Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lineage dependency and lineage-survival oncogenes in human cancer

An Erratum to this article was published on 01 September 2006

Key Points

  • The close association between cell lineage and cancer phenotype has long been recognized. This link raises the possibility that cellular mechanisms that govern lineage proliferation and survival during development might also underlie tumorigenic mechanisms.

  • Many somatic genetic alterations show lineage-restricted patterns across human tumours, which indicates that genetic changes in cancer might be conditioned by the lineage programmes that are embedded in tumour precursor cells.

  • A convergence of lineage-based and genetic observations gives rise to a lineage-dependency (or lineage-addiction) model of human cancer, wherein tumour cells depend crucially on survival mechanisms that are programmed into lineage precursor cells during development, which might be affected by acquired genetic alterations. Unlike oncogene addiction, which invokes a dependency on a tumour-specific gain-of-function event, lineage addiction involves the persistence and/or deregulation of crucial lineage-survival mechanisms during carcinogenesis or tumour progression.

  • Presumably, lineage-dependency mechanisms that promote tumour progression involve master regulatory genes that also exert key developmental survival roles. Such genes can be termed lineage-survival oncogenes.

  • MITF (microphthalmia-associated transcription factor) and the androgen receptor are prototype lineage-survival oncogenes in melanoma and prostate cancer, respectively. A review of the scientific literature readily identifies several more genes with presumptive or predicted lineage-survival functions in different cancers.

  • Recognition of the lineage-dependency model might expand existing paradigms for tumour biology by emphasizing the importance of lineage in shaping key oncogenic mechanisms, thereby offering an explanatory framework for the distribution of genetic alterations in cancer. Targeting lineage dependencies as well as classical gain-of-function events might require combinatorial or synthetic-lethal therapeutic approaches to cancer.

Abstract

Although cell-lineage and differentiation models dominate tumour classification and treatment, the recognition that cancer is also a genomic disease has prompted a reconfiguration of cancer taxonomies according to molecular criteria. Recent evidence indicates that a synthesis of lineage-based and genetic paradigms might offer new insights into crucial and therapeutically pliable tumour dependencies. For example, MITF (microphthalmia-associated transcription factor), which is a master regulator of the melanocyte lineage, might become a melanoma oncogene when deregulated in certain genetic contexts. MITF and other lineage-survival genes therefore implicate lineage dependency (or lineage addiction) as a newly recognized mechanism that is affected by tumour genetic alterations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aberrant lineage ontogeny and somatic genetics in human tumour formation.
Figure 2: Lineage-restricted patterns of activating oncogene mutations in human solid tumours.
Figure 3: A lineage-dependency model for human cancer.
Figure 4: Therapeutic implications of tumour lineage dependency.

Similar content being viewed by others

References

  1. Strausberg, R. L., Simpson, A. J., Old, L. J. & Riggins, G. J. Oncogenomics and the development of new cancer therapies. Nature 429, 469–474 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Fenaux, P. & Degos, L. Differentiation therapy for acute promyelocytic leukemia. N. Engl. J. Med. 337, 1076–1077 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Tallman, M. S. et al. All-trans-retinoic acid in acute promyelocytic leukemia N. Engl. J. Med. 337, 1021–1028 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Berman, J. J. Tumor taxonomy for the developmental lineage classification of neoplasms. BMC Cancer 4, 88 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Berman, J. Modern classification of neoplasms: reconciling differences between morphologic and molecular approaches. BMC Cancer 5, 100 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).

    Article  CAS  Google Scholar 

  7. Kang, Y. & Massague, J. Epithelial–mesenchymal transitions: twist in development and metastasis. Cell 118, 277–279 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Johnston, R. N., Pai, S. B. & Pai, R. B. The origin of the cancer cell: oncogeny reverses phylogeny. Biochem. Cell. Biol. 70, 831–834 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Gupta, P. B. et al. The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nature Genet. 37, 1047–1054 (2005). This paper provides direct experimental evidence that lineage programming contributes to the metastatic phenotype in melanoma cells.

    Article  CAS  PubMed  Google Scholar 

  10. Muller, C. & Leutz, A. Chromatin remodeling in development and differentiation. Curr. Opin. Genet. Dev. 11, 167–174 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Kluger, Y., Lian, Z., Zhang, X., Newburger, P. E. & Weissman, S. M. A panorama of lineage-specific transcription in hematopoiesis. Bioessays 26, 1276–1287 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Nagamura-Inoue, T., Tamura, T. & Ozato, K. Transcription factors that regulate growth and differentiation of myeloid cells. Int. Rev. Immunol. 20, 83–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Warburton, D. et al. The molecular basis of lung morphogenesis. Mech. Dev. 92, 55–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Fraga, M. F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genet. 37, 391–400 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Wolffe, A. P. & Hayes, J. J. Chromatin disruption and modification. Nucleic Acids Res. 27, 711–720 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Vignali, M., Hassan, A. H., Neely, K. E. & Workman, J. L. ATP-dependent chromatin-remodeling complexes. Mol. Cell. Biol. 20, 1899–1910 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet. 38, 413–443 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Wolpert, L. Positional information and pattern formation in development. Dev. Genet. 15, 485–490 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Davis, P. K. & Brackmann, R. K. Chromatin remodeling and cancer. Cancer Biol. Ther. 2, 22–29 (2003).

    Article  PubMed  Google Scholar 

  22. Versteege, I. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394, 203–206 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Sevenet, N. et al. Spectrum of hSNF5/INI1 somatic mutations in human cancer and genotype-phenotype correlations. Hum. Mol. Genet. 8, 2359–2368 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Grand, F. et al. Frequent deletion of hSNF5/INI1, a component of the SWI/SNF complex, in chronic myeloid leukemia. Cancer Res. 59, 3870–3874 (1999).

    CAS  PubMed  Google Scholar 

  25. Sawa, M. et al. BMI-1 is highly expressed in M0-subtype acute myeloid leukemia. Int. J. Hematol. 82, 42–47 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Dukers, D. F. et al. Unique polycomb gene expression pattern in Hodgkin's lymphoma and Hodgkin's lymphoma-derived cell lines. Am. J. Pathol. 164, 873–881 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abate-Shen, C. Deregulated homeobox gene expression in cancer: cause or consequence? Nature Rev. Cancer 2, 777–785 (2002).

    Article  CAS  Google Scholar 

  28. Grier, D. G. et al. The pathophysiology of HOX genes and their role in cancer. J. Pathol. 205, 154–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Kho, A. T. et al. Conserved mechanisms across development and tumorigenesis revealed by a mouse development perspective of human cancers. Genes Dev. 18, 629–640 (2004). This paper shows that certain tumour subsets may be characterized by their molecular similarity to a particular developmental stage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hahn, W. C. & Weinberg, R. A. Rules for making human tumor cells. N. Engl. J. Med. 347, 1593–1603 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Weber, B. L. Cancer genomics. Cancer Cell 1, 37–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002). This paper represents one of the first large-scale sequencing efforts to identify a novel oncogene mutation.

    Article  CAS  PubMed  Google Scholar 

  33. Sieber, O. M., Tomlinson, S. R. & Tomlinson, I. P. Tissue, cell and stage specificity of (epi)mutations in cancers. Nature Rev. Cancer 5, 649–655 (2005).

    Article  CAS  Google Scholar 

  34. Sharpless, E. & Chin, L. The INK4a/ARF locus and melanoma. Oncogene 22, 3092–3098 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Sharpless, N. E., Kannan, K., Xu, J., Bosenberg, M. W. & Chin, L. Both products of the mouse Ink4a/Arf locus suppress melanoma formation in vivo. Oncogene 22, 5055–5059 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Keyomarsi, K. & Pardee, A. B. Redundant cyclin overexpression and gene amplification in breast cancer cells. Proc. Natl Acad. Sci. USA 90, 1112–1116 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bringuier, P. P., Tamimi, Y., Schuuring, E. & Schalken, J. Expression of cyclin D1 and EMS1 in bladder tumours; relationship with chromosome 11q13 amplification. Oncogene 12, 1747–1753 (1996).

    CAS  PubMed  Google Scholar 

  38. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. Wong, A. J. et al. Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc. Natl Acad. Sci. USA 84, 6899–6903 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Reissmann, P. T., Koga, H., Figlin, R. A., Holmes, E. C. & Slamon, D. J. Amplification and overexpression of the cyclin D1 and epidermal growth factor receptor genes in non-small-cell lung cancer. J. Cancer Res. Clin. Oncol. 125, 61–70 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Garraway, L. A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117–122 (2005). This paper demonstrated the power of combining genomic data sets for lineage-associated cancer gene discovery, and characterized the first lineage-survival oncogene.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao, X. et al. Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis. Cancer Res. 65, 5561–5570 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Garraway, L. A. et al. 'Lineage addiction' in human cancer: lessons from integrated genomics. Cold Spring Harb. Symp. Quant. Biol. 70, 1–10 (2005).

    Article  Google Scholar 

  44. Weinstein, I. B. Addiction to oncogenes — the Achilles heal of cancer. Science 297, 63–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Kantarjian, H. et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N. Engl. J. Med. 346, 645–652 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Demetri, G. D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 347, 472–480 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefinitib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Morales, A. V., Barbas, J. A. & Nieto, M. A. How to become neural crest: from segregation to delamination. Semin. Cell Dev. Biol. 16, 655–662 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Dupin, E. & Le Douarin, N. M. Development of melanocyte precursors from the vertebrate neural crest. Oncogene 22, 3016–3023 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Widlund, H. R. & Fisher, D. E. Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene 22, 3035–3041 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Goding, C. R. Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev. 14, 1712–1728 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Garraway, L. A. & Sellers, W. R. From integrated genomics to tumor lineage dependency. Cancer Res. 66, 2506–2508 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Du, J. et al. Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell 6, 565–576 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. McGill, G. G. et al. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109, 707–718 (2002). This paper was the first to suggest a mechanism by which MITF, the master melanocyte transcription factor, might exert a lineage-survival role.

    Article  CAS  PubMed  Google Scholar 

  56. Loercher, A. E., Tank, E. M., Delston, R. B. & Harbour, J. W. MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J. Cell Biol. 168, 35–40 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Carreira, S. et al. Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature 433, 764–769 (2005). References 56 and 57 showed that MITF induces growth arrest in non-transformed cells, and that this arrest was dependent on the integrity of key cell-cycle inhibitory pathways.

    Article  CAS  PubMed  Google Scholar 

  58. Chin, L. The genetics of malignant melanoma: lessons from mouse and man. Nature Rev. Cancer 3, 559–570 (2003).

    Article  CAS  Google Scholar 

  59. Hemesath, T. J., Price, E. R., Takemoto, C., Badalian, T. & Fisher, D. E. MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature 391, 298–301 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Omholt, K., Platz, A., Kanter, L., Ringborg, U. & Hansson, J. NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression. Clin Cancer Res 9, 6483–6488 (2003).

    CAS  PubMed  Google Scholar 

  61. Reifenberger, J. et al. Frequent alterations of Ras signaling pathway genes in sporadic malignant melanomas. Int. J. Cancer 109, 377–384 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Heinlein, C. A. & Chang, C. Androgen receptor in prostate cancer. Endocr. Rev. 25, 276–308 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Waltregny, D. et al. Androgen-driven prostate epithelial cell proliferation and differentiation in vivo involve the regulation of p27. Mol. Endocrinol. 15, 765–782 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Berger, R. et al. Androgen-induced differentiation and tumorigenicity of human prostate epithelial cells. Cancer Res. 64, 8867–8875 (2004). This paper showed that the androgen receptor, which triggers reduced prostate cell growth in vitro upon androgen stimulation, also promotes tumorigenesis in immortalized prostate epithelia following orthotopic injection.

    Article  CAS  PubMed  Google Scholar 

  65. Sicinski, P. et al. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82, 621–630 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Fantl, V., Stamp, G., Andrews, A., Rosewell, I. & Dickson, C. Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev. 9, 2364–2372 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Chodosh, L. A. The reciprocal dance between cancer and development. N. Engl. J. Med. 347, 134–136 (2002).

    Article  PubMed  Google Scholar 

  68. Gilliland, D. G. & Griffin, J. D. Role of FLT3 in leukemia. Curr. Opin. Hematol. 9, 274–281 (2002).

    Article  PubMed  Google Scholar 

  69. Stirewalt, D. L. & Radich, J. P. The role of FLT3 in haematopoietic malignancies. Nature Rev. Cancer 3, 650–665 (2003).

    Article  CAS  Google Scholar 

  70. Kumar, V. et al. Functional domains of the human estrogen receptor. Cell 51, 941–951 (1987).

    Article  CAS  PubMed  Google Scholar 

  71. Clarke, R. B., Anderson, E. & Howell, A. Steroid receptors in human breast cancer. Trends Endocrinol. Metab. 15, 316–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Anzick, S. L. et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277, 965–968 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Tanner, M. M. et al. Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer. Clin. Cancer Res. 6, 1833–1839 (2000).

    CAS  PubMed  Google Scholar 

  74. Bingle, C. D. Thyroid transcription factor-1. Int. J. Biochem. Cell Biol. 29, 1471–1473 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Stenhouse, G., Fyfe, N., King, G., Chapman, A. & Kerr, K. M. Thyroid transcription factor 1 in pulmonary adenocarcinoma. J. Clin. Pathol. 57, 383–387 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Byrd-Gloster, A. L. et al. Differential expression of thyroid transcription factor 1 in small cell lung carcinoma and Merkel cell tumor. Hum. Pathol. 31, 58–62 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Hecht, J. L., Pinkus, J. L., Weinstein, L. J. & Pinkus, G. S. The value of thyroid transcription factor-1 in cytologic preparations as a marker for metastatic adenocarcinoma of lung origin. Am. J. Clin. Pathol. 116, 483–488 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Freund, J. N., Domon-Dell, C., Kedinger, M. & Duluc, I. The Cdx-1 and Cdx-2 homeobox genes in the intestine. Biochem. Cell Biol. 76, 957–969 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Soubeyran, P. et al. Homeobox gene Cdx1 regulates Ras, Rho and PI3 kinase pathways leading to transformation and tumorigenesis of intestinal epithelial cells. Oncogene 20, 4180–4187 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. de la Chapelle, A. Genetic predisposition to colorectal cancer. Nature Rev. Cancer 4, 769–780 (2004).

    Article  CAS  Google Scholar 

  81. Classon, M. & Harlow, E. The retinoblastoma tumour suppressor in development and cancer. Nature Rev. Cancer 2, 910–917 (2002).

    Article  CAS  Google Scholar 

  82. Nishi, T. & Saya, H. Neurofibromatosis type 1 (NF1) gene: implication in neuroectodermal differentiation and genesis of brain tumors. Cancer Metastasis Rev. 10, 301–310 (1991).

    Article  CAS  PubMed  Google Scholar 

  83. Salti, G. I. et al. Micropthalmia transcription factor: a new prognostic marker in intermediate-thickness cutaneous malignant melanoma. Cancer Res. 60, 5012–5016 (2000).

    CAS  PubMed  Google Scholar 

  84. Birtle, A. J., Freeman, A., Masters, J. R., Payne, H. A. & Harland, S. J. Clinical features of patients who present with metastatic prostate carcinoma and serum prostate-specific antigen (PSA) levels < 10 ng/mL: the 'PSA negative' patients. Cancer 98, 2362–2367 (2003).

    Article  PubMed  Google Scholar 

  85. Hainsworth, J. D. & Greco, F. A. Poorly differentiated carcinoma and poorly differentiated adenocarcinoma of unknown primary tumor site. Semin. Oncol. 20, 279–286 (1993).

    CAS  PubMed  Google Scholar 

  86. Ramaswamy, S. et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl Acad. Sci. USA 98, 15149–15154 (2001). This paper showed how gene-expression profiles could classify tumours largely on the basis of lineage-differentiation signatures; however, poorly differentiated cancers were not as easily classified by this approach.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, M. & Rosen, J. M. Stem cells in the etiology and treatment of cancer. Curr. Opin. Genet. Dev. 16, 60–64 (2006).

    Article  PubMed  CAS  Google Scholar 

  88. Kulesa, P. M. et al. Reprogramming metastatic melanoma cells to assume a neural crest cell-like phenotype in an embryonic microenvironment. Proc. Natl Acad. Sci. USA 103, 3752–3757 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005). This paper showed that miRNA profiles could classify tumours across multiple lineages, regardless of their differentiation patterns.

    Article  CAS  PubMed  Google Scholar 

  90. Kroll, E. S., Hyland, K. M., Hieter, P. & Li, J. J. Establishing genetic interactions by a synthetic dosage lethality phenotype. Genetics 143, 95–102 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kaelin, W. G. The concept of synthetic lethality in the context of anticancer therapy. Nature Rev. Cancer 5, 689–698 (2005).

    Article  CAS  Google Scholar 

  92. Hartman, J. L., Garvik, B. & Hartwell, L. Principles for the buffering of genetic variation. Science 291, 1001–1004 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Kaelin, W. G. Choosing anticancer drug targets in the postgenomic era. J. Clin. Invest. 104, 1503–1506 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cairncross, J. G. et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J. Natl Cancer Inst. 90, 1473–1479 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Sawyers, C. L. Finding the next Gleevec: FLT3 targeted kinase inhibitor therapy for acute myeloid leukemia. Cancer Cell 1, 413–415 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Tamm, I., Dorken, B. & Hartmann, G. Antisense therapy in oncology: new hope for an old idea? Lancet 358, 489–497 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Morris, M. J. et al. Phase I trial of BCL-2 antisense oligonucleotide (G3139) administered by continuous intravenous infusion in patients with advanced cancer. Clin. Cancer Res. 8, 679–683 (2002).

    CAS  PubMed  Google Scholar 

  98. Nahta, R. & Esteva, F. J. Bcl-2 antisense oligonucleotides: a potential novel strategy for the treatment of breast cancer. Semin. Oncol. 30, 143–149 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Genasense FDA review team. Genasense (Oblimersen) for metastatic melanoma [online], (2004).

  100. Wang, J. C. & Dick, J. E. Cancer stem cells: lessons from leukemia. Trends Cell Biol. 15, 494–501 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Dean, M., Fojo, T. & Bates, S. Tumour stem cells and drug resistance. Nature Rev. Cancer 5, 275–284 (2005).

    Article  CAS  Google Scholar 

  102. Garraway, L. A. & Sellers, W. R. Array-based approaches to cancer genome analysis. Drug Discov. Today 2, 171–177 (2005).

    Article  CAS  Google Scholar 

  103. Engle, L. J., Simpson, C. L. & Landers, J. E. Using high-throughput SNP technologies to study cancer. Oncogene 25, 1594–1601 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Beroukhim, R. et al. Inferring loss-of-heterozygosity from tumor-only samples using high-density oligonucleotide SNP arrays. PLoS Comput. Biol. 2, e41 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Zhao, X. et al. An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res. 64, 3060–3071 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Jiang, J. et al. Identifying and characterizing a novel activating mutation of the FLT3 tyrosine kinase in AML. Blood 104, 1855–1858 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Cancer Institute to L.A.G. and W.R.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levi A. Garraway.

Ethics declarations

Competing interests

W.R.S. is employed by the Novartis Institutes of Biomedical Research Inc., Cambridge, USA.

Related links

Related links

DATABASES

National Cancer Institute

brain tumours

breast adenocarcinoma

colon adenocarcinoma

gastrointestinal stromal tumours

leukaemia

lung adenocarcinoma

ovarian cancer

prostate cancer

FURTHER INFORMATION

Affymetrix

COSMIC database

William R. Sellers's homepage

Glossary

p16–CDK4–RB pathway

A vital cell-cycle checkpoint that operates in mammalian cells. The p16 protein (encoded by CDKN2A) is a well-characterized cell-cycle inhibitor, and the RB (Retinoblastoma) protein was one of the first tumour suppressors to be described.

Synthetic dosage lethality

A genetic interaction in which overexpression or activation of one gene or pathway becomes lethal to the cell when a second (normally non-lethal) mutation is also present.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garraway, L., Sellers, W. Lineage dependency and lineage-survival oncogenes in human cancer. Nat Rev Cancer 6, 593–602 (2006). https://doi.org/10.1038/nrc1947

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1947

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing