Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The search for the retinoblastoma cell of origin

Key Points

  • Identifying the cell of origin can uncover the initiating and subsequent genetic changes that occur as cells progress from preneoplastic lesions to tumours.

  • Retinoblastoma is a good tumour model for identifying the cell of origin, because retinal development is well understood and the initiating genetic lesion (loss of RB) is well characterized.

  • Models of retinoblastoma differ depending on when RB is thought to act and on the response of the cell of origin to RB loss.

  • Additional mutations, beyond RB disruption, must occur for retinoblastoma to develop. These could occur in genes that regulate programmes of cell death or cell differentiation. New mouse models support the latter possibility.

  • Improved animal models could help to identify the retinoblastoma cell of origin, and explain why retinal cells are especially susceptible to transformation following RB disruption.

Abstract

The cellular effects of the genetic defects associated with tumorigenesis are context dependent. To better understand the reasons that different cell types require distinct combinations of mutations to form tumours, it is essential to identify and characterize a tumour's 'cell of origin'. Retinoblastoma, a rare childhood cancer of the retina that is caused by RB inactivation, is a good model in which to search for a tumour cell of origin, because retinal development is well understood and the initiating genetic lesion is well characterized. Identifying the cell of origin for this tumour would advance our understanding of how cellular context affects the requirement of specific mutations for cancer initiation and progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Retinal development.
Figure 2: The mature retina.
Figure 3: Proliferation during retinal development.
Figure 4: Progenitor and precursor cell of origin models of retinoblastoma.
Figure 5: Function of post-RB mutations in retinoblastoma.

Similar content being viewed by others

References

  1. Friend, S. H. et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323, 643–646 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997). The first study to show that deregulation of the Hedgehog pathway could lead to tumours in the developing cerebellum. Provides an excellent example of the connection between processes important for development and tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  3. Goodrich, L. V. & Scott, M. P. Hedgehog and patched in neural development and disease. Neuron 21, 1243–1257 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Wechsler-Reya, R. J. & Scott, M. P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22, 103–114 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Goldowitz, D. & Hamre, K. The cells and molecules that make a cerebellum. Trends Neurosci. 21, 375–382 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Dakubo, G. D. et al. Retinal ganglion cell-derived sonic hedgehog signaling is required for optic disc and stalk neuroepithelial cell development. Development 130, 2967–2980 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Jensen, A. M. & Wallace, V. A. Expression of Sonic hedgehog and its putative role as a precursor cell mitogen in the developing mouse retina. Development 124, 363–371 (1997).

    CAS  PubMed  Google Scholar 

  8. Taylor, M. D., Mainprize, T. G. & Rutka, J. T. Molecular insight into medulloblastoma and central nervous system primitive neuroectodermal tumor biology from hereditary syndromes: a review. Neurosurgery 47, 888–901 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, D. et al. Cell-specific effects of RB or RB/p107 loss on retinal development implicate an intrinsically death-resistant cell-of-origin in retinoblastoma. Cancer Cell 5, 539–551 (2004). Detailed analysis of the defects in RB/p107-deficient mouse retinae, which provided the first evidence that cells expressing markers of differentiated cell types proliferate but only a subset undergo apoptosis. These data support both the transistion cell of origin model and the idea that post-RB mutations impair differentiation not death.

    Article  CAS  PubMed  Google Scholar 

  10. MacPherson, D. et al. Cell type-specific effects of Rb deletion in the murine retina. Genes Dev. 18, 1681–1694 (2004). Shows that inactivating RB and the third family member, p130, also causes retinoblastoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, J., Schweers, B. & Dyer, M. A. The first knockout mouse model of retinoblastoma. Cell Cycle 3, 952–959 (2004). A Chx10 –Cre transgene was used to drive mosaic RB or RB and p53 inactivation on a p107 -null genetic background. Currently, these are two of the excellent preclinical models of retinoblastoma available for therapeutic studies.

    CAS  PubMed  Google Scholar 

  12. Marino, S., Vooijs, M., van Der Gulden, H., Jonkers, J. & Berns, A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 14, 994–1004 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. DiCiommo, D., Gallie, B. L. & Bremner, R. Retinoblastoma: the disease, gene and protein provide critical leads to understand cancer. Semin. Cancer Biol. 10, 255–269 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Bremner, R. & Balmain, A. Genetic changes in skin tumor progression: correlation between presence of a mutant ras gene and loss of heterozygosity on mouse chromosome 7. Cell 61, 407–417 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Bremner, R., Kemp, C. J. & Balmain, A. Induction of different genetic changes by different classes of chemical carcinogens during progression of mouse skin tumors. Mol. Carcinog. 11, 90–97 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Romer, J. T. et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblsatoma in Ptc1+/−, p53−/− mice. Cancer Cell 6, 229–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Dyer, M. A. Mouse models of childhood tumors of the nervous system. J. Clin. Pathol. 57, 561–576 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Classon, M. & Harlow, E. The retinoblastoma tumour suppressor in development and cancer. Nature Rev. Cancer 2, 910–917 (2002).

    Article  CAS  Google Scholar 

  19. Classon, M. & Dyson, N. p107 and p130: versatile proteins with interesting pockets. Exp. Cell Res. 264, 135–147 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Clarke, A. R. et al. Requirement for a functional Rb-1 gene in murine development. Nature 359, 328–330 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Maandag, E. C. et al. Developmental rescue of an embryonic-lethal mutation in the retinoblastoma gene in chimeric mice. EMBO J. 13, 4260–4268 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, E. Y. et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359, 288–294 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Robanus-Maandag, E. et al. p107 is a suppressor of retinoblastoma development in pRb-deficient mice. Genes Dev. 12, 1599–1609 (1998). Using chimeric mice, this was the first evidence that loss of p107 combined with loss of RB could lead to retinoblastoma in mice. These studies laid the foundation for subsequent conditional-knockout mouse studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sage, J., Miller, A. L., Perez-Mancera, P. A., Wysocki, J. M. & Jacks, T. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424, 223–228 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Dyer, M. A. & Cepko, C. L. Regulating proliferation during retinal development. Nature Rev. Neurosci. 2, 333–342 (2001).

    Article  CAS  Google Scholar 

  27. Livesey, F. J. & Cepko, C. L. Vertebrate neural cell-fate determination: lessons from the retina. Nature Rev. Neurosci. 2, 109–118 (2001).

    Article  CAS  Google Scholar 

  28. Zhu, X. et al. Mechanisms of loss of heterozygosity in retinoblastoma. Cytogenet. Cell Genet. 59, 248–252 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Harbour, J. W. Molecular basis of low-penetrance retinoblastoma. Arch. Ophthalmol. 119, 1699–1704 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, J. et al. Rb regulates proliferation and rod photoreceptor development in the mouse retina. Nature Genet. 36, 351–360 (2004). The first analysis of the role of RB in retinal progenitor cell proliferation and retinal development in the mouse. RB was found to have distinct roles in rod development and retinal progenitor cell proliferation.

    Article  PubMed  Google Scholar 

  31. Young, R. W. Cell proliferation during postnatal development of the retina in the mouse. Brain Res. 353, 229–239 (1985).

    Article  CAS  PubMed  Google Scholar 

  32. Young, R. W. Cell differentiation in the retina of the mouse. Anat. Rec. 212, 199–205 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Cepko, C. L., Austin, C. P., Yang, X., Alexiades, M. & Ezzeddine, D. Cell fate determination in the vertebrate retina. Proc. Natl Acad. Sci. USA 93, 589–595 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Belliveau, M. J. & Cepko, C. L. Extrinsic and intrinsic factors control the genesis of amacrine and cone cells in the rat retina. Development 126, 555–566 (1999).

    CAS  PubMed  Google Scholar 

  35. Belliveau, M. J., Young, T. L. & Cepko, C. L. Late retinal progenitor cells show intrinsic limitations in the production of cell types and the kinetics of opsin synthesis. J. Neurosci. 20, 2247–2254 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alexiades, M. R. & Cepko, C. L. Subsets of retinal progenitors display temporally regulated and distinct biases in the fates of their progeny. Development 124, 1119–1131 (1997).

    CAS  PubMed  Google Scholar 

  37. Ezzeddine, Z. D., Yang, X., DeChiara, T., Yancopoulos, G. & Cepko, C. L. Postmitotic cells fated to become rod photoreceptors can be respecified by CNTF treatment of the retina. Development 124, 1055–1067 (1997).

    CAS  PubMed  Google Scholar 

  38. Dyer, M. A. Regulation of proliferation, cell fate specification and differentiation by the homeodomain proteins Prox1, Six3, and Chx10 in the developing retina. Cell Cycle 2, 350–357 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Dyer, M. A., Livesey, F. J., Cepko, C. L. & Oliver, G. Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nature Genet. 34, 53–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Donovan, S. L. & Dyer, M. A. Regulation of proliferation in the developing central nervous system. Sem. Cell Dev. Biol (in the press).

  41. Dyer, M. A. & Cepko, C. L. p27Kip1 and p57Kip2 regulate proliferation in distinct retinal progenitor cell populations. J. Neurosci. 21, 4259–4271 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blackshaw, S. et al. Genomic analysis of mouse retinal development. PLoS Biol. 2, E247 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Blackshaw, S., Fraioli, R. E., Furukawa, T. & Cepko, C. L. Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes. Cell 107, 579–589 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Blackshaw, S. et al. MicroSAGE is highly representative and reproducible but reveals major differences in gene expression among samples obtained from similar tissues. Genome Biol. 4, R17 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nork, T. M., Schwartz, T. L., Doshi, H. M. & Millecchia, L. L. Retinoblastoma. Cell of origin. Arch. Ophthalmol. 113, 791–802 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Gallie, B. L., Campbell, C., Devlin, H., Duckett, A. & Squire, J. A. Developmental basis of retinal-specific induction of cancer by RB mutation. Cancer Res. 59, 1731s–1735s (1999).

    CAS  PubMed  Google Scholar 

  47. Zheng, L. & Lee, W. H. Retinoblastoma tumor suppressor and genome stability. Adv. Cancer Res. 85, 13–50 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Bremner, R., Chen, D., Pacal, M., Livne–Bar, I. & Agochiya, M. The Rb protein family in retinal development and retinoblatoma: New insights from new mouse models. Dev. Neurosci. (in the press).

  49. Hernando, E. et al. Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430, 797–802 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Rowan, S. & Cepko, C. L. Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Dev. Biol. 271, 388–402 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Liu, I. S. et al. Developmental expression of a novel murine homeobox gene (Chx10): evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron 13, 377–393 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Liu, W. et al. All Brn3 genes can promote retinal ganglion cell differentiation in the chick. Development 127, 3237–3247 (2000).

    CAS  PubMed  Google Scholar 

  53. Marquardt, T. et al. Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105, 43–55 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Xu, P. X. et al. Regulation of Pax6 expression is conserved between mice and flies. Development 126, 383–395 (1999).

    CAS  PubMed  Google Scholar 

  55. Furukawa, T., Morrow, E. M. & Cepko, C. L. Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91, 531–541 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Knudson, A. Mutation and cancer: statistical study of retinoblastoma. PNAS 68, 820–823 (1971).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cavenee, W. K. et al. Genetic origin of mutations predisposing to retinoblastoma. Science 228, 501–503 (1985).

    Article  CAS  PubMed  Google Scholar 

  58. Chen, D. et al. Genomic amplification in retinoblastoma narrowed to 0.6 megabase on chromosome 6p containing a kinesin-like gene, RBKIN. Cancer Res. 62, 967–971 (2002).

    CAS  PubMed  Google Scholar 

  59. Herzog, S. et al. Marked differences in unilateral isolated retinoblastomas from young and older children studied by comparative genomic hybridization. Hum. Genet. 108, 98–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Lillington, D. M. et al. Comparative genomic hybridization of 49 primary retinoblastoma tumors identifies chromosomal regions associated with histopathology, progression, and patient outcome. Genes Chromosom. Cancer 36, 121–128 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Mairal, A. et al. Detection of chromosome imbalances in retinoblastoma by parallel karyotype and CGH analyses. Genes Chromosom. Cancer 28, 370–379 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. O'Brien, J. M. et al. A transgenic mouse model for trilateral retinoblastoma. Arch. Ophthalmol. 108, 1145–1151 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. Windle, J. J. et al. Retinoblastoma in transgenic mice. Nature 343, 665–669 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. Donovan, S. L. & Dyer, M. A. Developmental defects in Rb-deficient retinae. Vision Res. 44, 3323–3333 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Armitage, P. & Doll, R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 8, 1–12 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Renan, M. J. How many mutations are required for tumorigenesis? Implications from human cancer data. Mol. Carcinog. 7, 139–146 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Lipinski, M. M. et al. Cell-autonomous and non-cell-autonomous functions of the Rb tumor suppressor in developing central nervous system. EMBO J. 20, 3402–3413 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. MacPherson, D. et al. Conditional mutation of Rb causes cell cycle defects without apoptosis in the central nervous system. Mol. Cell. Biol. 23, 1044–1053 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu, L. et al. Extra-embryonic function of Rb is essential for embryonic development and viability. Nature 421, 942–947 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Maandag, E. C. et al. Developmental rescue of an embryonic-lethal mutation in the retinoblastoma gene in chimeric mice. EMBO J. 13, 4260–4268 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ferguson, K. L. et al. Telencephalon-specific Rb knockouts reveal enhanced neurogenesis, survival and abnormal cortical development. EMBO J. 21, 3337–3346 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Muller, H. et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev. 15, 267–285 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Marino, S., Hoogervoorst, D., Brandner, S. & Berns, A. Rb and p107 are required for normal cerebellar development and granule cell survival but not for Purkinje cell persistence. Development 130, 3359–3368 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Jeon, C. J., Strettoi, E. & Masland, R. H. The major cell populations of the mouse retina. J. Neurosci. 18, 8936–8946 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cayouette, M. & Raff, M. The orientation of cell division influences cell-fate choice in the developing mammalian retina. Development 130, 2329–2339 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Burmeister, M. et al. Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation. Nature Genet. 12, 376–384 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Belecky-Adams, T. et al. Pax-6, Prox 1, and Chx10 homeobox gene expression correlates with phenotypic fate of retinal precursor cells. Invest. Ophthalmol. Vis. Sci. 38, 1293–1303 (1997).

    CAS  PubMed  Google Scholar 

  79. de Melo, J., Qiu, X., Du, G., Cristante, L. & Eisenstat, D. D. Dlx1, Dlx2, Pax6, Brn3b, and Chx10 homeobox gene expression defines the retinal ganglion and inner nuclear layers of the developing and adult mouse retina. J. Comp. Neurol. 461, 187–204 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Liu, W., Mo, Z. & Xiang, M. The Ath5 proneural genes function upstream of Brn3 POU domain transcription factor genes to promote retinal ganglion cell development. Proc. Natl Acad. Sci. USA 98, 1649–1654 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding for work on RB in the authors' laboratories is supported by grants from the National Institutes of Health, Research to Prevent Blindness, the National Science Foundation and the American Cancer Society (M.A.D.), and the Canadian Institutes of Health Research (R.B.). M.A.D. is a Pew Scholar in Biomedical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael A. Dyer or Rod Bremner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

BRN3B

Btf3

CHX10

CRX

cyclin D1

cyclin D3

Edr

Eya2

Fgf15

Mbdt1

p27

p57

p107

p130

PAX6

PTC

RB

SHH

National Cancer Institute

medulloblastoma

neuroblastoma

retinoblastoma

FURTHER INFORMATION

Michael A. Dyer's home page

Retinoblastoma

Rod Bremner's home page

Glossary

ECTOPIC CELL DIVISION

Cell division that would not normally occur during development or in the adult retina. Ectopic cell division does not necessarily refer to cancer cell cycles.

SYNTAXIN

Nervous-system-specific proteins implicated in the docking of synaptic vesicles.

Cre RETROVIRAL SYSTEM

By using genetically engineered mice with genes containing LoxP sites, retroviral infection can lead to gene inactivation in individual retinal progenitor cells in vivo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyer, M., Bremner, R. The search for the retinoblastoma cell of origin. Nat Rev Cancer 5, 91–101 (2005). https://doi.org/10.1038/nrc1545

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1545

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing