Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Reflecting on 25 years with MYC

Abstract

Just over 25 years ago, MYC, the human homologue of a retroviral oncogene, was identified. Since that time, MYC research has been intense and the advances impressive. On reflection, it is astonishing how each incremental insight into MYC regulation and function has also had an impact on numerous biological disciplines, including our understanding of molecular oncogenesis in general. Here we chronicle the major advances in our understanding of MYC biology, and peer into the future of MYC research.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The MYC tree of knowledge.
Figure 2: MYC deregulation.

References

  1. Malumbres, M. & Barbacid, M. RAS oncogenes: the first 30 years. Nature Rev. Cancer 3, 459–465 (2003).

    Article  CAS  Google Scholar 

  2. Neel, B. G., Hayward, W. S., Robinson, H. L., Fang, J. & Astrin, S. M. Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNAs: oncogenesis by promoter insertion. Cell 23, 323–334 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Payne, G. S. et al. Analysis of avian leukosis virus DNA and RNA in bursal tumours: viral gene expression is not required for maintenance of the tumor state. Cell 23, 311–322 (1981).

    Article  CAS  PubMed  Google Scholar 

  4. Hayward, W. S., Neel, B. G. & Astrin, S. M. Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290, 475–480 (1981).

    Article  CAS  PubMed  Google Scholar 

  5. Payne, G. S., Bishop, J. M. & Varmus, H. E. Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas. Nature 295, 209–214 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Steffen, D. Proviruses are adjacent to c-myc in some murine leukemia virus-induced lymphomas. Proc. Natl Acad. Sci. USA 81, 2097–2101 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peters, G. Oncogenes at viral integration sites. Cell Growth Differ. 1, 503–510 (1990).

    CAS  PubMed  Google Scholar 

  8. Shen-Ong, G. L., Keath, E. J., Piccoli, S. P. & Cole, M. D. Novel myc oncogene RNA from abortive immunoglobulin-gene recombination in mouse plasmacytomas. Cell 31, 443–452 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. Crews, S., Barth, R., Hood, L., Prehn, J. & Calame, K. Mouse c-myc oncogene is located on chromosome 15 and translocated to chromosome 12 in plasmacytomas. Science 218, 1319–1321 (1982).

    Article  CAS  PubMed  Google Scholar 

  10. Dalla-Favera, R. et al. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc. Natl Acad. Sci. USA 79, 7824–7827 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Neel, B. G., Jhanwar, S. C., Chaganti, R. S. & Hayward, W. S. Two human c-onc genes are located on the long arm of chromosome 8. Proc. Natl Acad. Sci. USA 79, 7842–7846 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Taub, R. et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc. Natl Acad. Sci. USA 79, 7837–7841 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Klein, A. et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300, 765–767 (1982).

    Article  CAS  PubMed  Google Scholar 

  14. Adams, J. M. et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318, 533–538 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Boxer, L. M. & Dang, C. V. Translocations involving c-myc and c-myc function. Oncogene 20, 5595–5610 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Alitalo, K., Schwab, M., Lin, C. C., Varmus, H. E. & Bishop, J. M. Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc. Natl Acad. Sci. USA 80, 1707–1711 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dalla-Favera, R., Wong-Staal, F. & Gallo, R. C. Onc gene amplification in promyelocytic leukaemia cell line HL-60 and primary leukaemic cells of the same patient. Nature 299, 61–63 (1982).

    Article  CAS  PubMed  Google Scholar 

  18. Collins, S. & Groudine, M. Amplification of endogenous myc-related DNA sequences in a human myeloid leukaemia cell line. Nature 298, 679–681 (1982).

    Article  CAS  PubMed  Google Scholar 

  19. Schwab, M. et al. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305, 245–248 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. Kohl, N. E. et al. Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell 35, 359–367 (1983).

    Article  CAS  PubMed  Google Scholar 

  21. Schwab, M. et al. Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma. Proc. Natl Acad. Sci. USA 81, 4940–4944 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H. E. & Bishop, J. M. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224, 1121–1124 (1984).

    Article  CAS  PubMed  Google Scholar 

  23. Zimmerman, K. & Alt, F. W. Expression and function of myc family genes. Crit. Rev. Oncog. 2, 75–95 (1990).

    CAS  PubMed  Google Scholar 

  24. Nau, M. M. et al. L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature 318, 69–73 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Zajac-Kaye, M. Myc oncogene: a key component in cell cycle regulation and its implication for lung cancer. Lung Cancer 34 (Suppl. 2), S43–S46 (2001).

    Article  PubMed  Google Scholar 

  26. Wu, R. et al. Amplification and overexpression of the L-MYC proto-oncogene in ovarian carcinomas. Am. J. Pathol. 162, 1603–1610 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abrams, H. D., Rohrschneider, L. R. & Eisenman, R. N. Nuclear location of the putative transforming protein of avian myelocytomatosis virus. Cell 29, 427–439 (1982).

    Article  CAS  PubMed  Google Scholar 

  28. Donner, P., Greiser-Wilke, I. & Moelling, K. Nuclear localization and DNA binding of the transforming gene product of avian myelocytomatosis virus. Nature 296, 262–269 (1982).

    Article  CAS  PubMed  Google Scholar 

  29. Hann, S. R., Abrams, H. D., Rohrschneider, L. R. & Eisenman, R. N. Proteins encoded by v-myc and c-myc oncogenes: identification and localization in acute leukemia virus transformants and bursal lymphoma cell lines. Cell 34, 789–798 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. Kelly, K., Cochran, B. H., Stiles, C. D. & Leder, P. Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35, 603–610 (1983).

    Article  CAS  PubMed  Google Scholar 

  31. Dani, C. et al. Extreme instability of myc mRNA in normal and transformed human cells. Proc. Natl Acad. Sci. USA 81, 7046–7050 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hann, S. R. & Eisenman, R. N. Proteins encoded by the human c-myc oncogene: differential expression in neoplastic cells. Mol. Cell. Biol. 4, 2486–2497 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hann, S. R., Thompson, C. B. & Eisenman, R. N. c-myc oncogene protein synthesis is independent of the cell cycle in human and avian cells. Nature 314, 366–369 (1985).

    Article  CAS  PubMed  Google Scholar 

  34. Thompson, C. B., Challoner, P. B., Neiman, P. E. & Groudine, M. Levels of c-myc oncogene mRNA are invariant throughout the cell cycle. Nature 314, 363–366 (1985).

    Article  CAS  PubMed  Google Scholar 

  35. Lachman, H. M. & Skoultchi, A. I. Expression of c-myc changes during differentiation of mouse erythroleukaemia cells. Nature 310, 592–594 (1984).

    Article  CAS  PubMed  Google Scholar 

  36. Gonda, T. J. & Metcalf, D. Expression of myb, myc and fos proto-oncogenes during the differentiation of a murine myeloid leukaemia. Nature 310, 249–251 (1984).

    Article  CAS  PubMed  Google Scholar 

  37. Campisi, J., Gray, H. E., Pardee, A. B., Dean, M. & Sonenshein, G. E. Cell-cycle control of c-myc but not c-ras expression is lost following chemical transformation. Cell 36, 241–247 (1984).

    Article  CAS  PubMed  Google Scholar 

  38. Dean, M. et al. Regulation of c-myc transcription and mRNA abundance by serum growth factors and cell contact. J. Biol. Chem. 261, 9161–9166 (1986).

    CAS  PubMed  Google Scholar 

  39. Marcu, K. B., Bossone, S. A. & Patel, A. J. myc function and regulation. Annu. Rev. Biochem. 61, 809–860 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Spencer, C. A. & Groudine, M. Control of c-myc regulation in normal and neoplastic cells. Adv. Cancer Res. 56, 1–48 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Battey, J. et al. The human c-myc oncogene: structural consequences of translocation into the IgH locus in Burkitt lymphoma. Cell 34, 779–787 (1983).

    Article  CAS  PubMed  Google Scholar 

  42. Watt, R. et al. The structure and nucleotide sequence of the 5′ end of the human c-myc oncogene. Proc. Natl Acad. Sci. USA 80, 6307–6311 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bentley, D. L. & Groudine, M. A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells. Nature 321, 702–706 (1986).

    Article  CAS  PubMed  Google Scholar 

  44. Nepveu, A. & Marcu, K. B. Intragenic pausing and anti-sense transcription within the murine c-myc locus. EMBO J. 5, 2859–2865 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nepveu, A., Marcu, K. B., Skoultchi, A. I. & Lachman, H. M. Contributions of transcriptional and post-transcriptional mechanisms to the regulation of c-myc expression in mouse erythroleukemia cells. Genes Dev. 1, 938–945 (1987).

    Article  CAS  PubMed  Google Scholar 

  46. Siebenlist, U., Hennighausen, L., Battey, J. & Leder, P. Chromatin structure and protein binding in the putative regulatory region of the c-myc gene in Burkitt lymphoma. Cell 37, 381–391 (1984).

    Article  CAS  PubMed  Google Scholar 

  47. Dyson, P. J., Littlewood, T. D., Forster, A. & Rabbitts, T. H. Chromatin structure of transcriptionally active and inactive human c-myc alleles. EMBO J. 4, 2885–2891 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chung, H. J. & Levens, D. c-myc expression: keep the noise down! Mol. Cells 20, 157–166 (2005).

    CAS  PubMed  Google Scholar 

  49. Levens, D. How the c-myc promoter works and why it sometimes does not. J. Natl Cancer Inst. Monogr., 41–43 (2008).

  50. Bentley, D. L. & Groudine, M. Sequence requirements for premature termination of transcription in the human c-myc gene. Cell 53, 245–256 (1988).

    Article  CAS  PubMed  Google Scholar 

  51. Eick, D. & Bornkamm, G. W. Transcriptional arrest within the first exon is a fast control mechanism in c-myc gene expression. Nucleic Acids Res. 14, 8331–8346 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wierstra, I. & Alves, J. The c-myc promoter: still MysterY and Challenge. Adv. Cancer Res. 99, 113–333 (2008).

    Article  PubMed  CAS  Google Scholar 

  53. Cheng, A. S. et al. Combinatorial analysis of transcription factor partners reveals recruitment of c-MYC to estrogen receptor-α responsive promoters. Mol. Cell 21, 393–404 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Afar, D. E., Goga, A., McLaughlin, J., Witte, O. N. & Sawyers, C. L. Differential complementation of BcrAbl point mutants with c-Myc. Science 264, 424–426 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Oster, S. K., Ho, C. S., Soucie, E. L. & Penn, L. Z. The myc oncogene: MarvelouslY Complex. Adv. Cancer Res. 84, 81–154 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Roussel, M. F., Cleveland, J. L., Shurtleff, S. A. & Sherr, C. J. Myc rescue of a mutant CSF-1 receptor impaired in mitogenic signalling. Nature 353, 361–363 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Barone, M. V. & Courtneidge, S. A. Myc but not Fos rescue of PDGF signalling block caused by kinase-inactive Src. Nature 378, 509–512 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Weng, A. P. et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20, 2096–2109 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kouzine, F. & Levens, D. Supercoil-driven DNA structures regulate genetic transactions. Front. Biosci. 12, 4409–4423 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Blanchard, J. M. et al. c-myc gene is transcribed at high rate in G0-arrested fibroblasts and is post-transcriptionally regulated in response to growth factors. Nature 317, 443–445 (1985).

    Article  CAS  PubMed  Google Scholar 

  62. Ross, J. mRNA stability in mammalian cells. Microbiol. Rev. 59, 423–450 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Jones, T. R. & Cole, M. D. Rapid cytoplasmic turnover of c-myc mRNA: requirement of the 3′ untranslated sequences. Mol. Cell. Biol. 7, 4513–4521 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brewer, G. & Ross, J. Poly(A) shortening and degradation of the 3′ A+U-rich sequences of human c-myc mRNA in a cell-free system. Mol. Cell. Biol. 8, 1697–1708 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bernstein, P. L., Herrick, D. J., Prokipcak, R. D. & Ross, J. Control of c-myc mRNA half-life in vitro by a protein capable of binding to a coding region stability determinant. Genes Dev. 6, 642–654 (1992).

    Article  CAS  PubMed  Google Scholar 

  66. Leder, A., Pattengale, P. K., Kuo, A., Stewart, T. A. & Leder, P. Consequences of widespread deregulation of the c-myc gene in transgenic mice: multiple neoplasms and normal development. Cell 45, 485–495 (1986).

    Article  CAS  PubMed  Google Scholar 

  67. Cole, M. D. The myc oncogene: its role in transformation and differentiation. Annu. Rev. Genet. 20, 361–384 (1986).

    Article  CAS  PubMed  Google Scholar 

  68. Littlewood, T. D. & Evan, G. I. The role of myc oncogenes in cell growth and differentiation. Adv. Dent. Res. 4, 69–79 (1990).

    Article  CAS  PubMed  Google Scholar 

  69. Hann, S. R., King, M. W., Bentley, D. L., Anderson, C. W. & Eisenman, R. N. A non-AUG translational initiation in c-myc exon 1 generates an N-terminally distinct protein whose synthesis is disrupted in Burkitt's lymphomas. Cell 52, 185–195 (1988).

    Article  CAS  PubMed  Google Scholar 

  70. Facchini, L. M. & Penn, L. Z. The molecular role of Myc in growth and transformation: recent discoveries lead to new insights. FASEB J. 12, 633–651 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Hann, S. R. Role of post-translational modifications in regulating c-Myc proteolysis, transcriptional activity and biological function. Semin. Cancer Biol. 16, 288–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Vervoorts, J., Luscher-Firzlaff, J. & Luscher, B. The ins and outs of MYC regulation by posttranslational mechanisms. J. Biol. Chem. 281, 34725–34729 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Welcker, M. & Clurman, B. E. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nature Rev. Cancer 8, 83–93 (2008).

    Article  CAS  Google Scholar 

  74. Sears, R. C. The life cycle of C-myc: from synthesis to degradation. Cell Cycle 3, 1133–1137 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Arnold, H. K. & Sears, R. C. A tumor suppressor role for PP2A-B56α through negative regulation of c-Myc and other key oncoproteins. Cancer Metastasis Rev. 27, 147–158 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Spotts, G. D., Patel, S. V., Xiao, Q. & Hann, S. R. Identification of downstream-initiated c-Myc proteins which are dominant-negative inhibitors of transactivation by full-length c-Myc proteins. Mol. Cell. Biol. 17, 1459–1468 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cobbold, L. C. et al. Identification of internal ribosome entry segment (IRES)-trans-acting factors for the Myc family of IRESs. Mol. Cell. Biol. 28, 40–49 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

    Article  CAS  PubMed  Google Scholar 

  79. Ruley, H. E. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304, 602–606 (1983).

    Article  CAS  PubMed  Google Scholar 

  80. Vaux, D. L., Cory, S. & Adams, J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988).

    Article  CAS  PubMed  Google Scholar 

  81. Strasser, A., Harris, A. W., Bath, M. L. & Cory, S. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348, 331–333 (1990).

    Article  CAS  PubMed  Google Scholar 

  82. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Armelin, H. A. et al. Functional role for c-myc in mitogenic response to platelet-derived growth factor. Nature 310, 655–660 (1984).

    Article  CAS  PubMed  Google Scholar 

  85. Gusse, M., Ghysdael, J., Evan, G., Soussi, T. & Mechali, M. Translocation of a store of maternal cytoplasmic c-myc protein into nuclei during early development. Mol. Cell. Biol. 9, 5395–5403 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gutierrez, C. et al. Is c-myc protein directly involved in DNA replication? Science 240, 1202–1203 (1988).

    Article  CAS  PubMed  Google Scholar 

  87. Pierce, S. B. et al. dMyc is required for larval growth and endoreplication in Drosophila. Development 131, 2317–2327 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Maines, J. Z., Stevens, L. M., Tong, X. & Stein, D. Drosophila dMyc is required for ovary cell growth and endoreplication. Development 131, 775–786 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Dominguez-Sola, D. et al. Non-transcriptional control of DNA replication by c-Myc. Nature 448, 445–451 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Luscher, B. & Eisenman, R. N. New light on Myc and Myb. Part I. Myc. Genes Dev. 4, 2025–2035 (1990).

    Article  CAS  PubMed  Google Scholar 

  91. Kingston, R. E., Baldwin, A. S. Jr & Sharp, P. A. Regulation of heat shock protein 70 gene expression by c-myc. Nature 312, 280–282 (1984).

    Article  CAS  PubMed  Google Scholar 

  92. Landschulz, W. H., Johnson, P. F. & McKnight, S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759–1764 (1988).

    Article  CAS  PubMed  Google Scholar 

  93. Murre, C., McCaw, P. S. & Baltimore, D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56, 777–783 (1989).

    Article  CAS  PubMed  Google Scholar 

  94. Dang, C. V., McGuire, M., Buckmire, M. & Lee, W. M. Involvement of the 'leucine zipper' region in the oligomerization and transforming activity of human c-myc protein. Nature 337, 664–666 (1989).

    Article  CAS  PubMed  Google Scholar 

  95. Stone, J. et al. Definition of regions in human c-myc that are involved in transformation and nuclear localization. Mol. Cell. Biol. 7, 1697–1709 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kato, G. J., Barrett, J., Villa-Garcia, M. & Dang, C. V. An amino-terminal c-myc domain required for neoplastic transformation activates transcription. Mol. Cell. Biol. 10, 5914–5920 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Blackwell, T. K., Kretzner, L., Blackwood, E. M., Eisenman, R. N. & Weintraub, H. Sequence-specific DNA binding by the c-Myc protein. Science 250, 1149–1151 (1990).

    Article  CAS  PubMed  Google Scholar 

  98. Prendergast, G. C. & Ziff, E. B. Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science 251, 186–189 (1991).

    Article  CAS  PubMed  Google Scholar 

  99. Blackwood, E. M. & Eisenman, R. N. Max: a helix–loop–helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211–1217 (1991).

    Article  CAS  PubMed  Google Scholar 

  100. Amati, B. et al. Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 72, 233–245 (1993).

    Article  CAS  PubMed  Google Scholar 

  101. Ayer, D. E., Kretzner, L. & Eisenman, R. N. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72, 211–222 (1993).

    Article  CAS  PubMed  Google Scholar 

  102. Rottmann, S. & Luscher, B. The Mad side of the Max network: antagonizing the function of Myc and more. Curr. Top. Microbiol. Immunol. 302, 63–122 (2006).

    CAS  PubMed  Google Scholar 

  103. Nair, S. K. & Burley, S. K. Structural aspects of interactions within the Myc/Max/Mad network. Curr. Top. Microbiol. Immunol. 302, 123–143 (2006).

    CAS  PubMed  Google Scholar 

  104. Billin, A. N. & Ayer, D. E. The Mlx network: evidence for a parallel Max-like transcriptional network that regulates energy metabolism. Curr. Top. Microbiol. Immunol. 302, 255–278 (2006).

    CAS  PubMed  Google Scholar 

  105. Wahlstrom, T. & Henriksson, M. Mnt takes control as key regulator of the myc/max/mxd network. Adv. Cancer Res. 97, 61–80 (2007).

    Article  PubMed  CAS  Google Scholar 

  106. McMahon, S. B., Van Buskirk, H. A., Dugan, K. A., Copeland, T. D. & Cole, M. D. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94, 363–374 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. McMahon, S. B., Wood, M. A. & Cole, M. D. The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol. Cell. Biol. 20, 556–562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cheng, S. W. et al. c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function. Nature Genet. 22, 102–105 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Knoepfler, P. S. et al. Myc influences global chromatin structure. EMBO J. 25, 2723–2734 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Eberhardy, S. R. & Farnham, P. J. c-Myc mediates activation of the cad promoter via a post-RNA polymerase II recruitment mechanism. J. Biol. Chem. 276, 48562–48571 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Eberhardy, S. R. & Farnham, P. J. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J. Biol. Chem. 277, 40156–40162 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Cowling, V. H. & Cole, M. D. The Myc transactivation domain promotes global phosphorylation of the RNA polymerase II carboxy-terminal domain independently of direct DNA binding. Mol. Cell. Biol. 27, 2059–2073 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cowling, V. H. & Cole, M. D. Mechanism of transcriptional activation by the Myc oncoproteins. Semin. Cancer Biol. 16, 242–252 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Amati, B., Frank, S. R., Donjerkovic, D. & Taubert, S. Function of the c-Myc oncoprotein in chromatin remodeling and transcription. Biochim. Biophys. Acta 1471, M135–M145 (2001).

    CAS  PubMed  Google Scholar 

  115. Adhikary, S. & Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nature Rev. Mol. Cell. Biol. 6, 635–645 (2005).

    Article  CAS  Google Scholar 

  116. Cleveland, J. L. et al. Negative regulation of c-myc transcription involves myc family proteins. Oncogene Res. 3, 357–375 (1988).

    CAS  PubMed  Google Scholar 

  117. Penn, L. J., Brooks, M. W., Laufer, E. M. & Land, H. Negative autoregulation of c-myc transcription. EMBO J. 9, 1113–1121 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Penn, L. J. et al. Domains of human c-myc protein required for autosuppression and cooperation with ras oncogenes are overlapping. Mol. Cell. Biol. 10, 4961–4966 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Grignani, F. et al. Negative autoregulation of c-myc gene expression is inactivated in transformed cells. EMBO J. 9, 3913–3922 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Xiao, Q. et al. Transactivation-defective c-MycS retains the ability to regulate proliferation and apoptosis. Genes Dev. 12, 3803–3808 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lee, L. A., Dolde, C., Barrett, J., Wu, C. S. & Dang, C. V. A link between c-Myc-mediated transcriptional repression and neoplastic transformation. J. Clin. Invest. 97, 1687–1695 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Li, L. H., Nerlov, C., Prendergast, G., MacGregor, D. & Ziff, E. B. c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J. 13, 4070–4079 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mao, D. Y. et al. Analysis of Myc bound loci identified by CpG island arrays shows that Max is essential for Myc-dependent repression. Curr. Biol. 13, 882–886 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Kleine-Kohlbrecher, D., Adhikary, S. & Eilers, M. Mechanisms of transcriptional repression by Myc. Curr. Top. Microbiol. Immunol. 302, 51–62 (2006).

    CAS  PubMed  Google Scholar 

  125. Adhikary, S. et al. The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 123, 409–421 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Mao, D. Y. et al. Promoter-binding and repression of PDGFRB by c-Myc are separable activities. Nucleic Acids Res. 32, 3462–3468 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Eilers, M., Picard, D., Yamamoto, K. R. & Bishop, J. M. Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature 340, 66–68 (1989).

    Article  CAS  PubMed  Google Scholar 

  128. Eilers, M., Schirm, S. & Bishop, J. M. The MYC protein activates transcription of the alpha-prothymosin gene. EMBO J. 10, 133–141 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wagner, A. J., Meyers, C., Laimins, L. A. & Hay, N. c-Myc induces the expression and activity of ornithine decarboxylase. Cell Growth Differ. 4, 879–883 (1993).

    CAS  PubMed  Google Scholar 

  130. Bello-Fernandez, C., Packham, G. & Cleveland, J. L. The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc. Natl Acad. Sci. USA 90, 7804–7808 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Littlewood, T. D., Hancock, D. C., Danielian, P. S., Parker, M. G. & Evan, G. I. A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23, 1686–1690 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Picard, D. Posttranslational regulation of proteins by fusions to steroid-binding domains. Methods Enzymol. 327, 385–401 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Mateyak, M. K., Obaya, A. J., Adachi, S. & Sedivy, J. M. Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ. 8, 1039–1048 (1997).

    CAS  PubMed  Google Scholar 

  134. Bush, A. et al. c-myc null cells misregulate cad and gadd45 but not other proposed c-Myc targets. Genes Dev. 12, 3797–3802 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Marhin, W. W., Chen, S., Facchini, L. M., Fornace, A. J. Jr & Penn, L. Z. Myc represses the growth arrest gene gadd45. Oncogene 14, 2825–2834 (1997).

    Article  CAS  PubMed  Google Scholar 

  136. Miltenberger, R. J., Sukow, K. A. & Farnham, P. J. An E-box-mediated increase in cad transcription at the G1/S-phase boundary is suppressed by inhibitory c-Myc mutants. Mol. Cell. Biol. 15, 2527–2535 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Watson, J. D., Oster, S. K., Shago, M., Khosravi, F. & Penn, L. Z. Identifying genes regulated in a Myc-dependent manner. J. Biol. Chem. 277, 36921–36930 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Dang, C. V. et al. The c-Myc target gene network. Semin. Cancer Biol. 16, 253–264 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Zeller, K. I., Jegga, A. G., Aronow, B. J., O'Donnell, K. A. & Dang, C. V. An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol. 4, R69 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Barsyte-Lovejoy, D. et al. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res. 66, 5330–5337 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Guccione, E. et al. Myc-binding-site recognition in the human genome is determined by chromatin context. Nature Cell Biol. 8, 764–770 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Zeller, K. I. et al. Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc. Natl Acad. Sci. USA 103, 17834–17839 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Patel, J. H., Loboda, A. P., Showe, M. K., Showe, L. C. & McMahon, S. B. Analysis of genomic targets reveals complex functions of MYC. Nature Rev. Cancer 4, 562–568 (2004).

    Article  CAS  Google Scholar 

  144. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Levens, D. L. Reconstructing MYC. Genes Dev. 17, 1071–1077 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Arabi, A. et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nature Cell Biol. 7, 303–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Grandori, C. et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nature Cell Biol. 7, 311–318 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Gomez-Roman, N., Grandori, C., Eisenman, R. N. & White, R. J. Direct activation of RNA polymerase III transcription by c-Myc. Nature 421, 290–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Grewal, S. S., Li, L., Orian, A., Eisenman, R. N. & Edgar, B. A. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nature Cell Biol. 7, 295–302 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Dang, C. V., Kim, J. W., Gao, P. & Yustein, J. The interplay between MYC and HIF in cancer. Nature Rev. Cancer 8, 51–56 (2008).

    Article  CAS  Google Scholar 

  151. O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. He, L. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lee, L. A. & Dang, C. V. Myc target transcriptomes. Curr. Top. Microbiol. Immunol. 302, 145–167 (2006).

    CAS  PubMed  Google Scholar 

  154. de la Cova, C. & Johnston, L. A. Myc in model organisms: a view from the flyroom. Semin. Cancer Biol. 16, 303–312 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. de Alboran, I. M. et al. Analysis of C-MYC function in normal cells via conditional gene-targeted mutation. Immunity 14, 45–55 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Trumpp, A. et al. c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 414, 768–773 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Obaya, A. J., Mateyak, M. K. & Sedivy, J. M. Mysterious liaisons: the relationship between c-Myc and the cell cycle. Oncogene 18, 2934–2941 (1999).

    Article  CAS  PubMed  Google Scholar 

  158. Langdon, W. Y., Harris, A. W., Cory, S. & Adams, J. M. The c-myc oncogene perturbs B lymphocyte development in Eμ-myc transgenic mice. Cell 47, 11–18 (1986).

    Article  CAS  PubMed  Google Scholar 

  159. Coppola, J. A. & Cole, M. D. Constitutive c-myc oncogene expression blocks mouse erythroleukaemia cell differentiation but not commitment. Nature 320, 760–763 (1986).

    Article  CAS  PubMed  Google Scholar 

  160. Gandarillas, A. & Watt, F. M. c-Myc promotes differentiation of human epidermal stem cells. Genes Dev. 11, 2869–2882 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Prochownik, E. V. & Kukowska, J. Deregulated expression of c-myc by murine erythroleukaemia cells prevents differentiation. Nature 322, 848–850 (1986).

    Article  CAS  PubMed  Google Scholar 

  162. Dmitrovsky, E. et al. Expression of a transfected human c-myc oncogene inhibits differentiation of a mouse erythroleukaemia cell line. Nature 322, 748–750 (1986).

    Article  CAS  PubMed  Google Scholar 

  163. Pirity, M., Blanck, J. K. & Schreiber-Agus, N. Lessons learned from Myc/Max/Mad knockout mice. Curr. Top. Microbiol. Immunol. 302, 205–234 (2006).

    CAS  PubMed  Google Scholar 

  164. Hurlin, P. J. & Huang, J. The MAX-interacting transcription factor network. Semin. Cancer Biol. 16, 265–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Grandori, C., Cowley, S. M., James, L. P. & Eisenman, R. N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol. 16, 653–699 (2000).

    Article  CAS  PubMed  Google Scholar 

  166. Luscher, B. & Larsson, L. G. The basic region/helix-loop-helix/leucine zipper domain of Myc proto-oncoproteins: function and regulation. Oncogene 18, 2955–2966 (1999).

    Article  CAS  PubMed  Google Scholar 

  167. Baudino, T. A. & Cleveland, J. L. The Max network gone mad. Mol. Cell. Biol. 21, 691–702 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wilson, A. et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 18, 2747–2763 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Baudino, T. A. et al. c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev. 16, 2530–2543 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Bellmeyer, A., Krase, J., Lindgren, J. & LaBonne, C. The protooncogene c-myc is an essential regulator of neural crest formation in xenopus. Dev. Cell 4, 827–839 (2003).

    Article  CAS  PubMed  Google Scholar 

  171. Knoepfler, P. S., Cheng, P. F. & Eisenman, R. N. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev. 16, 2699–2712 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Schuhmacher, M. et al. Control of cell growth by c-Myc in the absence of cell division. Curr. Biol. 9, 1255–1258 (1999).

    Article  CAS  PubMed  Google Scholar 

  173. Iritani, B. M. & Eisenman, R. N. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc. Natl Acad. Sci. USA 96, 13180–13185 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol. 19, 1–11 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Schmidt, E. V. The role of c-myc in regulation of translation initiation. Oncogene 23, 3217–3221 (2004).

    Article  CAS  PubMed  Google Scholar 

  176. Mai, S., Fluri, M., Siwarski, D. & Huppi, K. Genomic instability in MycER-activated Rat1A-MycER cells. Chromosome Res. 4, 365–371 (1996).

    Article  CAS  PubMed  Google Scholar 

  177. Mai, S., Hanley-Hyde, J. & Fluri, M. c-Myc overexpression associated DHFR gene amplification in hamster, rat, mouse and human cell lines. Oncogene 12, 277–288 (1996).

    CAS  PubMed  Google Scholar 

  178. Li, Q. & Dang, C. V. c-Myc overexpression uncouples DNA replication from mitosis. Mol. Cell. Biol. 19, 5339–5351 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Felsher, D. W. & Bishop, J. M. Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc. Natl Acad. Sci. USA 96, 3940–3944 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Yin, X. Y., Grove, L., Datta, N. S., Long, M. W. & Prochownik, E. V. C-myc overexpression and p53 loss cooperate to promote genomic instability. Oncogene 18, 1177–1184 (1999).

    Article  CAS  PubMed  Google Scholar 

  181. Prochownik, E. V. & Li, Y. The ever expanding role for c-Myc in promoting genomic instability. Cell Cycle 6, 1024–1029 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. Soucek, L. & Evan, G. Myc — Is this the oncogene from Hell? Cancer Cell 1, 406–408 (2002).

    Article  CAS  PubMed  Google Scholar 

  183. Wade, M. & Wahl, G. M. c-Myc, genome instability, and tumorigenesis: the devil is in the details. Curr. Top. Microbiol. Immunol. 302, 169–203 (2006).

    CAS  PubMed  Google Scholar 

  184. Dang, C. V., Li, F. & Lee, L. A. Could MYC induction of mitochondrial biogenesis be linked to ROS production and genomic instability? Cell Cycle 4, 1465–1466 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. Louis, S. F. et al. c-Myc induces chromosomal rearrangements through telomere and chromosome remodeling in the interphase nucleus. Proc. Natl Acad. Sci. USA 102, 9613–9618 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Qi, Y. et al. p19ARF directly and differentially controls the functions of c-Myc independently of p53. Nature 431, 712–717 (2004).

    Article  CAS  PubMed  Google Scholar 

  187. Prochownik, E. V. Functional and physical communication between oncoproteins and tumor suppressors. Cell. Mol. Life Sci. 62, 2438–2459 (2005).

    Article  CAS  PubMed  Google Scholar 

  188. Gorrini, C. et al. Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448, 1063–1067 (2007).

    Article  CAS  PubMed  Google Scholar 

  189. Adachi, S. et al. c-Myc is necessary for DNA damage-induced apoptosis in the G2 phase of the cell cycle. Mol. Cell. Biol. 21, 4929–4937 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Reimann, M. et al. The Myc-evoked DNA damage response accounts for treatment resistance in primary lymphomas in vivo. Blood 110, 2996–3004 (2007).

    Article  CAS  PubMed  Google Scholar 

  191. Ngo, C. V. et al. An in vivo function for the transforming Myc protein: elicitation of the angiogenic phenotype. Cell Growth Differ. 11, 201–210 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Dews, M. et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genet. 38, 1060–1065 (2006).

    Article  CAS  PubMed  Google Scholar 

  193. Watnick, R. S., Cheng, Y. N., Rangarajan, A., Ince, T. A. & Weinberg, R. A. Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 3, 219–231 (2003).

    Article  CAS  PubMed  Google Scholar 

  194. Pelengaris, S., Khan, M. & Evan, G. I. Suppression of Myc-induced apoptosis in β cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 109, 321–334 (2002).

    Article  CAS  PubMed  Google Scholar 

  195. Pelengaris, S., Littlewood, T., Khan, M., Elia, G. & Evan, G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol. Cell 3, 565–577 (1999).

    Article  CAS  PubMed  Google Scholar 

  196. Pelengaris, S., Khan, M. & Evan, G. c-MYC: more than just a matter of life and death. Nature Rev. Cancer 2, 764–776 (2002).

    Article  CAS  Google Scholar 

  197. Soucek, L. et al. Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nature Med. 13, 1211–1218 (2007).

    Article  CAS  PubMed  Google Scholar 

  198. Shi, Y. et al. Role for c-myc in activation-induced apoptotic cell death in T cell hybridomas. Science 257, 212–214 (1992).

    Article  CAS  PubMed  Google Scholar 

  199. Evan, G. I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128 (1992).

    Article  CAS  PubMed  Google Scholar 

  200. Askew, D. S., Ashmun, R. A., Simmons, B. C. & Cleveland, J. L. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 6, 1915–1922 (1991).

    CAS  PubMed  Google Scholar 

  201. Harrington, E. A., Bennett, M. R., Fanidi, A. & Evan, G. I. c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J. 13, 3286–3295 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Meyer, N., Kim, S. S. & Penn, L. Z. The Oscar-worthy role of Myc in apoptosis. Semin. Cancer Biol. 16, 275–287 (2006).

    Article  CAS  PubMed  Google Scholar 

  203. Fanidi, A., Harrington, E. A. & Evan, G. I. Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 359, 554–556 (1992).

    Article  CAS  PubMed  Google Scholar 

  204. Bissonnette, R. P., Echeverri, F., Mahboubi, A. & Green, D. R. Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 359, 552–554 (1992).

    Article  CAS  PubMed  Google Scholar 

  205. Soucie, E. L. et al. Myc potentiates apoptosis by stimulating Bax activity at the mitochondria. Mol. Cell. Biol. 21, 4725–4736 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. de Alboran, I. M., Baena, E. & Martinez, A. C. c-Myc-deficient B lymphocytes are resistant to spontaneous and induced cell death. Cell Death Differ. 11, 61–68 (2004).

    Article  PubMed  CAS  Google Scholar 

  207. Dang, C. V., O'Donnell, K., A. & Juopperi, T. The great MYC escape in tumorigenesis. Cancer Cell 8, 177–178 (2005).

    Article  CAS  PubMed  Google Scholar 

  208. Nieminen, A. I., Partanen, J. I. & Klefstrom, J. c-Myc blazing a trail of death: coupling of the mitochondrial and death receptor apoptosis pathways by c-Myc. Cell Cycle 6, 2464–2472 (2007).

    Article  CAS  PubMed  Google Scholar 

  209. Hermeking, H. & Eick, D. Mediation of c-Myc-induced apoptosis by p53. Science 265, 2091–2093 (1994).

    Article  CAS  PubMed  Google Scholar 

  210. Wagner, A. J., Kokontis, J. M. & Hay, N. Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev. 8, 2817–2830 (1994).

    Article  CAS  PubMed  Google Scholar 

  211. Zindy, F. et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12, 2424–2433 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Herold, S. et al. Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol. Cell 10, 509–521 (2002).

    Article  CAS  PubMed  Google Scholar 

  213. Staller, P. et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nature Cell Biol. 3, 392–399 (2001).

    Article  CAS  PubMed  Google Scholar 

  214. Gartel, A. L. et al. Myc represses the p21WAF1/CIP1 promoter and interacts with Sp1/Sp3. Proc. Natl Acad. Sci. USA 98, 4510–4515 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Seoane, J., Le, H. V. & Massague, J. Myc suppression of the p21Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729–734 (2002).

    Article  CAS  PubMed  Google Scholar 

  216. Finch, A. et al. Bcl-xL gain of function and p19 ARF loss of function cooperate oncogenically with Myc in vivo by distinct mechanisms. Cancer Cell 10, 113–120 (2006).

    Article  CAS  PubMed  Google Scholar 

  217. Eischen, C. M., Weber, J. D., Roussel, M. F., Sherr, C. J. & Cleveland, J. L. Disruption of the ARF–Mdm2–p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 13, 2658–2669 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Schmitt, C. A., McCurrach, M. E., de Stanchina, E., Wallace-Brodeur, R. R. & Lowe, S. W. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev. 13, 2670–2677 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Bouchard, C. et al. FoxO transcription factors suppress Myc-driven lymphomagenesis via direct activation of Arf. Genes Dev. 21, 2775–2787 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Alt, J. R., Greiner, T. C., Cleveland, J. L. & Eischen, C. M. Mdm2 haplo-insufficiency profoundly inhibits Myc-induced lymphomagenesis. EMBO J. 22, 1442–1450 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678–2690 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Dickins, R. A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nature Genet. 37, 1289–1295 (2005).

    Article  CAS  PubMed  Google Scholar 

  223. Kim, S. S. et al. CUL7 is a novel antiapoptotic oncogene. Cancer Res. 67, 9616–9622 (2007).

    Article  CAS  PubMed  Google Scholar 

  224. Maestro, R. et al. Twist is a potential oncogene that inhibits apoptosis. Genes Dev. 13, 2207–2217 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. van Lohuizen, M. et al. Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65, 737–752 (1991).

    Article  CAS  PubMed  Google Scholar 

  226. Eischen, C. M. et al. Bcl-2 is an apoptotic target suppressed by both c-Myc and E2F-1. Oncogene 20, 6983–6993 (2001).

    Article  CAS  PubMed  Google Scholar 

  227. Eischen, C. M., Woo, D., Roussel, M. F. & Cleveland, J. L. Apoptosis triggered by Myc-induced suppression of Bcl-XL or Bcl-2 is bypassed during lymphomagenesis. Mol. Cell. Biol. 21, 5063–5070 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Maclean, K. H., Keller, U. B., Rodriguez-Galindo, C., Nilsson, J. A. & Cleveland, J. L. c-Myc augments γ irradiation-induced apoptosis by suppressing Bcl-XL . Mol. Cell. Biol. 23, 7256–7270 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Dansen, T. B., Whitfield, J., Rostker, F., Brown-Swigart, L. & Evan, G. I. Specific requirement for Bax, not Bak, in Myc-induced apoptosis and tumor suppression in vivo. J. Biol. Chem. 281, 10890–10895 (2006).

    Article  CAS  PubMed  Google Scholar 

  230. Juin, P. et al. c-Myc functionally cooperates with Bax to induce apoptosis. Mol. Cell. Biol. 22, 6158–6169 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Annis, M. G. et al. Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. EMBO J. 24, 2096–2103 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Eischen, C. M., Roussel, M. F., Korsmeyer, S. J. & Cleveland, J. L. Bax loss impairs Myc-induced apoptosis and circumvents the selection of p53 mutations during Myc-mediated lymphomagenesis. Mol. Cell. Biol. 21, 7653–7662 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Sakamuro, D. et al. c-Myc induces apoptosis in epithelial cells by both p53-dependent and p53-independent mechanisms. Oncogene 11, 2411–2418 (1995).

    CAS  PubMed  Google Scholar 

  234. Egle, A., Harris, A. W., Bouillet, P. & Cory, S. Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc. Natl Acad. Sci. USA 101, 6164–6169 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Hemann, M. T. et al. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436, 807–811 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Goga, A., Yang, D., Tward, A. D., Morgan, D. O. & Bishop, J. M. Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nature Med. 13, 820–827 (2007).

    Article  CAS  PubMed  Google Scholar 

  237. Schreiber-Agus, N. et al. Drosophila Myc is oncogenic in mammalian cells and plays a role in the diminutive phenotype. Proc. Natl Acad. Sci. USA 94, 1235–1240 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Gallant, P., Shiio, Y., Cheng, P. F., Parkhurst, S. M. & Eisenman, R. N. Myc and Max homologs in Drosophila. Science 274, 1523–1527 (1996).

    Article  CAS  PubMed  Google Scholar 

  239. Gallant, P. Myc/Max/Mad in invertebrates: the evolution of the Max network. Curr. Top. Microbiol. Immunol. 302, 235–253 (2006).

    CAS  PubMed  Google Scholar 

  240. Gallant, P. Myc, cell competition, and compensatory proliferation. Cancer Res. 65, 6485–6487 (2005).

    Article  CAS  PubMed  Google Scholar 

  241. Davis, A. C., Wims, M., Spotts, G. D., Hann, S. R. & Bradley, A. A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes Dev. 7, 671–682 (1993).

    Article  CAS  PubMed  Google Scholar 

  242. Bettess, M. D. et al. c-Myc is required for the formation of intestinal crypts but dispensable for homeostasis of the adult intestinal epithelium. Mol. Cell. Biol. 25, 7868–7878 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Oskarsson, T. et al. Skin epidermis lacking the c-Myc gene is resistant to Ras-driven tumorigenesis but can reacquire sensitivity upon additional loss of the p21Cip1 gene. Genes Dev. 20, 2024–2029 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Zhong, W. et al. Hypertrophic growth in cardiac myocytes is mediated by Myc through a Cyclin D2-dependent pathway. EMBO J. 25, 3869–3879 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Martins, R. A. et al. N-myc coordinates retinal growth with eye size during mouse development. Genes Dev. 22, 179–193 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Zindy, F. et al. N-Myc and the cyclin-dependent kinase inhibitors p18Ink4c and p27Kip1 coordinately regulate cerebellar development. Proc. Natl Acad. Sci. USA 103, 11579–11583 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Zindy, F. et al. Genetic alterations in mouse medulloblastomas and generation of tumors de novo from primary cerebellar granule neuron precursors. Cancer Res. 67, 2676–2684 (2007).

    Article  CAS  PubMed  Google Scholar 

  248. Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  249. Arvanitis, C. & Felsher, D. W. Conditional transgenic models define how MYC initiates and maintains tumorigenesis. Semin. Cancer Biol. 16, 313–317 (2006).

    Article  CAS  PubMed  Google Scholar 

  250. Pelengaris, S. & Khan, M. The many faces of c-MYC. Arch. Biochem. Biophys. 416, 129–136 (2003).

    Article  CAS  PubMed  Google Scholar 

  251. Jain, M. et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297, 102–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  252. Boxer, R. B., Jang, J. W., Sintasath, L. & Chodosh, L. A. Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation. Cancer Cell 6, 577–586 (2004).

    Article  CAS  PubMed  Google Scholar 

  253. D'Cruz, C. M. et al. c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nature Med. 7, 235–239 (2001).

    Article  CAS  PubMed  Google Scholar 

  254. Tran, T. P. et al. Combined inactivation of MYC and K-Ras oncogenes reverses tumorigenesis in lung adenocarcinomas and lymphomas. PLOS ONE 3, e2125 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Podsypanina, K., Politi, K., Beverly, L. J. & Varmus, H. E. Oncogene cooperation in tumor maintenance and tumor recurrence in mouse mammary tumors induced by Myc and mutant Kras. Proc. Natl Acad. Sci. USA 105, 5242–5247 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Luscher, B. & Larsson, L. G. The world according to, MYC. Conference on MYC and the transcriptional control of proliferation and oncogenesis. EMBO Rep. 8, 1110–1114 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  257. Cole, M. D. & Henriksson, M. 25 years of the c-Myc oncogene. Semin. Cancer Biol. 16, 241 (2006).

    Article  PubMed  Google Scholar 

  258. Ellwood-Yen, K. et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223–238 (2003).

    Article  CAS  PubMed  Google Scholar 

  259. Lossos, I. S. et al. Transformation of follicular lymphoma to diffuse large-cell lymphoma: alternative patterns with increased or decreased expression of c-myc and its regulated genes. Proc. Natl Acad. Sci. USA 99, 8886–8891 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Adler, A. S. et al. Genetic regulators of large-scale transcriptional signatures in cancer. Nature Genet. 38, 421–430 (2006).

    Article  CAS  PubMed  Google Scholar 

  261. Vita, M. & Henriksson, M. The Myc oncoprotein as a therapeutic target for human cancer. Semin. Cancer Biol. 16, 318–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  262. Ponzielli, R., Katz, S., Barsyte-Lovejoy, D. & Penn, L. Z. Cancer therapeutics: targeting the dark side of Myc. Eur. J. Cancer 41, 2485–2501 (2005).

    Article  CAS  PubMed  Google Scholar 

  263. Hurley, L. H., Von Hoff, D. D., Siddiqui-Jain, A. & Yang, D. Drug targeting of the c-MYC promoter to repress gene expression via a G-quadruplex silencer element. Semin. Oncol. 33, 498–512 (2006).

    Article  CAS  PubMed  Google Scholar 

  264. Trumpp, A. & Wiestler, O. D. Mechanisms of disease: cancer stem cells — targeting the evil twin. Nature Clin. Pract. Oncol. 5, 337–347 (2008).

    Article  CAS  Google Scholar 

  265. Robson, S., Pelengaris, S. & Khan, M. c-Myc and downstream targets in the pathogenesis and treatment of cancer. Recent Patents Anticancer Drug Discov. 1, 305–326 (2006).

    Article  CAS  Google Scholar 

  266. Prochownik, E. V. c-Myc as a therapeutic target in cancer. Expert Rev. Anticancer Ther. 4, 289–302 (2004).

    Article  CAS  PubMed  Google Scholar 

  267. Fernandez, P. C. et al. Genomic targets of the human c-Myc protein. Genes Dev. 17, 1115–1129 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Watt, F. M., Frye, M. & Benitah, S. A. MYC in mammalian epidermis: how can an oncoge ne stimulate differentiation? Nature Rev. Cancer 8, 234–242 (2008).

    Article  CAS  Google Scholar 

  269. Varmus, H. E. The molecular genetics of cellular oncogenes. Annu. Rev. Genet. 18, 553–612 (1984).

    Article  CAS  PubMed  Google Scholar 

  270. Johnston, L. A., Prober, D. A., Edgar, B. A., Eisenman, R. N. & Gallant, P. Drosophila myc regulates cellular growth during development. Cell 98, 779–790 (1999).

    Article  CAS  PubMed  Google Scholar 

  271. Orian, A. et al. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev. 17, 1101–1114 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Goodliffe, J. M., Wieschaus, E. & Cole, M. D. Polycomb mediates Myc autorepression and its transcriptional control of many loci in Drosophila. Genes Dev. 19, 2941–2946 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Loo, L. W. et al. The transcriptional repressor dMnt is a regulator of growth in Drosophila melanogaster. Mol. Cell. Biol. 25, 7078–7091 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Secombe, J., Li, L., Carlos, L. & Eisenman, R. N. The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth. Genes Dev. 21, 537–551 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. de la Cova, C., Abril, M., Bellosta, P., Gallant, P. & Johnston, L. A. Drosophila myc regulates organ size by inducing cell competition. Cell 117, 107–116 (2004).

    Article  CAS  PubMed  Google Scholar 

  276. Moreno, E. & Basler, K. dMyc transforms cells into super-competitors. Cell 117, 117–129 (2004).

    Article  CAS  PubMed  Google Scholar 

  277. Knoepfler, P. S. Why myc? An unexpected ingredient in the stem cell cocktail. Cell Stem Cell 2, 18–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  278. Cartwright, P. et al. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 132, 885–896 (2005).

    Article  CAS  PubMed  Google Scholar 

  279. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  280. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).

    Article  CAS  PubMed  Google Scholar 

  281. Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnol. 26, 101–106 (2008).

    Article  CAS  Google Scholar 

  282. Li, Z. et al. A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc. Natl Acad. Sci. USA 100, 8164–8169 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431, 1112–1117 (2004).

    Article  CAS  PubMed  Google Scholar 

  284. Wong, D. J. et al. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2, 333–344 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Ben-Porath, I. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature Genet. 40, 499–507 (2008).

    Article  CAS  PubMed  Google Scholar 

  286. Wu, C. H. et al. Combined analysis of murine and human microarrays and ChIP analysis reveals genes associated with the ability of MYC to maintain tumorigenesis. PLOS Genet. 4, e1000090 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  287. Zhang, X. Y. et al. The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. Mol. Cell 29, 102–111 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  288. Malynn, B. A. et al. N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. Genes Dev. 14, 1390–1399 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Liu, J., Martin, H. J., Liao, G. & Hayward, S. D. The Kaposi's sarcoma-associated herpesvirus LANA protein stabilizes and activates c-Myc. J. Virol. 81, 10451–10459 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Bajaj, B. G. et al. Epstein–Barr virus nuclear antigen 3C interacts with and enhances the stability of the c-Myc oncoprotein. J. Virol. 82, 4082–4090 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Stewart, T. A., Pattengale, P. K. & Leder, P. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38, 627–637 (1984).

    Article  CAS  PubMed  Google Scholar 

  292. Schoenenberger, C. A. et al. Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumours with constitutive milk protein gene transcription. EMBO J. 7, 169–175 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Flores, I., Murphy, D. J., Swigart, L. B., Knies, U. & Evan, G. I. Defining the temporal requirements for Myc in the progression and maintenance of skin neoplasia. Oncogene 23, 5923–5930 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our MYC colleagues who share our passion for, or perhaps it is our addiction to, solving the MYC puzzle. Without you there would be no progress or story to tell. Obviously, there are so many important contributions, big and small, that could not be cited here owing to space and reference constraints. We particularly thank our colleagues who took the time to review and discuss this article with us, including M. Cole, C. Dang, B. Luscher and B. Neel, as well as our anonymous reviewers who provided additionalguidance. The funding agencies that enable our research include the Ontario Institute for Cancer Research network through funding provided by the Province of Ontario, the National Cancer Institute of Canada with funds from the Canadian Cancer Society, the Canadian Institute for Health Research, the Department of Defense Breast Cancer Research Program and the Canadian Breast Cancer Research Alliance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Z. Penn.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary

4-hydroxytamoxifen

OMIM

Burkitt lymphoma

FURTHER INFORMATION

Linda Z. Penn's homepage

MYC Cancer Gene

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, N., Penn, L. Reflecting on 25 years with MYC. Nat Rev Cancer 8, 976–990 (2008). https://doi.org/10.1038/nrc2231

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing