Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Cancer as a robust system: implications for anticancer therapy

Abstract

Cancers are extremely complex, heterogeneous diseases. Many approaches to anticancer treatment have had limited success — cures are still rare. A fundamental hurdle to cancer therapy is acquired tumour 'robustness'. The goal of this article is to present a perspective on cancer as a robust system to provide a framework from which the complexity of tumours can be approached to yield novel therapies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Feedback loops for hypoxia responses of tumour cells.
Figure 2: Simple computer simulations of robust and fragile cell cycles.
Figure 3: Complex interactions involving the p53 tumour suppressor.
Figure 4: Identification and manipulation of phase–space states in cellular dynamics.

Similar content being viewed by others

References

  1. McAdams, H. H. & Arkin, A. Stochastic mechanisms in gene expression. Proc. Natl Acad. Sci. USA 94, 814–819 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McAdams, H. H. & Arkin, A. It's a noisy business! Genetic regulation at the nanomolar scale. Trends Genet. 15, 65–69 (1999).

    CAS  PubMed  Google Scholar 

  3. Rao, C. V., Wolf, D. M. & Arkin, A. P. Control, exploitation and tolerance of intracellular noise. Nature 420, 231–237 (2002).

    CAS  PubMed  Google Scholar 

  4. Kitano, H. Systems biology: a brief overview. Science, 295, 1662–1664 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Kitano, H. Computational systems biology. Nature 420, 206–210 (2002).

    CAS  PubMed  Google Scholar 

  6. Alon, U. et al. Robustness in bacterial chemotaxis. Nature 397, 168–171 (1999).

    CAS  PubMed  Google Scholar 

  7. Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997).

    CAS  PubMed  Google Scholar 

  8. Yi, T. M. et al. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Natl Acad. Sci. USA 97, 4649–4653 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Morohashi, M. et al. Robustness as a measure of plausibility in models of biochemical networks. J. Theor. Biol. 216, 19–30 (2002).

    CAS  PubMed  Google Scholar 

  10. Ueda, H. R., Hagiwara, M. & Kitano, H. Robust oscillations within the interlocked feedback model of Drosophila circadian rhythm. J. Theor. Biol. 210, 401–406 (2001).

    CAS  PubMed  Google Scholar 

  11. Barkai, N. & Leibler, S. Circadian clocks limited by noise. Nature 403, 267–268 (2000).

    CAS  PubMed  Google Scholar 

  12. von Dassow, G. et al. The segment polarity network is a robust developmental module. Nature 406, 188–192 (2000).

    CAS  PubMed  Google Scholar 

  13. Meir, E. et al. Robustness, flexibility, and the role of lateral inhibition in the neurogenic network. Curr. Biol. 12, 778–786 (2002).

    CAS  PubMed  Google Scholar 

  14. McAdams, H. H. & Arkin, A. Simulation of prokaryotic genetic circuits. Annu. Rev. Biophys. Biomol. Struct. 27, 199–224 (1998).

    CAS  PubMed  Google Scholar 

  15. Little, J. W., Shepley, D. P. & Wert, D. W. Robustness of a gene regulatory circuit. EMBO J. 18, 4299–4307 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jeong, H. et al. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).

    CAS  PubMed  Google Scholar 

  17. Albert, R., Jeong, H. & Barabasi, A. L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).

    CAS  PubMed  Google Scholar 

  18. Kitano, H. Cancer robustness: tumour tactics. Nature 426, 125 (2003).

    CAS  PubMed  Google Scholar 

  19. Harris, J. F. et al. Dynamic heterogeneity: characterization of two cell lines derived from experimental lung metastases of mouse KHT fibrosarcoma. Invasion Metastasis 7, 217–229 (1987).

    CAS  PubMed  Google Scholar 

  20. Hill, R. P. et al. Dynamic heterogeneity: rapid generation of metastatic variants in mouse B16 melanoma cells. Science 224, 998–1001 (1984).

    CAS  PubMed  Google Scholar 

  21. Ling, V. et al. Dynamic heterogeneity and metastasis. J. Cell. Physiol. 3 (Suppl.), 99–103 (1984).

    CAS  Google Scholar 

  22. Harris, J. F. et al. Metastatic variants are generated spontaneously at a high rate in mouse KHT tumor. Proc. Natl Acad. Sci. USA 79, 5547–5551 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nowell, P. C. Mechanisms of tumor progression. Cancer Res. 46, 2203–2207 (1986).

    CAS  PubMed  Google Scholar 

  24. Nowell, P. C. Tumor progression: a brief historical perspective. Semin. Cancer Biol. 12, 261–266 (2002).

    CAS  PubMed  Google Scholar 

  25. Gorunova, L. et al. Cytogenetic analysis of pancreatic carcinomas: intratumor heterogeneity and nonrandom pattern of chromosome aberrations. Genes Chromosomes Cancer 23, 81–99 (1998).

    CAS  PubMed  Google Scholar 

  26. Gorunova, L. et al. Extensive cytogenetic heterogeneity in a benign retroperitoneal schwannoma. Cancer Genet. Cytogenet. 127, 148–154 (2001).

    CAS  PubMed  Google Scholar 

  27. Fujii, H. et al. Frequent genetic heterogeneity in the clonal evolution of gynecological carcinosarcoma and its influence on phenotypic diversity. Cancer Res. 60, 114–120 (2000).

    CAS  PubMed  Google Scholar 

  28. Frigyesi, A. et al. Power law distribution of chromosome aberrations in cancer. Cancer Res. 63, 7094–7097 (2003).

    CAS  PubMed  Google Scholar 

  29. Gonzalez-Garcia, I., Sole, R. V. & Costa, J. Metapopulation dynamics and spatial heterogeneity in cancer. Proc. Natl Acad. Sci. USA 99, 13085–13089 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Baisse, B. et al. Intratumor genetic heterogeneity in advanced human colorectal adenocarcinoma. Int. J. Cancer 93, 346–352 (2001).

    CAS  PubMed  Google Scholar 

  31. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    CAS  PubMed  Google Scholar 

  32. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    CAS  PubMed  Google Scholar 

  33. Tischfield, J. A. & Shao, C. Somatic recombination redux. Nature Genet. 33, 5–6 (2003).

    CAS  PubMed  Google Scholar 

  34. Haigis, K. M. & Dove, W. F. A Robertsonian translocation suppresses a somatic recombination pathway to loss of heterozygosity. Nature Genet. 33, 33–39 (2003).

    CAS  PubMed  Google Scholar 

  35. Rasnick, D. Aneuploidy theory explains tumor formation, the absence of immune surveillance, and the failure of chemotherapy. Cancer Genet. Cytogenet. 136, 66–72 (2002).

    CAS  PubMed  Google Scholar 

  36. Duesberg, P. & Rasnick, D. Aneuploidy, the somatic mutation that makes cancer a species of its own. Cell Motil. Cytoskeleton 47, 81–107 (2000).

    CAS  PubMed  Google Scholar 

  37. Li, R. et al. Aneuploidy vs. gene mutation hypothesis of cancer: recent study claims mutation but is found to support aneuploidy. Proc. Natl Acad. Sci. USA 97, 3236–3241 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Goldie, J. H. & Coldman, A. J. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat. Rep. 63, 1727–1733 (1979).

    CAS  PubMed  Google Scholar 

  39. Skipper, H. E. & Schabel, F. M. Tumor stem cell heterogeneity: implications with respect to classification of cancers by chemotherapeutic effect. Cancer Treat. Rep. 68, 43–61 (1984).

    CAS  PubMed  Google Scholar 

  40. Reya, T. et al. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    CAS  PubMed  Google Scholar 

  41. Eigen, M. Viral quasispecies. Sci. Am. 269, 42–49 (1993).

    CAS  PubMed  Google Scholar 

  42. Juliano, R. L. & Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455, 152–162 (1976).

    CAS  PubMed  Google Scholar 

  43. Nooter, K. & Herweijer, H. Multidrug resistance (mdr) genes in human cancer. Br. J. Cancer 63, 663–669 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, R. & Wang, H. MDM2 oncogene as a novel target for human cancer therapy. Curr. Pharm. Des. 6, 393–416 (2000).

    CAS  PubMed  Google Scholar 

  45. Zheleva, D. I., Lane, D. P. & Fischer, P. M. The p53–Mdm2 pathway: targets for the development of new anticancer therapeutics. Mini Rev. Med. Chem. 3, 257–270 (2003).

    CAS  PubMed  Google Scholar 

  46. Lev Bar-Or, R. et al. Generation of oscillations by the p53–Mdm2 feedback loop: a theoretical and experimental study. Proc. Natl Acad. Sci. USA 97, 11250–11255 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Radisky, D., Hagios, C. & Bissell, M. J. Tumors are unique organs defined by abnormal signaling and context. Semin. Cancer Biol. 11, 87–95 (2001).

    CAS  PubMed  Google Scholar 

  48. Bissell, M. J. & Radisky, D. Putting tumours in context. Nature Rev. Cancer 1, 46–54 (2001).

    CAS  Google Scholar 

  49. Kizaka-Kondoh, S. et al. Tumor hypoxia: A target for selective cancer therapy. Cancer Sci. 94, 1021–1028 (2003).

    CAS  PubMed  Google Scholar 

  50. Hockel, M. et al. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 56, 4509–4515 (1996).

    CAS  PubMed  Google Scholar 

  51. Hockel, M. & Vaupel, P. Biological consequences of tumor hypoxia. Semin. Oncol. 28 (Suppl. 8), 36–41 (2001).

    CAS  PubMed  Google Scholar 

  52. Hockel, M. & Vaupel, P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl Cancer Inst. 93, 266–276 (2001).

    CAS  PubMed  Google Scholar 

  53. Harris, A. L. Hypoxia — a key regulatory factor in tumour growth. Nature Rev. Cancer 2, 38–47 (2002).

    CAS  Google Scholar 

  54. Goonewardene, T. I., Sowter, H. M. & Harris, A. L. Hypoxia-induced pathways in breast cancer. Micros. Res. Tech. 59, 41–48 (2002).

    CAS  Google Scholar 

  55. Goldie, J. H. & Coldman, A. J. The genetic origin of drug resistance in neoplasms: implications for systemic therapy. Cancer Res. 44, 3643–3653 (1984).

    CAS  PubMed  Google Scholar 

  56. Boccardo, F. et al. Lack of effectiveness of adjuvant alternating chemotherapy in node-positive, estrogen-receptor-negative premenopausal breast cancer patients: results of a multicentric Italian study. The Breast Cancer Adjuvant Chemo-Hormone Therapy Cooperative Group (GROCTA). Cancer Invest. 15, 505–512 (1997).

    CAS  PubMed  Google Scholar 

  57. Chacon, R. et al. Less efficacy with alternating regimen as adjuvant chemotherapy in stage II node-positive breast cancer: results at 8 years (Pronacam 85). Br. J. Cancer 76, 545–550 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hochhaus, A. Cytogenetic and molecular mechanisms of resistance to imatinib. Semin. Hematol. 40 (Suppl. 3), 69–79 (2003).

    CAS  PubMed  Google Scholar 

  59. Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR–ABL gene mutation or amplification. Science 293, 876–880 (2001).

    CAS  PubMed  Google Scholar 

  60. Hochhaus, A. et al. Roots of clinical resistance to STI–571 cancer therapy. Science 293, 2163 (2001).

    CAS  PubMed  Google Scholar 

  61. Barthe, C. et al. Roots of clinical resistance to STI–571 cancer therapy. Science 293, 2163 (2001).

    CAS  PubMed  Google Scholar 

  62. Uhr, J. W. et al. Cancer dormancy: opportunities for new therapeutic approaches. Nature Med. 3, 505–509 (1997).

    CAS  PubMed  Google Scholar 

  63. Holmgren, L., O'Reilly, M. S. & Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med. 1, 149–153 (1995).

    CAS  PubMed  Google Scholar 

  64. Murray, C. Tumour dormancy: not so sleepy after all. Nature Med. 1, 117–118 (1995).

    CAS  PubMed  Google Scholar 

  65. Aguirre Ghiso, J. A., Kovalski, K. & Ossowski, L. Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J. Cell Biol. 147, 89–104 (1999).

    CAS  PubMed  Google Scholar 

  66. Aguirre-Ghiso, J. A. et al. ERK (MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38 (SAPK). Cancer Res. 63, 1684–1695 (2003).

    CAS  PubMed  Google Scholar 

  67. Aguirre-Ghiso, J. A. et al. Urokinase receptor and fibronectin regulate the ERK (MAPK) to p38 (MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol. Biol. Cell 12, 863–879 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Schirrmacher, V. T-cell immunity in the induction and maintenance of a tumour dormant state. Semin. Cancer Biol. 11, 285–295 (2001).

    CAS  PubMed  Google Scholar 

  69. Schirrmacher, V. et al. T cell memory, anergy and immunotherapy in breast cancer. J. Mammary Gland Biol. Neoplasia 7, 201–208 (2002).

    PubMed  Google Scholar 

  70. O'Reilly, M. S. et al. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nature Med. 2, 689–692 (1996).

    CAS  PubMed  Google Scholar 

  71. Boehm, T. et al. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404–407 (1997).

    CAS  PubMed  Google Scholar 

  72. Drevs, J. et al. Antiangiogenesis: current clinical data and future perspectives. Onkologie 25, 520–527 (2002).

    CAS  PubMed  Google Scholar 

  73. McCarty, M. F. et al. Promises and pitfalls of anti-angiogenic therapy in clinical trials. Trends Mol. Med. 9, 53–58 (2003).

    CAS  PubMed  Google Scholar 

  74. Naumov, G. N. et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res 62, 2162–2168 (2002).

    CAS  PubMed  Google Scholar 

  75. Naumov, G. N. et al. Solitary cancer cells as a possible source of tumour dormancy? Semin. Cancer Biol. 11, 271–276 (2001).

    CAS  PubMed  Google Scholar 

  76. Guba, M. et al. A primary tumor promotes dormancy of solitary tumor cells before inhibiting angiogenesis. Cancer Res. 61, 5575–5579 (2001).

    CAS  PubMed  Google Scholar 

  77. De Giorgi, V. et al. Immediate local and regional recurrence after the excision of a polypoid melanoma: tumor dormancy or tumor activation? Dermatol. Surg. 29, 664–667 (2003).

    PubMed  Google Scholar 

  78. Tsuruo, T. et al. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 41, 1967–1972 (1981).

    CAS  PubMed  Google Scholar 

  79. Kaye, S. B. Multidrug resistance: clinical relevance in solid tumours and strategies for circumvention. Curr. Opin. Oncol. 10 (Suppl. 1), S15–S19 (1998).

    PubMed  Google Scholar 

  80. Krishna, R. & Mayer, L. D. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur. J. Pharm. Sci. 11, 265–283 (2000).

    CAS  PubMed  Google Scholar 

  81. Krishna, R. & Mayer, L. D. Modulation of P-glycoprotein (PGP) mediated multidrug resistance (MDR) using chemosensitizers: recent advances in the design of selective MDR modulators. Curr. Med. Chem. Anti-Canc. Agents 1, 163–174 (2001).

    CAS  Google Scholar 

  82. Peters, G. J., Schornagel, J. H. & Milano, G. A. Clinical pharmacokinetics of anti-metabolites. Cancer Surv. 17, 123–156 (1993).

    CAS  PubMed  Google Scholar 

  83. Rodenburg, C. J. et al. Phase II study of combining vinblastine and cyclosporin-A to circumvent multidrug resistance in renal cell cancer. Ann. Oncol. 2, 305–306 (1991).

    CAS  PubMed  Google Scholar 

  84. Verweij, J. et al. A phase II study of epidoxorubicin in colorectal cancer and the use of cyclosporin-A in an attempt to reverse multidrug resistance. Br. J. Cancer 64, 361–364 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hasty, J., McMillen, D. & Collins, J. J. Engineered gene circuits. Nature 420, 224–230 (2002).

    CAS  PubMed  Google Scholar 

  86. Jain, M. et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297, 102–104 (2002).

    CAS  PubMed  Google Scholar 

  87. Weinstein, I. B. Addiction to oncogenes — the Achilles' heal of cancer. Science 297, 63–64 (2002).

    CAS  PubMed  Google Scholar 

  88. Weinstein, I. B. Disorders in cell circuitry during multistage carcinogenesis: the role of homeostasis. Carcinogenesis 21, 857–864 (2000).

    CAS  PubMed  Google Scholar 

  89. Garcia-Cao, I. et al. 'Super p53' mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J. 21, 6225–6235 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    CAS  PubMed  Google Scholar 

  91. Jin, S. & Levine, A. J. The p53 functional circuit. J. Cell Sci. 114, 4139–4140 (2001).

    CAS  PubMed  Google Scholar 

  92. Giaccia, A. J. & Kastan, M. B. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12, 2973–2983 (1998).

    CAS  PubMed  Google Scholar 

  93. Tanaka, H. et al. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404, 42–49 (2000).

    CAS  PubMed  Google Scholar 

  94. Imai, S. et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).

    CAS  PubMed  Google Scholar 

  95. Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107, 137–148 (2001).

    CAS  PubMed  Google Scholar 

  96. Smith, J. Human Sir2 and the 'silencing' of p53 activity. Trends Cell Biol. 12, 404–406 (2002).

    CAS  PubMed  Google Scholar 

  97. Denu, J. M. Linking chromatin function with metabolic networks: Sir2 family of NAD+-dependent deacetylases. Trends Biochem. Sci. 28, 41–48 (2003).

    CAS  PubMed  Google Scholar 

  98. Guarente, L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 14, 1021–1026 (2000).

    CAS  PubMed  Google Scholar 

  99. Koubova, J. & Guarente, L. How does calorie restriction work? Genes Dev. 17, 313–321 (2003).

    CAS  PubMed  Google Scholar 

  100. Shah, M. A. & Schwartz, G. K. Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin. Cancer Res. 7, 2168–2181 (2001).

    CAS  PubMed  Google Scholar 

  101. Halberg, F. et al. Toward a chronotherapy of neoplasia: tolerance of treatment depends upon host rhythms. Experientia 29, 909–934 (1973).

    CAS  PubMed  Google Scholar 

  102. Levi, F. Chronobiology and cancer. Pathol Biol. (Paris) 35, 960–968 (1987).

    CAS  PubMed  Google Scholar 

  103. Mormont, M. C. & Levi, F. Cancer chronotherapy: principles, applications, and perspectives. Cancer 97, 155–169 (2003).

    CAS  PubMed  Google Scholar 

  104. Blagosklonny, M. V. & Pardee, A. B. Exploiting cancer cell cycling for selective protection of normal cells. Cancer Res. 61, 4301–4305 (2001).

    CAS  PubMed  Google Scholar 

  105. Borisuk, M. T. & Tyson, J. J. Bifurcation analysis of a model of mitotic control in frog eggs. J. Theor. Biol. 195, 69–85 (1998).

    CAS  PubMed  Google Scholar 

  106. Prajna, S. & Papachristodoulou, A. Analysis of switched and hybrid systems — beyond piecewise quadratic methods. Proc. Am. Control Conf (2003).

  107. Prajna, S., Papachristodoulou, A. & Parrilo, P. A. Introducing SOSTOOLS: a general purpose sum of square programming solver. Proc. IEEE Conf. Decision Control (2002).

  108. Carlson, J. M. & Doyle, J. Highly optimized tolerance: a mechanism for power laws in designed systems. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60, 1412–1427 (1999).

    CAS  PubMed  Google Scholar 

  109. Carlson, J. M. & Doyle, J. Complexity and robustness. Proc. Natl Acad. Sci. USA 99 (Suppl. 1), 2538–2545 (2002).

    PubMed  PubMed Central  Google Scholar 

  110. Csete, M. E. & Doyle, J. C. Reverse engineering of biological complexity. Science 295, 1664–1669 (2002).

    CAS  PubMed  Google Scholar 

  111. Sole, R. V. Phase transitions in unstable cancer cell populations. Eur. Phys. J. B, 117–123 (2003).

    Google Scholar 

  112. Cahill, D. P. et al. Genetic instability and darwinian selection in tumours. Trends Cell. Biol. 9, M57–M60 (1999).

    CAS  PubMed  Google Scholar 

  113. Eigen, M. Error catastrophe and antiviral strategy. Proc. Natl Acad. Sci. USA 99, 13374–13376 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Loeb, L. A., Loeb, K. R. & Anderson, J. P. Multiple mutations and cancer. Proc. Natl Acad. Sci. USA 100, 776–781 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer 3, 721–732 (2003).

    CAS  Google Scholar 

  116. Levy, A. P., Levy, N. S. & Goldberg, M. A. Hypoxia-inducible protein binding to vascular endothelial growth factor mRNA and its modulation by the von Hippel-Lindau protein. J. Biol. Chem. 271, 25492–25497 (1996).

    CAS  PubMed  Google Scholar 

  117. Damert, A., Ikeda, E. & Risau, W. Activator-protein-1 binding potentiates the hypoxia-inducible-factor-1-mediated hypoxia-induced transcriptional activation of vascular-endothelial growth factor expression in C6 glioma cells. Biochem. J. 327, 419–423 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Mazure, N. M. et al. Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. Cancer Res. 56, 3436–3440 (1996).

    CAS  PubMed  Google Scholar 

  119. Staller, P. et al. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425, 307–311 (2003).

    CAS  PubMed  Google Scholar 

  120. Pennacchietti, S. et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3, 347–361 (2003).

    PubMed  Google Scholar 

  121. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    CAS  PubMed  Google Scholar 

  122. Mazurek, S. & Eigenbrodt, E. The tumor metabolome. Anticancer Res. 23, 1149–1154 (2003).

    CAS  PubMed  Google Scholar 

  123. Kenny, P. A. & Bissell, M. J. Tumor reversion: correction of malignant behavior by microenvironmental cues. Int. J. Cancer 107, 688–695 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Homey, B., Muller, A. & Zlotnik, A. Chemokines: agents for the immunotherapy of cancer? Nature Rev. Immunol. 2, 175–184 (2002).

    CAS  Google Scholar 

  125. Liotta, L. A. & Kohn, E. C. The microenvironment of the tumour–host interface. Nature 411, 375–379 (2001).

    CAS  PubMed  Google Scholar 

  126. Parish, C. R. Cancer immunotherapy: the past, the present and the future. Immunol. Cell Biol. 81, 106–113 (2003).

    CAS  PubMed  Google Scholar 

  127. Tyson, J. J. & Novak, B. in Computational Cell Biology (eds Fall, C., Marland, E., Wagner, J. & Tyson, J.) 261–284 (Springer-Verlag, New York, 2002).

    Google Scholar 

  128. Hursting, S. D. et al. Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans. Annu. Rev. Med. 54, 131–52 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author wishes to thank J. Doyle, M. Csete and T. Shiraishi for insightful discussions, anonymous reviewers for informative and constructive comments, and members of Sony Computer Science Laboratories, Inc. and the ERATO Kitano Symbiotic Systems Project for discussions. This research is, in part, supported by the Exploratory Research for Advanced Technology (ERATO) and Solution-Oriented Research for Science and Technology (SORST) programme (Japan Science and Technology Agency), the NEDO Grant (New Energy and Industrial Technology Development Organization (NEDO)/Japanese Ministry of Economy, Trade and Industry (METI)), the Special Coordination Funds for Promoting Science and Technology, the Center of Excellence Program for Keio University (Ministry of Education, Culture, Sports, Science, and Technology), the Rice Genome and Simulation Project (Japanese Ministry of Agriculture) and the Air Force Office of Scientific Research (AFOSR).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

leukaemia

LocusLink

ABL

BCR

HIF1

MDM2

MDR1

MYC

p53

uPAR

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitano, H. Cancer as a robust system: implications for anticancer therapy. Nat Rev Cancer 4, 227–235 (2004). https://doi.org/10.1038/nrc1300

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1300

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing