate expression, structural alteration and/or genomic rearrangements.

  • MYB is clearly required in the bone marrow, colonic crypt and neurogenic niches as demonstrated when global or tissue-specific knockout mice were generated. Multiple cell types are affected and these contribute to the stem cell niches in these tissues.

  • MYB transcription is tightly regulated by attenuation sequences that reside in the first intron and mutations in this region in colorectal cancer correlate with elevated MYB expression, a characteristic of most colorectal cancers. In breast cancer oestrogen receptor-α (ERα) relieves the attenuation allowing elevated MYB expression, a characteristic of most ERα+ breast cancers.

  • Sub-optimal MYB function, either through protein changes or through heterozygous loss, compromises the ability to maintain tissue homeostasis when these tissues are subjected to stress. This might have clinical implications for treating patients with abnormal MYB function who would otherwise appear normal.

  • Over 80 cellular targets of the MYB transcription factor have been identified that partly, but incompletely, explain the importance of MYB in development, cell survival, proliferation and homeostasis. When MYB is overexpressed or inappropriately activated, some of these, and perhaps additional target genes, contribute to the transforming capacity of MYB.

  • Therapeutic interventions that target MYB in malignancy have been limited, but the observation that ERα+ breast cancer cells have elevated MYB indicates that targeting ERα-regulated gene expression might be efficacious. In addition, immunotherapy against MYB is now under investigation.

Abstract

The transcription factor MYB has a key role as a regulator of stem and progenitor cells in the bone marrow, colonic crypts and a neurogenic region of the adult brain. It is in these compartments that a deficit in MYB activity leads to severe or lethal phenotypes. As was predicted from its leukaemogenicity in several animal species, MYB has now been identified as an oncogene that is involved in some human leukaemias. Moreover, recent evidence has strengthened the case that MYB is activated in colon and breast cancer: a block to MYB expression is overcome by mutation of the regulatory machinery in the former disease and by oestrogen receptor-α (ERα) in the latter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MYB genomic and protein structure.
Figure 2: A model of MYB transcriptional elongation control.
Figure 3: MYB is required for normal adult haematopoiesis.
Figure 4: MYB is intrinsic to stem and progenitor cell niches in at least three tissue compartments.
Figure 5: MYB overexpression.

Similar content being viewed by others

References

  1. Klempnauer, K. H. & Bishop, J. M. Neoplastic transformation by E26 leukemia virus is mediated by a single protein containing domains of gag and myb genes. J. Virol. 50, 280–283 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Leprince, D. et al. A putative second cell-derived oncogene of the avian leukaemia retrovirus E26. Nature 306, 395–397 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Gerondakis, S. & Bishop, J. M. Structure of the protein encoded by the chicken proto-oncogene c-myb. Mol. Cell. Biol. 6, 3677–3684 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beug, H., von Kirchbach, A., Doderlein, G., Conscience, J. F. & Graf, T. Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell 18, 375–390 (1979). Showed that the phenotype of haematopoietic cells transformed by oncogene-bearing avian retrovirues, including myb viruses AMV and E26, tracked with the corresponding oncogenes.

    Article  CAS  PubMed  Google Scholar 

  5. Lipsick, J. S. & Baluda, M. A. The myb oncogene. Gene Amplif. Anal. 4, 73–98 (1986).

    CAS  PubMed  Google Scholar 

  6. Lavu, S. & Reddy, E. P. Structural organization and nucleotide sequence of mouse c-myb oncogene: activation in ABPL tumors is due to viral integration in an intron which results in the deletion of the 5′ coding sequences. Nucleic Acids Res. 14, 5309–5320 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weinstein, Y., Ihle, J. N., Lavu, S. & Reddy, E. P. Truncation of the c-myb gene by a retroviral integration in an interleukin 3-dependent myeloid leukemia cell line. Proc. Natl Acad. Sci. USA 83, 5010–5014 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shen-Ong, G. L., Morse, H. C., 3rd, Potter, M. & Mushinski, J. F. Two modes of c-myb activation in virus-induced mouse myeloid tumors. Mol. Cell. Biol. 6, 380–392 (1986). Elucidated the structural basis of the activation of Myb by retroviral insertion in murine myeloid tumours, with two scenarios resulting in amino or carboxyl truncation, respectively.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alitalo, K. et al. Aberrant expression of an amplified c-myb oncogene in two cell lines from a colon carcinoma. Proc. Natl Acad. Sci. USA 81, 4534–4538 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Melani, C., Rivoltini, L., Parmiani, G., Calabretta, B. & Colombo, M. P. Inhibition of proliferation by c-myb antisense oligodeoxynucleotides in colon adenocarcinoma cell lines that express c-myb. Cancer Res. 51, 2897–2901 (1991).

    CAS  PubMed  Google Scholar 

  11. Ramsay, R. G. et al. Myb expression is higher in malignant human colonic carcinoma and premalignant adenomatous polyps than in normal mucosa. Cell Growth Differ. 3, 723–730 (1992).

    CAS  PubMed  Google Scholar 

  12. Untawale, S. & Blick, M. Oncogene expression in adenocarcinomas of the colon and in colon tumor-derived cell lines. Anticancer Res. 8, 1–7 (1988).

    CAS  PubMed  Google Scholar 

  13. Guerin, M., Sheng, Z. M., Andrieu, N. & Riou, G. Strong association between c-myb and oestrogen-receptor expression in human breast cancer. Oncogene 5, 131–135 (1990). The first clear demonstration of the association of MYB with ERα+ breast cancer.

    CAS  PubMed  Google Scholar 

  14. Carpinelli, M. R. et al. Suppressor screen in Mpl−/− mice: c-Myb mutation causes supraphysiological production of platelets in the absence of thrombopoietin signaling. Proc. Natl Acad. Sci. USA 101, 6553–6558 (2004). With Reference 19, this paper identified hypomorphic point mutations in Myb that effect platelet generation and other haematopoietic parameters in adult mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Emambokus, N. et al. Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J. 22, 4478–4488 (2003). Advanced the concept that the level of this transcription factor is crucial in influencing blood cell differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Malaterre, J. et al. c-Myb is required for progenitor cell homeostasis in colonic crypts. Proc. Natl Acad. Sci. USA 104, 3829–3834 (2007). Showed that Myb is essential to normal colonic crypt homeostasis through its effects on differentiation and proliferation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Malaterre, J. et al. c-Myb is required for neural progenitor cell proliferation and maintenance of the neural stem cell niche in adult brain. Stem Cells 26, 173–181 (2008). The role of MYB in adult brain neurogenesis was revealed in this study as well as effects on the ependymal cell layer that supports the neurogenic stem cell niche.

    Article  CAS  PubMed  Google Scholar 

  18. Ramsay, R. G. c-Myb a stem-progenitor cell regulator in multiple tissue compartments. Growth Factors 23, 253–261 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Sandberg, M. L. et al. c-Myb and p300 regulate hematopoietic stem cell proliferation and differentiation. Dev. Cell 8, 153–166 (2005). With Reference 14, this paper characterised the third hypomorphic mutation in Myb that also affects haematopoietic stem cell numbers.

    Article  CAS  PubMed  Google Scholar 

  20. Hugo, H. et al. Mutations in the MYB intron I regulatory sequence increase transcription in colon cancers. Genes Chromosomes Cancer 45, 1143–1154 (2006). Showed the importance of sequence in the first intron of MYB — which might encode an RNA stem-loop and polyT motifs — in regulating MYB transcriptional attenuation, and that this region in the first intron is commonly mutated in colon carcinoma.

    Article  CAS  PubMed  Google Scholar 

  21. Thompson, M. A., Flegg, R., Westin, E. H. & Ramsay, R. G. Microsatellite deletions in the c-myb transcriptional attenuator region associated with over-expression in colon tumour cell lines. Oncogene 14, 1715–1723 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Drabsch, Y. et al. Mechanism of and requirement for estrogen-regulated MYB expression in estrogen-receptor-positive breast cancer cells. Proc. Natl Acad. Sci. USA 104, 13762–13767 (2007). Demonstrated that MYB is required for the proliferation of breast cancer cells and that oestrogen and its receptor regulate attenuation of MYB transcription.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clappier, E. et al. The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood 110, 1251–1261 (2007). With Reference 119, this paper reported a significant frequency of genomic alterations in MYB in human T-cell leukaemia.

    Article  CAS  PubMed  Google Scholar 

  24. Tomita, A. et al. Truncated c-Myb expression in the human leukemia cell line TK-6. Leukemia 12, 1422–1429 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Nomura, N. et al. Isolation of human cDNA clones of myb-related genes, A-myb and B-myb. Nucleic Acids Res. 16, 11075–11089 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lipsick, J. S. et al. Functional evolution of the Myb oncogene family. Blood Cells Mol. Dis. 27, 456–458 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Sala, A. & Watson, R. B-Myb protein in cellular proliferation, transcription control, and cancer: latest developments. J. Cell Physiol. 179, 245–250 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Trauth, K. et al. Mouse A-myb encodes a trans-activator and is expressed in mitotically active cells of the developing central nervous system, adult testis and B lymphocytes. EMBO J. 13, 5994–6005 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vora, K. A. et al. The T cell-dependent B cell immune response and germinal center reaction are intact in A-myb-deficient mice. J. Immunol. 166, 3226–3230 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Golay, J. et al. The A-Myb transcription factor is a marker of centroblasts in vivo. J. Immunol. 160, 2786–2793 (1998).

    CAS  PubMed  Google Scholar 

  31. Toscani, A. et al. Arrest of spermatogenesis and defective breast development in mice lacking A-myb. Nature 386, 713–717 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Tanaka, Y., Patestos, N. P., Maekawa, T. & Ishii, S. B-myb is required for inner cell mass formation at an early stage of development. J. Biol. Chem. 274, 28067–28070 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Catchpole, S., Tavner, F., Le Cam, L., Sardet, C. & Watson, R. J. A B-myb promoter corepressor site facilitates in vivo occupation of the adjacent E2F site by p107 x E2F and p130 x E2F complexes. J. Biol. Chem. 277, 39015–39024 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Li, J. M., Hu, P. P., Shen, X., Yu, Y. & Wang, X. F. E2F4-RB and E2F4-p107 complexes suppress gene expression by transforming growth factor β through E2F binding sites. Proc. Natl Acad. Sci. USA 94, 4948–4953 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakajima, Y. [Interaction of E2F/Rb family members with factor binding to co-repressor element on B-myb and E2F1 promoters]. Kokubyo Gakkai Zasshi 65, 172–188 (1998) (in Japanese).

    Article  CAS  PubMed  Google Scholar 

  36. Nakajima, Y., Yamada, S., Kamata, N. & Ikeda, M. A. Interaction of E2F-Rb family members with corepressors binding to the adjacent E2F site. Biochem. Biophys. Res. Commun. 364, 1050–1055 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Amatschek, S. et al. Tissue-wide expression profiling using cDNA subtraction and microarrays to identify tumor-specific genes. Cancer Res. 64, 844–856 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Biedenkapp, H., Borgmeyer, U., Sippel, A. E. & Klempnauer, K. H. Viral myb oncogene encodes a sequence-specific DNA-binding activity. Nature 335, 835–837 (1988). This milestone paper identified the sequence motif that is recognized by MYB proteins.

    Article  CAS  PubMed  Google Scholar 

  39. Kanei-Ishii, C., Yasukawa, T., Morimoto, R. I. & Ishii, S. c-Myb-induced trans-activation mediated by heat shock elements without sequence-specific DNA binding of c-Myb. J. Biol. Chem. 269, 15768–15775 (1994).

    CAS  PubMed  Google Scholar 

  40. Foos, G., Natour, S. & Klempnauer, K. H. TATA-box dependent trans-activation of the human HSP70 promoter by Myb proteins. Oncogene 8, 1775–1782 (1993).

    CAS  PubMed  Google Scholar 

  41. Dai, P. et al. CBP as a transcriptional coactivator of c-Myb. Genes Dev. 10, 528–540 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Oelgeschlager, M., Janknecht, R., Krieg, J., Schreek, S. & Luscher, B. Interaction of the co-activator CBP with Myb proteins: effects on Myb-specific transactivation and on the cooperativity with NFM. EMBO J. 15, 2771–2780 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oelgeschlager, M., Nuchprayoon, I., Luscher, B. & Friedman, A. D. C/EBP, c-Myb, and PU.1 cooperate to regulate the neutrophil elastase promoter. Mol. Cell. Biol. 16, 4717–4725 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mink, S., Kerber, U. & Klempnauer, K. H. Interaction of C/EBPbeta and v-Myb is required for synergistic activation of the mim-1 gene. Mol. Cell. Biol. 16, 1316–1325 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shapiro, L. H. Myb and Ets proteins cooperate to transactivate an early myeloid gene. J. Biol. Chem. 270, 8763–8771 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, D. M., Sevcikova, S., Wen, H., Roberts, S. & Lipsick, J. S. v-Myb represses the transcription of Ets-2. Oncogene 26, 1238–1244 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Bartunek, P., Kralova, J., Blendinger, G., Dvorak, M. & Zenke, M. GATA-1 and c-myb crosstalk during red blood cell differentiation through GATA-1 binding sites in the c-myb promoter. Oncogene 22, 1927–1935 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Takahashi, T. et al. Inhibitory interaction of c-Myb and GATA-1 via transcriptional co-activator CBP. Oncogene 19, 134–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Oelgeschlager, M., Kowenz-Leutz, E., Schreek, S., Leutz, A. & Luscher, B. Tumorigenic N-terminal deletions of c-Myb modulate DNA binding, transactivation, and cooperativity with C/EBP. Oncogene 20, 7420–7424 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Bies, J. & Wolff, L. Oncogenic activation of c-Myb by carboxyl-terminal truncation leads to decreased proteolysis by the ubiquitin-26S proteasome pathway. Oncogene 14, 203–212 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Aziz, N. et al. c-Myb and v-Myb are differentially phosphorylated by p42mapk in vitro. Oncogene 8, 2259–2265 (1993).

    CAS  PubMed  Google Scholar 

  52. Bies, J., Feikova, S., Bottaro, D. P. & Wolff, L. Hyperphosphorylation and increased proteolytic breakdown of c-Myb induced by the inhibition of Ser/Thr protein phosphatases. Oncogene 19, 2846–2854 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Cures, A., House, C., Kanei-Ishii, C., Kemp, B. & Ramsay, R. G. Constitutive c-Myb amino-terminal phosphorylation and DNA binding activity uncoupled during entry and passage through the cell cycle. Oncogene 20, 1784–1792 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Luscher, B., Christenson, E., Litchfield, D. W., Krebs, E. G. & Eisenman, R. N. Myb DNA binding inhibited by phosphorylation at a site deleted during oncogenic activation. Nature 344, 517–522 (1990).

    Article  CAS  PubMed  Google Scholar 

  55. Miglarese, M. R., Richardson, A. F., Aziz, N. & Bender, T. P. Differential regulation of c-Myb-induced transcription activation by a phosphorylation site in the negative regulatory domain. J. Biol. Chem. 271, 22697–22705 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Pani, E. & Ferrari, S. p38MAPKδ controls c-Myb degradation in response to stress. Blood Cells Mol. Dis. 40, 388–394 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Ramsay, R. G. et al. Regulation of c-Myb through protein phosphorylation and leucine zipper interactions. Oncogene 11, 2113–2120 (1995).

    CAS  PubMed  Google Scholar 

  58. Winn, L. M., Lei, W. & Ness, S. A. Pim-1 phosphorylates the DNA binding domain of c-Myb. Cell Cycle 2, 258–262 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Sano, Y. & Ishii, S. Increased affinity of c-Myb for CREB-binding protein (CBP) after CBP-induced acetylation. J. Biol. Chem. 276, 3674–3682 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Tomita, A. et al. c-Myb acetylation at the carboxyl-terminal conserved domain by transcriptional co-activator p300. Oncogene 19, 444–451 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Bies, J., Markus, J. & Wolff, L. Covalent attachment of the SUMO-1 protein to the negative regulatory domain of the c-Myb transcription factor modifies its stability and transactivation capacity. J. Biol. Chem. 277, 8999–9009 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Sramko, M., Markus, J., Kabat, J., Wolff, L. & Bies, J. Stress-induced inactivation of the c-Myb transcription factor through conjugation of SUMO-2/3 proteins. J. Biol. Chem. 281, 40065–40075 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Campanero, M. R., Armstrong, M. & Flemington, E. Distinct cellular factors regulate the c-myb promoter through its E2F element. Mol. Cell. Biol. 19, 8442–8450 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thompson, M. A. & Ramsay, R. G. Myb: an old oncoprotein with new roles. Bioessays 17, 341–350 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Bich-Thuy, L. T. et al. Direct activation of human resting T cells by IL 2: the role of an IL 2 receptor distinct from the Tac protein. J. Immunol. 139, 1550–1556 (1987).

    CAS  PubMed  Google Scholar 

  67. Kelly, K. & Siebenlist, U. Mitogenic activation of normal T cells leads to increased initiation of transcription in the c-myc locus. J. Biol. Chem. 263, 4828–4831 (1988).

    CAS  PubMed  Google Scholar 

  68. Sheiness, D. & Gardinier, M. Expression of a proto-oncogene (proto-myb) in hemopoietic tissues of mice. Mol. Cell. Biol. 4, 1206–1212 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lauder, A., Castellanos, A. & Weston, K. c-Myb transcription is activated by protein kinase B (PKB) following interleukin 2 stimulation of Tcells and is required for PKB-mediated protection from apoptosis. Mol. Cell. Biol. 21, 5797–5805 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Weston, K. Myb proteins in life, death and differentiation. Curr. Opin. Genet. Dev. 8, 76–81 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Bender, T. P., Thompson, C. B. & Kuehl, W. M. Differential expression of c-myb mRNA in murine B lymphomas by a block to transcription elongation. Science 237, 1473–1476 (1987). One of the first reports showing that Myb expression is regulated at the level of transcriptional elongation.

    Article  CAS  PubMed  Google Scholar 

  72. Clarke, M. F., Kukowska-Latallo, J. F., Westin, E., Smith, M. & Prochownik, E. V. Constitutive expression of a c-myb cDNA blocks Friend murine erythroleukemia cell differentiation. Mol. Cell. Biol. 8, 884–892 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gonda, T. J. & Metcalf, D. Expression of myb, myc and fos proto-oncogenes during the differentiation of a murine myeloid leukaemia. Nature 310, 249–251 (1984).

    Article  CAS  PubMed  Google Scholar 

  74. Ramsay, R. G., Ikeda, K., Rifkind, R. A. & Marks, P. A. Changes in gene expression associated with induced differentiation of erythroleukemia: protooncogenes, globin genes, and cell division. Proc. Natl Acad. Sci. USA 83, 6849–6853 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ramsay, R. G. et al. Colon epithelial cell differentiation is inhibited by constitutive c-myb expression or mutant APC plus activated RAS. DNA Cell Biol. 24, 21–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Thompson, M. A. et al. c-Myb down-regulation is associated with human colon cell differentiation, apoptosis, and decreased Bcl-2 expression. Cancer Res. 58, 5168–5175 (1998).

    CAS  PubMed  Google Scholar 

  77. van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Watson, R. J. A transcriptional arrest mechanism involved in controlling constitutive levels of mouse c-myb mRNA. Oncogene 2, 267–272 (1988).

    CAS  PubMed  Google Scholar 

  79. Richon, V. M. et al. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc. Natl Acad. Sci. USA 95, 3003–3007 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Marks, P. A., Sheffery, M., Ramsay, R., Ikeda, K. & Rifkind, R. A. Induction of transformed cells to terminal differentiation. Ann. NY Acad. Sci. 511, 246–255 (1987).

    Article  CAS  PubMed  Google Scholar 

  81. Dooley, S., Seib, T., Welter, C. & Blin, N. c-myb intron I protein binding and association with transcriptional activity in leukemic cells. Leuk. Res. 20, 429–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Manzella, L. et al. The interferon regulatory factors 1 and 2 bind to a segment of the human c-myb first intron: possible role in the regulation of c-myb expression. Exp. Cell Res. 256, 248–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, D. M., Dubendorff, J. W., Woo, C. H. & Lipsick, J. S. Functional analysis of carboxy-terminal deletion mutants of c-Myb. J. Virol. 73, 5875–5886 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Suhasini, M. & Pilz, R. B. Transcriptional elongation of c-myb is regulated by NF-κB (p50/RelB). Oncogene 18, 7360–7369 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Toth, C. R., Hostutler, R. F., Baldwin, A. S. Jr., & Bender, T. P. Members of the nuclear factor κB family transactivate the murine c-myb gene. J. Biol. Chem. 270, 7661–7671 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Karn, J. Tackling Tat. J. Mol. Biol. 293, 235–254 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Nicolaides, N. C., Gualdi, R., Casadevall, C., Manzella, L. & Calabretta, B. Positive autoregulation of c-myb expression via Myb binding sites in the 5′ flanking region of the human c-myb gene. Mol. Cell. Biol. 11, 6166–6176 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bellon, T., Perrotti, D. & Calabretta, B. Granulocytic differentiation of normal hematopoietic precursor cells induced by transcription factor PU.1 correlates with negative regulation of the c-myb promoter. Blood 90, 1828–1839 (1997).

    CAS  PubMed  Google Scholar 

  89. Lei, W., Rushton, J. J., Davis, L. M., Liu, F. & Ness, S. A. Positive and negative determinants of target gene specificity in myb transcription factors. J. Biol. Chem. 279, 29519–29527 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Liu, F., Lei, W., O'Rourke, J. P. & Ness, S. A. Oncogenic mutations cause dramatic, qualitative changes in the transcriptional activity of c-Myb. Oncogene 25, 795–805 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Westin, E. H. et al. Differential expression of the amv gene in human hematopoietic cells. Proc. Natl Acad. Sci. USA 79, 2194–2198 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ganter, B. & Lipsick, J. S. Myb and oncogenesis. Adv. Cancer Res. 76, 21–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Introna, M. & Golay, J. How can oncogenic transcription factors cause cancer: a critical review of the myb story. Leukemia 13, 1301–1306 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Mucenski, M. L. et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 65, 677–689 (1991). First knockout of Myb , which showed that Myb is essential for definitive haematopoiesis and raised the issue of differential regulation of megakaryocytopoiesis compared with other lineages.

    Article  CAS  PubMed  Google Scholar 

  95. Allen, R. D., Bender, T. P. & Siu, G. c-Myb is essential for early T cell development. Genes Dev. 13, 1073–1078 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bender, T. P., Kremer, C. S., Kraus, M., Buch, T. & Rajewsky, K. Critical functions for c-Myb at three checkpoints during thymocyte development. Nature Immunol. 5, 721–729 (2004).

    Article  CAS  Google Scholar 

  97. Thomas, M. D., Kremer, C. S., Ravichandran, K. S., Rajewsky, K. & Bender, T. P. c-Myb is critical for B cell development and maintenance of follicular B cells. Immunity 23, 275–286 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Sicurella, C. et al. Defective Stem cell factor expression in c-myb null fetal liver stroma. Blood Cells Mol. Dis. 27, 470–478 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Sumner, R., Crawford, A., Mucenski, M. & Frampton, J. Initiation of adult myelopoiesis can occur in the absence of c-Myb whereas subsequent development is strictly dependent on the transcription factor. Oncogene 19, 3335–3342 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Sakura, H. et al. Delineation of three functional domains of the transcriptional activator encoded by the c-myb protooncogene. Proc. Natl Acad. Sci. USA 86, 5758–5762 (1989). Defined the three main functional domains of MYB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Potten, C. S. Stem cells in gastrointestinal epithelium: numbers, characteristics and death. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 821–830 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gordon, J. I. & Hermiston, M. L. Differentiation and self-renewal in the mouse gastrointestinal epithelium. Curr. Opin. Cell Biol. 6, 795–803 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501 (1992).

    Article  CAS  PubMed  Google Scholar 

  104. Gage, F. H. Neurogenesis in the adult brain. J. Neurosci. 22, 612–613 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rosenthal, M. A., Thompson, M. A., Ellis, S., Whitehead, R. H. & Ramsay, R. G. Colonic expression of c-myb is initiated in utero and continues throughout adult life. Cell Growth Differ. 7, 961–967 (1996).

    CAS  PubMed  Google Scholar 

  106. Zhang, J., Williams, M. A. & Rigamonti, D. Genetics of human hydrocephalus. J. Neurol. 253, 1255–1266 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Riva, D. & Giorgi, C. The neurodevelopmental price of survival in children with malignant brain tumours. Childs Nerv. Syst. 16, 751–754 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Ueberall, M. A. et al. Neurophysiological findings in long-term survivors of acute lymphoblastic leukaemia in childhood treated with the BFM protocol 81 SR-A/B. Eur. J. Pediatr. 156, 727–733 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. Khong, P. L. et al. White matter anisotropy in post-treatment childhood cancer survivors: preliminary evidence of association with neurocognitive function. J. Clin. Oncol. 24, 884–890 (2006).

    Article  PubMed  Google Scholar 

  110. Snyder, J. S., Hong, N. S., McDonald, R. J. & Wojtowicz, J. M. A role for adult neurogenesis in spatial long-term memory. Neuroscience 130, 843–852 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Byrne, T. N. Cognitive sequelae of brain tumor treatment. Curr. Opin. Neurol. 18, 662–666 (2005).

    Article  PubMed  Google Scholar 

  112. Brabender, J. et al. Increased c-myb mRNA expression in Barrett's esophagus and Barrett's–associated adenocarcinoma. J. Surg. Res. 99, 301–306 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Bussolari, R. et al. Coding sequence and intron–exon junctions of the c-myb gene are intact in the chronic phase and blast crisis stages of chronic myeloid leukemia patients. Leuk. Res. 31, 163–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Lutwyche, J. K., Keough, R. A., Hughes, T. P. & Gonda, T. J. Mutation screening of the c-MYB negative regulatory domain in acute and chronic myeloid leukaemia. Br. J. Haematol. 114, 632–634 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Anfossi, G., Gewirtz, A. M. & Calabretta, B. An oligomer complementary to c-myb-encoded mRNA inhibits proliferation of human myeloid leukemia cell lines. Proc. Natl Acad. Sci. USA 86, 3379–3383 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Calabretta, B. et al. Normal and leukemic hematopoietic cells manifest differential sensitivity to inhibitory effects of c-myb antisense oligodeoxynucleotides: an in vitro study relevant to bone marrow purging. Proc. Natl Acad. Sci. USA 88, 2351–2355 (1991). References 115 and 116 showed that MYB is required for the proliferation of human leukaemia cells and that normal haematopoietic cells might be less sensitive to MYB inhibition, suggesting that there could be a therapeutic window for agents that target MYB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hess, J. L. et al. c-Myb is an essential downstream target for homeobox-mediated transformation of hematopoietic cells. Blood 108, 297–304 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lidonnici, M. R., Corradini, F., Waldron, T., Bender, T. P. & Calabretta, B. Requirement of c-Myb for p210BCR/ABL-dependent transformation of myeloid progenitors and leukemogenesis. Blood 111, 4771–4779 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lahortiga, I. et al. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nature Genet. 39, 593–595 (2007). With Reference 23, this paper reported MYB duplication in human T-cell leukaemia, and also showed that MYB contributes to the transformed phenotype of these cells.

    Article  CAS  PubMed  Google Scholar 

  120. O'Neil, J. et al. Alu elements mediate MYB gene tandem duplication in human T-ALL. J. Exp. Med. 204, 3059–3066 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Trainer, D. L. et al. Biological characterization and oncogene expression in human colorectal carcinoma cell lines. Int. J. Cancer 41, 287–296 (1988).

    Article  CAS  PubMed  Google Scholar 

  122. Torelli, G. et al. Expression of c-myb protooncogene and other cell cycle-related genes in normal and neoplastic human colonic mucosa. Cancer Res. 47, 5266–5269 (1987). Showed widespread expression of MYB in human colon carcinoma.

    CAS  PubMed  Google Scholar 

  123. Alexander, R. J., Buxbaum, J. N. & Raicht, R. F. Oncogene alterations in rat colon tumors induced by N-methyl-N-nitrosourea. Am. J. Med. Sci. 303, 16–24 (1992).

    Article  CAS  PubMed  Google Scholar 

  124. Winqvist, R., Knuutila, S., Leprince, D., Stehelin, D. & Alitalo, K. Mapping of amplified c-myb oncogene, sister chromatid exchanges, and karyotypic analysis of the COLO 205 colon carcinoma cell line. Cancer Genet. Cytogenet. 18, 251–264 (1985).

    Article  CAS  PubMed  Google Scholar 

  125. Ramsay, R. G., Barton, A. L. & Gonda, T. J. Targeting c-Myb expression in human disease. Expert Opin. Ther. Targets. 7, 235–248 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Biroccio, A. et al. c-Myb and Bcl-x overexpression predicts poor prognosis in colorectal cancer: clinical and experimental findings. Am. J. Pathol. 158, 1289–1299 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ramsay, R. G., Ciznadija, D. & Zupi, G. in Myb Transcription Factors: Their Role in Growth, Differentiation and Disease (ed. Frampton, J.) (Kluwer Academic, Norwell, 2003).

    Google Scholar 

  128. Ramsay, R. G. et al. Colon epithelial cell differentiation is inhibited by constitutive c-Myb expression or mutant APC plus activated RAS. DNA Cell Biol. 24, 21–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Kauraniemi, P. et al. MYB oncogene amplification in hereditary BRCA1 breast cancer. Cancer Res. 60, 5323–5328 (2000).

    CAS  PubMed  Google Scholar 

  130. Guerin, M., Sheng, Z. M., Andrieu, N. & Riou, G. Strong association between c-myb and oestrogen-receptor expression in human breast cancer. Oncogene 5, 131–135 (1990).

    CAS  PubMed  Google Scholar 

  131. Su, A. I. et al. Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res. 61, 7388–7393 (2001).

    CAS  PubMed  Google Scholar 

  132. van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Frasor, J. et al. Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology 144, 4562–4574 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Gonda, T. J., Leo, P. & Ramsay, R. G. Estrogen and MYB in breast cancer: potential for new therapies expert opinion on biological therapy. Expert Opin. Biol. Therapy (in the press).

  135. Williams, B. B. et al. Induction of T cell-mediated immunity using a c-Myb DNA vaccine in a mouse model of colon cancer. Cancer Immunol. Immunother. 3 Apr 2008 (doi: 10.1007/s00262-008-0497-2).

  136. Parker, D. et al. Role of secondary structure in discrimination between constitutive and inducible activators. Mol. Cell. Biol. 19, 5601–5607 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gewirtz, A. M. Oligodeoxynucleotide-based therapeutics for human leukemias. Stem Cells 11, 96–103 (1993).

    Article  PubMed  Google Scholar 

  138. Davis, J. N., McCabe, M. T., Hayward, S. W., Park, J. M. & Day, M. L. Disruption of Rb/E2F pathway results in increased cyclooxygenase-2 expression and activity in prostate epithelial cells. Cancer Res. 65, 3633–3642 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Ramsay, R. G. et al. Cyclooxygenase-2, a colorectal cancer nonsteroidal anti-inflammatory drug target, is regulated by c-MYB. Cancer Res. 60, 1805–1809 (2000).

    CAS  PubMed  Google Scholar 

  140. Park, H. R. et al. Effect on tumor cells of blocking survival response to glucose deprivation. J. Natl Cancer Inst. 96, 1300–1310 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Lee, A. S. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 67, 3496–3499 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Liu, Y. et al. Mechanistic studies of a peptidic GRP78 ligand for cancer cell-specific drug delivery. Mol. Pharm. 4, 435–447 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ramsay, R. G. et al. c-myb Heterozygous mice are hypersensitive to 5-fluorouracil and ionizing radiation. Mol. Cancer Res. 2, 354–361 (2004).

    CAS  PubMed  Google Scholar 

  144. Luchetti, M. M. et al. Characterization of the c-Myb-responsive region and regulation of the human type I collagen alpha 2 chain gene by c-Myb. J. Biol. Chem. 278, 1533–1541 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Kopecki, Z. et al. Collagen loss and impaired wound healing is associated with c-Myb deficiency. J. Pathol. 211, 351–361 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Gonda, T. J., Ramsay, R. G. & Johnson, G. R. Murine myeloid cell lines derived by in vitro infection with recombinant c-myb retroviruses express myb from rearranged vector proviruses. EMBO J. 8, 1767–1775 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Rushton, J. J. et al. Distinct changes in gene expression induced by A-Myb, B-Myb and c-Myb proteins. Oncogene 22, 308–313 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Chen, C.-Z., Li, L., Lodish, H. F. & Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Esquela-Kerscher, A. & Slack, F. J. Oncomirs — microRNAs with a role in cancer. Nature Rev. Cancer 6, 259–269 (2006).

    Article  CAS  Google Scholar 

  150. Xiao, C. et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131, 146–159 (2007). This study specified a miRNA that regulates MYB function in B-cells. It is likely that many more miRNAs will target MYB but this is the first documented evidence.

    Article  CAS  PubMed  Google Scholar 

  151. Ferrao, P., Macmillan, E. M., Ashman, L. K. & Gonda, T. J. Enforced expression of full length c-Myb leads to density-dependent transformation of murine haemopoietic cells. Oncogene 11, 1631–1638 (1995).

    CAS  PubMed  Google Scholar 

  152. Fu, S. L. & Lipsick, J. S. Constitutive expression of full-length c-Myb transforms avian cells characteristic of both the monocytic and granulocytic lineages. Cell Growth Differ. 8, 35–45 (1997).

    CAS  PubMed  Google Scholar 

  153. Lipsick, J. S. & Wang, D. M. Transformation by v-Myb. Oncogene 18, 3047–3055 (1999).

    Article  CAS  PubMed  Google Scholar 

  154. Grasser, F. A., Graf, T. & Lipsick, J. S. Protein truncation is required for the activation of the c-myb proto-oncogene. Mol. Cell. Biol. 11, 3987–3996 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gonda, T. J., Buckmaster, C. & Ramsay, R. G. Activation of c-myb by carboxy-terminal truncation: relationship to transformation of murine haemopoietic cells in vitro. EMBO J. 8, 1777–1783 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kanei-Ishii, C. et al. Transactivation and transformation by Myb are negatively regulated by a leucine-zipper structure. Proc. Natl Acad. Sci. USA 89, 3088–3092 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. O'Rourke, J. P. & Ness, S. A. Alternative RNA splicing produces multiple forms of c-Myb with unique transcriptional activities. Mol. Cell. Biol. 28, 2091–2101 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ramsay, R. G., Ishii, S., Nishina, Y., Soe, G. & Gonda, T. J. Characterization of alternate and truncated forms of murine c-myb proteins. Oncogene Res. 4, 259–269 (1989).

    CAS  PubMed  Google Scholar 

  159. Woo, C. H., Sopchak, L. & Lipsick, J. S. Overexpression of an alternatively spliced form of c-Myb results in increases in transactivation and transforms avian myelomonoblasts. J. Virol. 72, 6813–6821 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Kumar, A., Baker, S. J., Lee, C. M. & Reddy, E. P. Molecular mechanisms associated with the regulation of apoptosis by the two alternatively spliced products of c-Myb. Mol. Cell. Biol. 23, 6631–6645 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bein, K. et al. c-Myb function in fibroblasts. J. Cell Physiol. 173, 319–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  162. Thompson, C. B., Challoner, P. B., Neiman, P. E. & Groudine, M. Expression of the c-myb proto-oncogene during cellular proliferation. Nature 319, 374–380 (1986).

    Article  CAS  PubMed  Google Scholar 

  163. Shilatifard, A. Factors regulating the transcriptional elongation activity of RNA polymerase II. FASEB J. 12, 1437–1446 (1998).

    Article  CAS  PubMed  Google Scholar 

  164. Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Saunders, A., Core, L. J. & Lis, J. T. Breaking barriers to transcription elongation. Nature Rev. Mol. Cell Biol. 7, 557–567 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by research grants to R.G.R. and T.G. from the National Health and Medical Research Council of Australia, the Cancer Council of Victoria and the Queensland Cancer Fund. R.G.R. is also a National Research Fellow of the NHMRC. We wish to thank members of our respective laboratories for their ongoing commitment to hard work and dedication to unravelling the mysteries of MYB in cancer. Finally, sincere thanks to the members of the MYB research community with whom we have travelled in our growing understanding of what was once 'only a retroviral oncogene' in chickens but is now a key player in both normal and cancer biology in humans.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Ramsay.

Supplementary information

Related links

Related links

DATABASES

National Cancer Institute

breast cancer

colorectal cancer

leukaemia

melanoma

oesophageal cancer

pancreatic cancer

FURTHER INFORMATION

Oncomine

Stanford Microarray Database

Glossary

Hypomorphic mutants

Mostly partial loss of function mutants. These mutations are extraordinarily valuable as they allow sufficient gene function to generate viable animals but are defective enough to produce a phenotype.

Haematopoiesis

Responsible for generating all the cell lineages of the blood system. In adult mammals it has two principal arms that build the myeloid and lymphoid compartments. The former is responsible for macrophages, platelets, red blood cells, neutrophils, eosinophils and basophils. B- and T-cell production falls into the domain of the lymphoid compartment.

Transcriptional elongation

An essential component of gene transcription that involves the extended polymerization of ribonucleotides as a gene is transcribed. This occurs after transcription initiation and seems to be subject to regulation both at short distances from the transcription initiation sites and during elongation itself.

Mismatch repair

A process that identifies nucleotide changes that differ from the parental DNA strand, and which restores the daughter sequence to the wild-type or parental sequence. Regions that contain stretches of mono- or dinucleotide repeats are particularly prone to mutation if cells are defective in a group of proteins that collectively govern the mismatch repair process.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramsay, R., Gonda, T. MYB function in normal and cancer cells. Nat Rev Cancer 8, 523–534 (2008). https://doi.org/10.1038/nrc2439

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2439

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing