Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The cofilin pathway in breast cancer invasion and metastasis

Key Points

  • A pattern of changes in gene expression clustered in the cofilin pathway is consistently observed in mammary tumours and cells derived from them.

  • The cofilin pathway has emerged as having a central role in the generation of free actin filament ends resulting in actin filament remodelling by polymerization and depolymerization. Filament remodelling is essential during the formation and retraction of path-finding structures used in the chemotaxis, cell migration and invasion of tumour cells.

  • The spatial localization of cofilin activity is required for chemotaxis by tumour cells in response to epidermal growth factor, and fits a local excitation global inhibition (LEGI)-type model of chemotaxis.

  • A balance of the stimulatory and inhibitory branches of the cofilin pathway must be achieved for protrusion, cell migration and chemotaxis to occur optimally. Too much or too little activity will inhibit all of these essential steps in motility and invasion.

  • As there are four regulatory mechanisms for cofilin activity which seem to be uncoupled, the activity status of cofilin in a cell cannot be assessed by measuring the ratio of dephosphorylated cofilin to the total cofilin present.

  • An important implication of recent studies of the cofilin pathway is that looking at the expression status of a single gene can be misleading when interpreting phenotype, as it is the collective activity of multiple genes of the pathway that determines the integrated output of the pathway and therefore phenotype.

  • The rational design of inhibitors of the cofilin pathway is possible. Measuring the output of the cofilin pathway directly in living cells isolated from invasive tumours will be necessary to assess the efficacy of the inhibitors. New technologies for intravital imaging, invasive tumour cell collection and expression profiling, and for measuring cofilin pathway activity, make inhibitor design and testing possible.

Abstract

Recent evidence indicates that metastatic capacity is an inherent feature of breast tumours and not a rare, late acquired event. This has led to new models of metastasis. The interpretation of expression-profiling data in the context of these new models has identified the cofilin pathway as a major determinant of metastasis. Recent studies indicate that the overall activity of the cofilin pathway, and not that of any single gene within the pathway, determines the invasive and metastatic phenotype of tumour cells. These results predict that inhibitors directed at the output of the cofilin pathway will have therapeutic benefit in combating metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The EGF-regulated cofilin pathway.
Figure 2: The spatial and temporal localization of cofilin activity in response to EGF stimulation.
Figure 3: Cofilin activity is required for the early barbed end transient responsible for the initiation of chemotaxis.

Similar content being viewed by others

References

  1. Liotta, L. A. & Kohn, E. C. The microenvironment of the tumour-host interface. Nature 411, 375–379 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Condeelis, J. & Segall, J. E. Intravital imaging of cell movement in tumours. Nature Rev. Cancer 3, 921–930 (2003).

    Article  CAS  Google Scholar 

  3. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Mantovani, A., Giavazzi, R., Alessandri, G., Spreafico, F. & Gerattini, S. Characterization of tumor lines derived from spontaneous metastases of transplanted murine sarcoma. Eur. J. Cancer, 17, 71–76 (1981).

    Article  CAS  PubMed  Google Scholar 

  5. Giavazzi, R., Alessandri, G., Spreafico, F., Garattini, S. & Mantovani, A. Metastasizing capacity of tumour cells from spontaneous metastases of transplanted murine tumours. Br. J. Cancer, 42, 462–472 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Milas, L., Peters, L. J. & Ito, H. Spontaneus metastasis: random or selective? Clin. Exp. 1, 309–315 (1983).

    Article  CAS  Google Scholar 

  7. Wyckoff, J. et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64, 7022–7029 (2004). First description of the paracrine loop between tumour cells and macrophages and its behavioural consequences in vivo .

    Article  CAS  PubMed  Google Scholar 

  8. Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular signature of metastasis in primary solid tumors. Nature Genet. 33, 49–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. van't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002). Expression profiling study that identified metastatic potential as an early property encoded throughout the tumour as inconsistent with a simple Darwinian evolution model.

    Article  CAS  Google Scholar 

  10. Wang, W. et al. Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res. 64, 8585–8594 (2004). First description of an invasion signature including the cofilin pathway.

    Article  CAS  PubMed  Google Scholar 

  11. Wang, W. et al. Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends Cell Biol. 15, 138–145 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, W. et al. Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res. 64, 3505–3511 (2007).

    Article  CAS  Google Scholar 

  13. Weigelt, B., Peterse, J. & van't Veer, L. Breast cancer metastasis: markers and models. Nature Rev. Cancer 5, 591–602 (2005). First description of the integrated model of breast cancer metastasis.

    Article  CAS  Google Scholar 

  14. Leek, R. D. & Harris, A. L. Tumor-associated macrophages in breast cancer. J. Mammary Gland Biol. Neoplasia 7, 177–189 (2002).

    Article  PubMed  Google Scholar 

  15. Condeelis, J. & Pollard, J. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124, 263–266 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Giraudo, E., Inoue, M. & Hanahan, D. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J. Clin. Invest. 114, 623–633 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ono, S. Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. Int. Rev. Cytol. 258, 1–82 (2007). A comprehensive description of the cofilin family and the activities of its members.

    Article  CAS  PubMed  Google Scholar 

  18. Maciver, S. K. & Hussey, P. The ADF/cofilin family: actin remodeling proteins. Genome Biology 3, reviews 3007 (2002). A description of the cofilin family and the evolutionary relatedness of its members.

  19. Okano, I. et al. Identification and characterization of a novel family of serine/threonine kinases containing two N-terminal LIM motifs. J. Biol. Chem. 270, 31321–31330 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Yang, N. et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393, 809–812 (1998). Initial description of the connection between cofilin and LIM kinase.

    Article  CAS  PubMed  Google Scholar 

  21. Toshima, J. et al. Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation. Mol. Biol. Cell 12, 1131–1145 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakano, K. et al. Cofilin phosphorylation and actin polymerization by NRK/NESK, a member of the germinal center kinase family. Exp. Cell Res. 287, 219–227 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K. & Uemura, T. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108, 233–246 (2002). Identification of slingshot and its action on cofilin.

    Article  CAS  PubMed  Google Scholar 

  24. Meberg, P. J. et al. Actin depolymerizing factor and cofilin phosphorylation dynamics: response to signals that regulate neurite extension. Cell Motil. Cytoskeleton 39, 172–190 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Ambach, A. et al. The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. Eur. J. Immunol. 30, 3422–3431 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Gohla, A., Birkenfeld, J. & Bokoch, G. M. Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nature Cell Biol. 7, 21–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Yonezawa, N., Homma, Y., Yahara, I., Sakai, H. & Nishida, E. A short sequence responsible for both phosphoinositide binding and actin binding activities of cofilin. J. Biol. Chem. 266, 17218–17221 (1991).

    CAS  PubMed  Google Scholar 

  28. Yonezawa, N., Nishida, E., Iida, K., Yahara, I. & Sakai, H. Inhibition of the interactions of cofilin, destrin, and deoxyribonuclease I with actin by phosphoinositides. J. Biol. Chem. 265, 8382–8386 (1990).

    CAS  PubMed  Google Scholar 

  29. Mouneimne, G. et al. Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J. Cell Biol. 166, 697–708 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mouneimne, D. et al. Spatial and temporal control of cofilin activity is required for directional sensing during chemotaxis. Curr. Biol. 16, 2193–2205 (2006). Showed that cofilin is required for directional sensing during the chemotaxis of breast tumour cells.

    Article  CAS  PubMed  Google Scholar 

  31. Bamburg, J. A. & Wiggan, O. ADF/cofilin and actin dynamics in disease. Trends Cell Biol. 12, 598–605 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Patel, H. & Barber, D. A developmentally regulated Na-H exchanger in Dyctyostelium discoideum is necessary for cell polarity during chemotaxis. J. Cell Biol. 169, 321–329 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bernstein, B. W. et al. Intracellular pH modulation of ADF/cofilin proteins. Cell Motil. Cytoskeleton 47, 319–336 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Srivastava, J., Barber, D. & Jacobson, M. Intracellular pH sensors: design principles and functional significance. Physiology 22, 30–39 (2006).

    Article  Google Scholar 

  35. Mitchison, T. J. & Cramer, L. P. Actin-based cell motility and cell locomotion. Cell 84, 371–379 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Mogilner, A. & Oster, G. Polymer motors: pushing out the front and pulling up the back. Curr. Biol. 13, R721–R733 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. dos Remedios, C. et al. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol. Rev. 83, 433–473 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Yamaguchi, H. et al. Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J. Cell Biol. 168, 441–452 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ghosh, M. et al. Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304, 743–746 (2004). Showed the consequences of cofilin activation in vivo .

    Article  CAS  PubMed  Google Scholar 

  40. Hotulainen, P., Paunola, E., Vartiainen, M. K. & Lappalainen, P. Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells. Mol. Biol. Cell 16, 649–664 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aizawa, H., Sutoh, K. & Yahara, I. Overexpression of cofilin stimulates bundling of actin filaments, membrane ruffling, and cell movement in Dictyostelium. J. Cell Biol. 132, 335–344 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Yap, C. T., Simpson, T. I., Pratt, T., Price, D. J. & Maciver, S. K. The motility of glioblastoma tumour cells is modulated by intracellular cofilin expression in a concentration-dependent manner. Cell Motil. Cytoskeleton 60, 153–165 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, W. et al. The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors. J. Cell Biol. 173, 395–404 (2006). Analysis of the consequences of cofilin pathway activity status on metastasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ichetovkin, I., Han, J., Pang, K. M., Knecht, D. A. & Condeelis, J. S. Actin filaments are severed by both native and recombinant dictyostelium cofilin but to different extents. Cell Motil. Cytoskeleton 45, 293–306 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Ichetovkin, I., Grant, W. & Condeelis, J. Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr. Biol. 12, 79–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Adrianantoandro, E. & Pollard, T. Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/Cofilin. Mol. Cell 24, 13–23 (2006). Direct analysis of the rate constants for actin polymerization and depolymerization, showing that cofilin does not alter off rate.

    Article  CAS  Google Scholar 

  47. Des Marais, V., Macaluso, F., Condeelis, J. & Bailly, M. Synergistic interaction between the Arp2/3 complex and cofilin drives stimulated lamellipod extension. J. Cell Sci. 117, 3499–3510 (2004).

    Article  CAS  Google Scholar 

  48. Carlsson, A. Stimulation of actin polymerization by filament severing. Biophys. J. 90, 413–422 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Yamaguchi, H., Wyckoff, J. & Condeelis, J. Cell migration in tumors. Curr. Opin. Cell Biol. 17, 559–564 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Song, X. et al. Initiation of cofilin activity in response to EGF is uncoupled from cofilin phosphorylation and dephosphorylation in carcinoma cells. J. Cell Sci. 119, 2871–2881 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Nishita, M. et al. Spatial and temporal regulation of cofilin activity by LIM kinase and Slingshot is critical for directional cell migration. J. Cell Biol. 171, 349–359 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Devreotes, P. & Janetopoulos, C. Eukaryotic chemotaxis: distinctions between directional sensing and polarization. J. Biol. Chem. 278, 20445–20448 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Lee, Y. J., Mazzatti, D. J., Yun, Z. & Keng, P. C. Inhibition of invasiveness of human lung cancer cell line H1299 by over-expression of cofilin. Cell Biol. Int. 29, 877–883 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Zebda, N. et al. Phosphorylation of ADF/cofilin abolishes EGF-induced actin nucleation at the leading edge and subsequent lamellipod extension. J. Cell Biol. 151, 1119–1128 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Iwasa, J. & Mullins, R. D. Spatial and temporal relationships between actin-filament nucleation, capping, and disassembly. Curr Biol 17, 395–406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dang, D., Bamburg, J. R. & Ramos, D. M. αvβ3 integrin and cofilin modulate K1735 melanoma cell invasion. Exp. Cell Res. 312, 468–477 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Ono, K., Parast, M., Alberico, C., Benian, G. M. & Ono, S. Specific requirement for two ADF/cofilin isoforms in distinct actin-dependent processes in Caenorhabditis elegans. J. Cell Sci. 116, 2073–2085 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Chen, J. et al. Cofilin/ADF is required for cell motility during Drosophila ovary development and oogensis. Nature Cell Biol. 3, 204–209 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Blair, A. et al. Twinstar, the Drosophila homolog of cofilin/ADF, is required for planar cell polarity patterning. Development 133, 1789–1797 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Gurniak, C. B., Perlas, E. & Witke, W. The actin depolymerizing factor n-cofilin is essential for neural tube morphogenesis and neural crest cell migration. Dev. Biol. 278, 231–241 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Hayden, S. M., Miller, P. S., Brauweiler, A. & Bamburg, J. R. Analysis of the interactions of actin depolymerizing factor with G- and F-actin. Biochemistry 32, 9994–10004 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Vartiainen, M. K. et al. The three mouse ADF/cofilins evolved to fulfill cell type specific requirements for actin dynamics. Mol. Biol. Cell 13, 183–194 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ono, S. & Benian, G. Two C. elegans ADF/cofilin proteins, encoded by the unc-60 gene, differentially regulate actin filament dynamics. J. Biol. Chem. 273, 3778–3783 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Arber, S. et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393, 805–809 (1998). Initial description of the connection between cofilin and LIM kinase.

    Article  CAS  PubMed  Google Scholar 

  65. Sumi, T., Matsumoto, K. & Nakamura, T. Specific activation of LIM Kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J. Biol. Chem. 276, 670–676 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Edwards, D. C., Sanders, L. C., Bokoch, G. M. & Gill, G. N. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nature Cell Biol. 1, 253–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Ohashi, K. et al. Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J. Biol. Chem. 275, 3577–3582 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Sumi, T., Matsumoto, K., Shibuya, A. & Nakamura, T. Activation of LIM kinases by myotonic dystrophy kinase-related Cdc42-binding kinase α. J. Biol. Chem. 276, 23092–23096 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Meng, Y. et al. Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35, 121–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Meng, Y. et al. Regulation of ADF/cofilin phosphorylation and synaptic function by LIM-kinase. Neuropharmacology 47, 746–754 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Takahashi, H., Koshimizu, U., Miyazaki, J. & Nakamura, T. Impaired spermatogenic ability of testicular germ cells in mice deficient in the LIM-kinase 2 gene. Dev. Biol. 241, 259–272 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Gunnersen, J. M., Spirkoska, V., Smith, P. E., Danks, R. A. & Tan, S. S. Growth and migration markers of rat C6 glioma cells identified by serial analysis of gene expression. Glia 32, 146–154 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Keshamouni, V. G. et al. Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype. J. Proteome Res. 5, 1143–1154 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Sinha, P. et al. Increased expression of epidermal fatty acid binding protein, cofilin, and 14–3-3-σ (stratifin) detected by two-dimensional gel electrophoresis, mass spectrometry and microsequencing of drug-resistant human adenocarcinoma of the pancreas. Electrophoresis 20, 2952–2960 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Nebl, G., Meuer, S. C. & Samstag, Y. Dephosphorylation of serine 3 regulates nuclear translocation of cofilin. J. Biol. Chem. 271, 26276–26280 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Turhani, D., Krapfenbauer, K., Thurnher, D., Langen, H. & Fountoulakis, M. Identification of differentially expressed, tumor-associated proteins in oral squamous cell carcinoma by proteomic analysis. Electrophoresis 27, 1417–1423 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Unwin, R. D. et al. Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect. Proteomics 3, 1620–1632 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Martoglio, A. M. et al. Changes in tumorigenesis- and angiogenesis-related gene transcript abundance profiles in ovarian cancer detected by tailored high density cDNA arrays. Mol. Med. 6, 750–765 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ding, S. J. et al. Proteome analysis of hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with different metastasis potentials. Proteomics 4, 982–994 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Smith-Beckerman, D. M. et al. Proteome changes in ovarian epithelial cells derived from women with BRCA1 mutations and family histories of cancer. Mol. Cell Proteomics 4, 156–168 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Meyer, G., Kim, B., van Golen, C. & Feldman, E. L. Cofilin activity during insulin-like growth factor I-stimulated neuroblastoma cell motility. Cell Mol. Life Sci. 62, 461–470 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Sahai, E., Olson, M. F. & Marshall, C. J. Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J. 20, 755–766 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Davila, M., Frost, A. R., Grizzle, W. E. & Chakrabarti, R. LIM kinase 1 is essential for the invasive growth of prostate epithelial cells: implications in prostate cancer. J. Biol. Chem. 278, 36868–36875 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Yoshioka, K., Foletta, V., Bernard, O. & Itoh, K. A role for LIM kinase in cancer invasion. Proc. Natl Acad. Sci. USA 100, 7247–7252 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Goswami, S. et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 65, 5278–5283 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Med. 10, 789–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Kumar, N., Wolf-Yadlin, A., White, F. & Lauffenburger, D. Modeling HER2 effects on cell behavior from mass spectrometry phosphotyrosine data. PLoS Compt. Biol. 3, e4. (2007). Systems analysis showing that pathways but not single genes determine the migratory phenotype.

    Article  CAS  Google Scholar 

  88. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ingman, W. V., Wyckoff, J. Gouon-Evans, V., Condeelis, J. & Pollard, J. W. Macrophages promote collagen fibrillogenesis around terminal end buds of developing mammary gland. Dev. Dyn. 235, 3222–3229 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Pollard, T. D., Blanchoin, L. & Mullins, R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Pollard, T. D. & Beltzner, C. C. Structure and function of the Arp2/3 complex. Curr. Opin. Struct. Biol. 12, 768–774 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Gunsalus, K. C. et al. Mutations in twinstar, a Drosophila gene encoding a cofilin/ADF homologue, result in defects in centrosome migration and cytokinesis. J. Cell Biol. 131, 1243–1259 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Ang, L. H. et al. Lim kinase regulates the development of olfactory and neuromuscular synapses. Dev. Biol. 293, 178–190 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Menzel, N., Schneeberger, D. & Raabe, T. The Drosophila p21 activated kinase Mbt regulates the actin cytoskeleton and adherens junctions to control photoreceptor cell morphogenesis. Mech. Dev. 124, 78–90 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Sese, M. C. et al. The Cdi/TESK1 kinase is required for Sevenless signaling and epithelial organization in the Drosophila eye. J. Cell Sci. 119, 5047–5056 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Rogers, E. M., Hsiung, F., Rodrigues, A. B. & Moses, K. Slingshot cofilin phosphatase localization is regulated by receptor tyrosine kinases and regulates cytoskeletal structure in the developing Drosophila eye. Mech. Dev. 122, 1194–1205 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Lappalainen, P., Kessels, M., Cope, M. & Drubin, D. G. The ADF homology (ADF-H) domain: a highly exploited actin-binding module. Mol. Biol. Cell 9, 1951–1959 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ojala, P. J., Paavilainen, V. & Lappalainen, P. Identification of yeast cofilin residues specific for actin monomer and PIP2 binding. Biochemistry 40, 15562–15569 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Pope, B. J., Zierler-Gould, K., Kuhne, R., Weeds, A. & Ball, L. Solution structure of human cofilin: actin binding, ph sensitivity, and relationship to actin-depolymerizing factor. J. Biol. Chem. 279, 4840–4848 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Xue, W. et al. Epidermal growth factor receptor overexpression results in increased tumor cell motility in vivo coordinately with enhanced intravasation and metastasis. Cancer Res. 66 192–197 (2005).

    Article  CAS  Google Scholar 

  101. Marone, R. et al. Memo mediates ErbB2-driven cell motility. Nature Cell Biol. 23, 515–522 (2004).

    Article  CAS  Google Scholar 

  102. Lorenz, M., Yamaguchi, H., Wang, Y., Singer, R. H. & Condeelis, J. Imaging sites of N-wasp activity in lamellipodia and invadopodia of carcinoma cells. Curr. Biol. 14, 697–703 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Chan, A. Y. et al. EGF stimulates an increase in actin nucleation and filament number at the leading edge of the lamellipod in mammary adenocarcinoma cells. J. Cell Sci. 111, 199–211 (1998).

    CAS  PubMed  Google Scholar 

  104. Dowling, P. et al. Proteomic analysis of isolated membrane fractions from superinvasive cancer cells. Biochim. Biophys. Acta 1774, 93–101 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Dan, C., Kelly, A, Bernard, O & Minden, A. Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J. Biol. Chem. 276, 32115–32121 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Sousairajah, J. et al. Interplay between components of a novel LIM kinase–slingshot phosphatase complex regulates cofilin. EMBO J. 24, 473–486 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants CA100324 and GM38511.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Condeelis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Williams syndrome

Glossary

Motility cycle

The motility cycle consists of a minimum of four steps starting with protrusion, which is essential for determining subsequent cell direction. Protrusion is followed by the adhesion of the new protrusion, contraction and tail retraction. See reference 35 for more details.

Lamellipodium

A 1–5 μm wide cytoplasmic projection at the leading edge of the cell that contains a dendritic network of actin filaments (see Box 1). The force of actin polymerization extends the lamellapodium forward and advances the cell front, setting the direction of cell migration.

Invadopodium

A cytoplasmic projection from tumour cells into the extracellular matrix, which contain a core of actin filaments. Invadopodia can secrete proteases that degrade the extracellular matrix and whose formation is associated with increased tumour cell invasiveness.

Filopodium

A finger-shaped cytoplasmic projection that can extend from the leading edge of migrating cells. Filopodia contain actin filaments that are crosslinked into bundles by actin-binding proteins such as fimbrin.

Off rate constant

Also known as the dissociation constant (Kd), for actin filaments it measures the rate of dissociation of actin monomers from free filament ends.

Caged

A protein or compound conjugated with a chromophore that allows for the controlled photorelease of a biologically active protein or compound with high temporal and spatial precision.

Vitronectin

An abundant adhesive glycoprotein found in blood plasma and the extracellular matrix. Vitronectin contains an RGD sequence that is a binding site for membrane-bound integrins, which serve to anchor cells to the extracellular matrix.

Neural crest

A component of the ectoderm that is found between the neural tube and the epidermis of an embryo. Shortly after neural tube formation, neural crest cells migrate and give rise to neurons and glia of the peripheral nervous system, skeletal and smooth muscle, and other specialized cells.

Neural tube

A developmental precursor of the central nervous system that will form the mature brain and spinal cord.

Visuospatial cognition

The ability to distinguish the orientation of objects in space; for example, depth perception.

Dendritic spine

A small (<1 μm) membranous extension that protrudes from a dendrite and forms one half of a synapse. Changes in dendritic spine density underlie many brain functions, including long-term memory and learning.

Osteolytic

Having the property of osteolysis, which is defined as the active resorption or dissolution of bone tissue as part of normal bone remodelling and some disease processes.

Paracrine

Signalling between two different types of cells through secreted molecules.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Eddy, R. & Condeelis, J. The cofilin pathway in breast cancer invasion and metastasis. Nat Rev Cancer 7, 429–440 (2007). https://doi.org/10.1038/nrc2148

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing