Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New prospects for targeting telomerase beyond the telomere

Key Points

  • Telomerase is a ribonucleoprotein complex responsible for maintaining chromosome-end structures called telomeres. Telomerase activity enables unlimited cell proliferation (immortality) in diverse human cancers.

  • Despite the cloning of the catalytic component of telomerase approximately 20 years ago and the central role of telomerase in diverse cancers, only one small-molecule telomerase inhibitor, imetelstat, has been tested in clinical trials.

  • Components of the telomerase complex have extra-telomeric activities that may contribute to cancer cell survival, proliferation and malignancy.

  • Recent advances in drug discovery technology may be leveraged in the identification and development of novel small-molecule inhibitors that simultaneously disrupt telomere maintenance and the non-canonical activities of telomerase components.

  • This Review outlines strategies for harnessing state-of-the-art drug discovery techniques to find novel cancer therapeutics that exploit multifaceted biological functions of core components of telomerase.

Abstract

Telomerase activity is responsible for the maintenance of chromosome end structures (telomeres) and cancer cell immortality in most human malignancies, making telomerase an attractive therapeutic target. The rationale for targeting components of the telomerase holoenzyme has been strengthened by accumulating evidence indicating that these molecules have extra-telomeric functions in tumour cell survival and proliferation. This Review discusses current knowledge of the biogenesis, structure and multiple functions of telomerase-associated molecules intertwined with recent advances in drug discovery approaches. We also describe the fertile ground available for the pursuit of next-generation small-molecule inhibitors of telomerase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Telomerase biogenesis and targeting strategies.

Similar content being viewed by others

References

  1. Shay, J. W. & Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787–791 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Greider, C. W. & Blackburn, E. H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405–413 (1985). A description of the discovery of the enzymatic activity responsible for the synthesis of telomeric DNA and its necessity for chromosome end replication.

    Article  CAS  PubMed  Google Scholar 

  4. Levy, M. Z., Allsopp, R. C., Futcher, A. B., Greider, C. W. & Harley, C. B. Telomere end-replication problem and cell aging. J. Mol. Biol. 225, 951–960 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Harley, C. B. Telomerase and cancer therapeutics. Nat. Rev. Cancer 8, 167–179 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Akiyama, M. et al. Effects of oligonucleotide N3′→P5′ thio-phosphoramidate (GRN163) targeting telomerase RNA in human multiple myeloma cells. Cancer Res. 63, 6187–6194 (2003).

    CAS  PubMed  Google Scholar 

  7. Asai, A. et al. A novel telomerase template antagonist (GRN163) as a potential anticancer agent. Cancer Res. 63, 3931–3939 (2003).

    CAS  PubMed  Google Scholar 

  8. Wang, E. S. et al. Telomerase inhibition with an oligonucleotide telomerase template antagonist: in vitro and in vivo studies in multiple myeloma and lymphoma. Blood 103, 258–266 (2004). Demonstrates that a TR agonist, a precursor of imetelstat, has more potent effects on tumour cells with short telomeres than on those with long telomeres.

    Article  CAS  PubMed  Google Scholar 

  9. Baerlocher, G. M. et al. Telomerase inhibitor imetelstat in patients with essential thrombocythemia. N. Engl. J. Med. 373, 920–928 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Tefferi, A. et al. A pilot study of the telomerase inhibitor imetelstat for myelofibrosis. N. Engl. J. Med. 373, 908–919 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Chiappori, A. A. et al. A randomized phase II study of the telomerase inhibitor imetelstat as maintenance therapy for advanced non-small-cell lung cancer. Ann. Oncol. 26, 354–362 (2015). Shows that imetelstat has limited efficacy in patients with lung cancer in a phase II trial.

    Article  CAS  PubMed  Google Scholar 

  12. Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. D'Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  16. Feng, J. et al. The RNA component of human telomerase. Science 269, 1236–1241 (1995). Reports the cloning and characterization of the human TR gene.

    Article  CAS  PubMed  Google Scholar 

  17. Meyerson, M. et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90, 785–795 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Weinrich, S. L. et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat. Genet. 17, 498–502 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Kilian, A. et al. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. Hum. Mol. Genet. 6, 2011–2019 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Harrington, L. et al. Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev. 11, 3109–3115 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nakamura, T. M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Cohen, S. B. et al. Protein composition of catalytically active human telomerase from immortal cells. Science 315, 1850–1853 (2007). Demonstrates the purification of catalytically active telomerase enzyme complexes comprising TERT, TR and dyskerin from human cells.

    Article  CAS  PubMed  Google Scholar 

  23. Mitchell, J. R., Wood, E. & Collins, K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402, 551–555 (1999). The first study to show that dyskerin associates with the human telomerase RNA component.

    Article  CAS  PubMed  Google Scholar 

  24. Fu, D. & Collins, K. Purification of human telomerase complexes identifies factors involved in telomerase biogenesis and telomere length regulation. Mol. Cell 28, 773–785 (2007). Demonstrates the affinity purification of human telomerase complexes containing proteins known to bind H/ACA box-containing snoRNAs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sauerwald, A. et al. Structure of active dimeric human telomerase. Nat. Struct. Mol. Biol. 20, 454–460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miracco, E. J., Jiang, J., Cash, D. D. & Feigon, J. Progress in structural studies of telomerase. Curr. Opin. Struct. Biol. 24, 115–124 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Jiang, J. et al. The architecture of Tetrahymena telomerase holoenzyme. Nature 496, 187–192 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maritz, M. F., Richards, L. A. & Mackenzie, K. L. Assessment and quantification of telomerase enzyme activity. Methods Mol. Biol. 965, 215–231 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Damm, K. et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J. 20, 6958–6968 (2001). Identifies a small-molecule compound that specifically inhibits telomerase-mediated telomere maintenance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Seimiya, H. et al. Telomere shortening and growth inhibition of human cancer cells by novel synthetic telomerase inhibitors MST-312, MST-295, and MST-1991. Mol. Cancer Ther. 1, 657–665 (2002).

    CAS  PubMed  Google Scholar 

  31. Naasani, I., Seimiya, H., Yamori, T. & Tsuruo, T. FJ5002: a potent telomerase inhibitor identified by exploiting the disease-oriented screening program with COMPARE analysis. Cancer Res. 59, 4004–4011 (1999).

    CAS  PubMed  Google Scholar 

  32. Hayakawa, N. et al. Isothiazolone derivatives selectively inhibit telomerase from human and rat cancer cells in vitro. Biochemistry 38, 11501–11507 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Yaswen, P. et al. Therapeutic targeting of replicative immortality. Semin. Cancer Biol. 5 (Suppl.) S104–S128 (2015).

    Article  CAS  Google Scholar 

  34. Jagadeesh, S., Kyo, S. & Banerjee, P. P. Genistein represses telomerase activity via both transcriptional and posttranslational mechanisms in human prostate cancer cells. Cancer Res. 66, 2107–2115 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Ramachandran, C., Fonseca, H. B., Jhabvala, P., Escalon, E. A. & Melnick, S. J. Curcumin inhibits telomerase activity through human telomerase reverse transcritpase in MCF-7 breast cancer cell line. Cancer Lett. 184, 1–6 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Wong, L. H. et al. A yeast chemical genetic screen identifies inhibitors of human telomerase. Chem. Biol. 20, 333–340 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Strahl, C. & Blackburn, E. H. Effects of reverse transcriptase inhibitors on telomere length and telomerase activity in two immortalized human cell lines. Mol. Cell. Biol. 16, 53–65 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shin-ya, K. et al. Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus. J. Am. Chem. Soc. 123, 1262–1263 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Izbicka, E. et al. Telomere-interactive agents affect proliferation rates and induce chromosomal destabilization in sea urchin embryos. Anticancer Drug Des. 14, 355–365 (1999).

    CAS  PubMed  Google Scholar 

  40. Tauchi, T. et al. Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: in vitro and in vivo studies in acute leukemia. Oncogene 25, 5719–5725 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Tauchi, T. et al. Activity of a novel G-quadruplex-interactive telomerase inhibitor, telomestatin (SOT-095), against human leukemia cells: involvement of ATM-dependent DNA damage response pathways. Oncogene 22, 5338–5347 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Maritz, M. F., Napier, C. E., Wen, V. W. & MacKenzie, K. L. Targeting telomerase in hematologic malignancy. Future Oncol. 6, 769–789 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Herbert, B. S. et al. Lipid modification of GRN163, an N3′→P5′ thio-phosphoramidate oligonucleotide, enhances the potency of telomerase inhibition. Oncogene 24, 5262–5268 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT00124189 (2015).

  45. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT01273090 (2014).

  46. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02598661 (2016).

  47. Thompson, P. A. et al. A phase I trial of imetelstat in children with refractory or recurrent solid tumors: a Children's Oncology Group Phase I Consortium Study (ADVL1112). Clin. Cancer Res. 19, 6578–6584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Engelhardt, M., Mackenzie, K., Drullinsky, P., Silver, R. T. & Moore, M. A. Telomerase activity and telomere length in acute and chronic leukemia, pre- and post-ex vivo culture. Cancer Res. 60, 610–617 (2000).

    CAS  PubMed  Google Scholar 

  49. Schuller, C. E., Jankowski, K. & Mackenzie, K. L. Telomere length of cord blood-derived CD34+ progenitors predicts erythroid proliferative potential. Leukemia 21, 983–991 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Jackson, S. R. et al. Antiadhesive effects of GRN163L — an oligonucleotide N3′→P5′ thio-phosphoramidate targeting telomerase. Cancer Res. 67, 1121–1129 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Frazier, K. S. Antisense oligonucleotide therapies: the promise and the challenges from a toxicologic pathologist's perspective. Toxicol. Pathol. 43, 78–89 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Yi, X., Shay, J. W. & Wright, W. E. Quantitation of telomerase components and hTERT mRNA splicing patterns in immortal human cells. Nucleic Acids Res. 29, 4818–4825 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ducrest, A. L., Szutorisz, H., Lingner, J. & Nabholz, M. Regulation of the human telomerase reverse transcriptase gene. Oncogene 21, 541–552 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Counter, C. M. et al. Telomerase activity is restored in human cells by ectopic expression of hTERT (hEST2), the catalytic subunit of telomerase. Oncogene 16, 1217–1222 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Vaziri, H. & Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279–282 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. MacKenzie, K. L., Franco, S., May, C., Sadelain, M. & Moore, M. A. Mass cultured human fibroblasts overexpressing hTERT encounter a growth crisis following an extended period of proliferation. Exp. Cell Res. 259, 336–350 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. MacKenzie, K. L. et al. Multiple stages of malignant transformation of human endothelial cells modelled by co-expression of telomerase reverse transcriptase, SV40 T antigen and oncogenic N-ras. Oncogene 21, 4200–4211 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Xie, M., Podlevsky, J. D., Qi, X., Bley, C. J. & Chen, J. J. A novel motif in telomerase reverse transcriptase regulates telomere repeat addition rate and processivity. Nucleic Acids Res. 38, 1982–1996 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Peng, Y., Mian, I. S. & Lue, N. F. Analysis of telomerase processivity: mechanistic similarity to HIV-1 reverse transcriptase and role in telomere maintenance. Mol. Cell 7, 1201–1211 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Gillis, A. J., Schuller, A. P. & Skordalakes, E. Structure of the Tribolium castaneum telomerase catalytic subunit TERT. Nature 455, 633–637 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Jacobs, S. A., Podell, E. R. & Cech, T. R. Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase. Nat. Struct. Mol. Biol. 13, 218–225 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Lingner, J. et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561–567 (1997). Identifies a eukaryotic TERT protein and characterizes reverse transcriptase motifs required for telomere maintenance.

    Article  CAS  PubMed  Google Scholar 

  64. Stewart, S. A. et al. Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc. Natl Acad. Sci. USA 99, 12606–12611 (2002). Demonstrates that ectopic expression of TERT transforms immortalized cells via an ALT mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fleisig, H. B. & Wong, J. M. Telomerase promotes efficient cell cycle kinetics and confers growth advantage to telomerase-negative transformed human cells. Oncogene 31, 954–965 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Sharma, G. G. et al. hTERT associates with human telomeres and enhances genomic stability and DNA repair. Oncogene 22, 131–146 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Gonzalez, O. G. et al. Telomerase stimulates ribosomal DNA transcription under hyperproliferative conditions. Nat. Commun. 5, 4599 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Smith, L. L., Coller, H. A. & Roberts, J. M. Telomerase modulates expression of growth-controlling genes and enhances cell proliferation. Nat. Cell Biol. 5, 474–479 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Mukherjee, S., Firpo, E. J., Wang, Y. & Roberts, J. M. Separation of telomerase functions by reverse genetics. Proc. Natl Acad. Sci. USA 108, E1363–E1371 (2011). Describes the use of a panel of TERT mutants to functionally demonstrate multiple aspects of telomerase function that are distinct from telomere maintenance.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ludwig, A. et al. Ribozyme cleavage of telomerase mRNA sensitizes breast epithelial cells to inhibitors of topoisomerase. Cancer Res. 61, 3053–3061 (2001).

    CAS  PubMed  Google Scholar 

  71. Cao, Y., Li, H., Deb, S. & Liu, J. P. TERT regulates cell survival independent of telomerase enzymatic activity. Oncogene 21, 3130–3138 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Luiten, R. M., Pene, J., Yssel, H. & Spits, H. Ectopic hTERT expression extends the life span of human CD4+ helper and regulatory T-cell clones and confers resistance to oxidative stress-induced apoptosis. Blood. 101, 4512–4519 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Dudognon, C. et al. Death receptor signaling regulatory function for telomerase: hTERT abolishes TRAIL-induced apoptosis, independently of telomere maintenance. Oncogene 23, 7469–7474 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Saretzki, G., Ludwig, A., von Zglinicki, T. & Runnebaum, I. B. Ribozyme-mediated telomerase inhibition induces immediate cell loss but not telomere shortening in ovarian cancer cells. Cancer Gene Ther. 8, 827–834 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Kraemer, K. et al. Antisense-mediated hTERT inhibition specifically reduces the growth of human bladder cancer cells. Clin. Cancer Res. 9, 3794–3800 (2003).

    CAS  PubMed  Google Scholar 

  76. Gandellini, P. et al. Down-regulation of human telomerase reverse transcriptase through specific activation of RNAi pathway quickly results in cancer cell growth impairment. Biochem. Pharmacol. 73, 1703–1714 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Baird, D. M. et al. Telomere instability in the male germline. Hum. Mol. Genet. 15, 45–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Xu, L. & Blackburn, E. H. Human cancer cells harbor T-stumps, a distinct class of extremely short telomeres. Mol. Cell 28, 315–327 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Choi, J. et al. TERT promotes epithelial proliferation through transcriptional control of a Myc- and Wnt-related developmental program. PLoS Genet. 4, e10 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Maida, Y. et al. An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature 461, 230–235 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Koh, C. M. et al. Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity. J. Clin. Invest. 125, 2109–2122 (2015). Demonstrates that TERT stabilizes MYC on chromatin to facilitate activation of transcriptional programmes involved in tumorigenesis.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ghosh, A. et al. Telomerase directly regulates NF-κB-dependent transcription. Nat. Cell Biol. 14, 1270–1281 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Park, J. I. et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 460, 66–72 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Listerman, I., Gazzaniga, F. S. & Blackburn, E. H. An investigation of the effects of the core protein telomerase reverse transcriptase on Wnt signaling in breast cancer cells. Mol. Cell. Biol. 34, 280–289 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Strong, M. A. et al. Phenotypes in mTERT+/− and mTERT−/− mice are due to short telomeres, not telomere-independent functions of telomerase reverse transcriptase. Mol. Cell. Biol. 31, 2369–2379 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kondo, Y. et al. Inhibition of telomerase increases the susceptibility of human malignant glioblastoma cells to cisplatin-induced apoptosis. Oncogene 16, 2243–2248 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, P., Chan, S. L., Fu, W., Mendoza, M. & Mattson, M. P. TERT suppresses apoptotis at a premitochondrial step by a mechanism requiring reverse transcriptase activity and 14-3-3 protein-binding ability. FASEB J. 17, 767–769 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Shin, K. H. et al. Introduction of human telomerase reverse transcriptase to normal human fibroblasts enhances DNA repair capacity. Clin. Cancer Res. 10, 2551–2560 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Masutomi, K. et al. The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc. Natl Acad. Sci. USA 102, 8222–8227 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lue, N. F. et al. Telomerase can act as a template- and RNA-independent terminal transferase. Proc. Natl Acad. Sci. USA 102, 9778–9783 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xi, L. & Cech, T. R. Inventory of telomerase components in human cells reveals multiple subpopulations of hTR and hTERT. Nucleic Acids Res. 42, 8565–8577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Akincilar, S. C. et al. Quantitative assessment of telomerase components in cancer cell lines. FEBS Lett. 589, 974–984 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Kellermann, G. et al. Identification of human telomerase assembly inhibitors enabled by a novel method to produce hTERT. Nucleic Acids Res. 43, e99 (2015). Describes a method for producing purified TERT in high quantities that could be applied to in vitro biochemical assays and small-molecule HTS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Higueruelo, A. P., Jubb, H. & Blundell, T. L. Protein–protein interactions as druggable targets: recent technological advances. Curr. Opin. Pharmacol. 13, 791–796 (2013). A concise review of novel assay formats and molecular libraries that can be used to identify small-molecule inhibitors of molecular targets previously considered undruggable.

    Article  CAS  PubMed  Google Scholar 

  96. Folini, M. et al. Antisense oligonucleotide-mediated inhibition of hTERT, but not hTERC, induces rapid cell growth decline and apoptosis in the absence of telomere shortening in human prostate cancer cells. Eur. J. Cancer 41, 624–634 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Zaffaroni, N., Pennati, M. & Folini, M. Validation of telomerase and survivin as anticancer therapeutic targets using ribozymes and small-interfering RNAs. Methods Mol. Biol. 361, 239–263 (2007).

    CAS  PubMed  Google Scholar 

  98. Takakura, M. et al. Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells. Cancer Res. 59, 551–557 (1999).

    CAS  PubMed  Google Scholar 

  99. Greenberg, R. A. et al. Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation. Oncogene 18, 1219–1226 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Horikawa, I., Cable, P. L., Afshari, C. & Barrett, J. C. Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene. Cancer Res. 59, 826–830 (1999).

    CAS  PubMed  Google Scholar 

  101. Grasselli, A. et al. Estrogen receptor-α and endothelial nitric oxide synthase nuclear complex regulates transcription of human telomerase. Circ. Res. 103, 34–42 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Lin, S. Y. & Elledge, S. J. Multiple tumor suppressor pathways negatively regulate telomerase. Cell 113, 881–889 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Maida, Y. et al. Direct activation of telomerase by EGF through Ets-mediated transactivation of TERT via MAP kinase signaling pathway. Oncogene 21, 4071–4079 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Cong, Y. S., Wen, J. & Bacchetti, S. The human telomerase catalytic subunit hTERT: organization of the gene and characterization of the promoter. Hum. Mol. Genet. 8, 137–142 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Moon, D. O., Kim, M. O., Lee, J. D., Choi, Y. H. & Kim, G. Y. Butein suppresses c-Myc-dependent transcription and Akt-dependent phosphorylation of hTERT in human leukemia cells. Cancer Lett. 286, 172–179 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Guo, Q. L. et al. Inhibition of human telomerase reverse transcriptase gene expression by gambogic acid in human hepatoma SMMC-7721 cells. Life Sci. 78, 1238–1245 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Bilsland, A. E. et al. Dynamic telomerase gene suppression via network effects of GSK3 inhibition. PLoS ONE 4, e6459 (2009). Demonstrates the power of cell-based assays for identifying small-molecule inhibitors of pathways required for transcription from the TERT promoter.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bilsland, A. E. et al. Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms. PLoS Comput. Biol. 10, e1003448 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Horn, S. et al. TERT promoter mutations in familial and sporadic melanoma. Science 339, 959–961 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Killela, P. J. et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc. Natl Acad. Sci. USA 110, 6021–6026 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li, Y. et al. Non-canonical NF-κB signalling and ETS1/2 cooperatively drive C250T mutant TERT promoter activation. Nat. Cell Biol. 17, 1327–1338 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Avilion, A. A. et al. Human telomerase RNA and telomerase activity in immortal cell lines and tumor tissues. Cancer Res. 56, 645–650 (1996).

    CAS  PubMed  Google Scholar 

  113. Bachand, F. & Autexier, C. Functional regions of human telomerase reverse transcriptase and human telomerase RNA required for telomerase activity and RNA–protein interactions. Mol. Cell. Biol. 21, 1888–1897 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mitchell, J. R. & Collins, K. Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcriptase. Mol. Cell 6, 361–371 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Fu, D. & Collins, K. Distinct biogenesis pathways for human telomerase RNA and H/ACA small nucleolar RNAs. Mol. Cell 11, 1361–1372 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Mitchell, J. R., Cheng, J. & Collins, K. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3 end. Mol. Cell. Biol. 19, 567–576 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rangarajan, S. & Friedman, S. H. Design, synthesis, and evaluation of phenanthridine derivatives targeting the telomerase RNA/DNA heteroduplex. Bioorg. Med. Chem. Lett. 17, 2267–2273 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Dominick, P. K., Keppler, B. R., Legassie, J. D., Moon, I. K. & Jarstfer, M. B. Nucleic acid-binding ligands identify new mechanisms to inhibit telomerase. Bioorg. Med. Chem. Lett. 14, 3467–3471 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Booy, E. P. et al. The RNA helicase RHAU (DHX36) unwinds a G4-quadruplex in human telomerase RNA and promotes the formation of the P1 helix template boundary. Nucleic Acids Res. 40, 4010–4024 (2012).

    Article  CAS  Google Scholar 

  120. Lattmann, S., Stadler, M. B., Vaughn, J. P., Akman, S. A. & Nagamine, Y. The DEAH-box RNA helicase RHAU binds an intramolecular RNA G-quadruplex in TERC and associates with telomerase holoenzyme. Nucleic Acids Res. 39, 9390–9404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shadrick, W. R. et al. Discovering new medicines targeting helicases: challenges and recent progress. J. Biomol. Screen. 18, 761–781 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nguyen, G. H. et al. A small molecule inhibitor of the BLM helicase modulates chromosome stability in human cells. Chem. Biol. 20, 55–62 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Keppler, B. R. & Jarstfer, M. B. Inhibition of telomerase activity by preventing proper assemblage. Biochemistry 43, 334–343 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Katunaric, M. & Zamolo, G. Modulating telomerase activity in tumor patients by targeting dyskerin binding site for hTR. Med. Hypotheses 79, 319–320. (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Keppler, B. R. & Jarstfer, M. B. A high-throughput assay for a human telomerase protein–human telomerase RNA interaction. Anal. Biochem. 353, 75–82 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Mills, N. L., Shelat, A. A. & Guy, R. K. Assay optimization and screening of RNA–protein interactions by AlphaScreen. J. Biomol. Screen. 12, 946–955 (2007). Describes the development of AlphaScreen-based detection assays for the identification of small-molecule inhibitors of biomolecular interactions.

    Article  CAS  PubMed  Google Scholar 

  127. Li, S., Crothers, J., Haqq, C. M. & Blackburn, E. H. Cellular and gene expression responses involved in the rapid growth inhibition of human cancer cells by RNA interference-mediated depletion of telomerase RNA. J. Biol. Chem. 280, 23709–23717 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Kedde, M. et al. Telomerase-independent regulation of ATR by human telomerase RNA. J. Biol. Chem. 281, 40503–40514 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Kang, S., Im, K., Baek, J., Yoon, S. & Min, H. Macro and small over micro: macromolecules and small molecules that regulate microRNAs. Chembiochem 15, 1071–1078 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Penchovsky, R. & Stoilova, C. C. Riboswitch-based antibacterial drug discovery using high-throughput screening methods. Expert Opin. Drug Discov. 8, 65–82 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Ecker, D. J. & Griffey, R. H. RNA as a small-molecule drug target: doubling the value of genomics. Drug Discov. Today 4, 420–429 (1999).

    Article  CAS  PubMed  Google Scholar 

  132. Wilson, W. D. & Li, K. Targeting RNA with small molecules. Curr. Med. Chem. 7, 73–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Xavier, K. A., Eder, P. S. & Giordano, T. RNA as a drug target: methods for biophysical characterization and screening. Trends Biotechnol. 18, 349–356 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Tran, T. & Disney, M. D. Identifying the preferred RNA motifs and chemotypes that interact by probing millions of combinations. Nat. Commun. 3, 1125 (2012). Describes a novel combinatorial platform to find small-molecule chemotypes that interact with specific RNA motifs to permit the design of small molecules that modulate RNA function.

    Article  CAS  PubMed  Google Scholar 

  135. Baugh, C., Wang, S., Li, B., Appleman, J. R. & Thompson, P. A. SCAN — a high-throughput assay for detecting small molecule binding to RNA targets. J. Biomol. Screen. 14, 219–229 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Pinto, I. G., Guilbert, C., Ulyanov, N. B., Stearns, J. & James, T. L. Discovery of ligands for a novel target, the human telomerase RNA, based on flexible-target virtual screening and NMR. J. Med. Chem. 51, 7205–7215 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Irwin, J. J. & Shoichet, B. K. ZINC — a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45, 177–182 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Venteicher, A. S., Meng, Z., Mason, P. J., Veenstra, T. D. & Artandi, S. E. Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell 132, 945–957 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Heiss, N. S. et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat. Genet. 19, 32–38 (1998).

    Article  CAS  PubMed  Google Scholar 

  140. Meier, U. T. & Blobel, G. NAP57, a mammalian nucleolar protein with a putative homolog in yeast and bacteria. J. Cell Biol. 127, 1505–1514 (1994).

    Article  CAS  PubMed  Google Scholar 

  141. Hamma, T. & Ferre-D'Amare, A. R. Pseudouridine synthases. Chem. Biol. 13, 1125–1135 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Kim, N. K., Theimer, C. A., Mitchell, J. R., Collins, K. & Feigon, J. Effect of pseudouridylation on the structure and activity of the catalytically essential P6.1 hairpin in human telomerase RNA. Nucleic Acids Res. 38, 6746–6756 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mochizuki, Y., He, J., Kulkarni, S., Bessler, M. & Mason, P. J. Mouse dyskerin mutations affect accumulation of telomerase RNA and small nucleolar RNA, telomerase activity, and ribosomal RNA processing. Proc. Natl Acad. Sci. USA 101, 10756–10761 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Watkins, N. J. et al. Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA 4, 1549–1568 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Jack, K. et al. rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol. Cell 44, 660–666 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Montanaro, L. et al. Novel dyskerin-mediated mechanism of p53 inactivation through defective mRNA translation. Cancer Res. 70, 4767–4777 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Montanaro, L. Dyskerin and cancer: more than telomerase. The defect in mRNA translation helps in explaining how a proliferative defect leads to cancer. J. Pathol. 222, 345–349 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Alawi, F. & Lin, P. Dyskerin is required for tumor cell growth through mechanisms that are independent of its role in telomerase and only partially related to its function in precursor rRNA processing. Mol. Carcinog. 50, 334–345 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Ruggero, D. et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 299, 259–262 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Ge, J. et al. Dyskerin ablation in mouse liver inhibits rRNA processing and cell division. Mol. Cell. Biol. 30, 413–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. Pereboom, T. C., van Weele, L. J., Bondt, A. & MacInnes, A. W. A zebrafish model of dyskeratosis congenita reveals hematopoietic stem cell formation failure resulting from ribosomal protein-mediated p53 stabilization. Blood 118, 5458–5465 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Boon, K. et al. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J. 20, 1383–1393 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Iritani, B. M. & Eisenman, R. N. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc. Natl Acad. Sci. USA 96, 13180–13185 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. O'Brien, R. et al. MYC-driven neuroblastomas are addicted to a telomerase-independent function of dyskerin. Cancer Res. 76, 2206–2218 (2016). Describes the telomerase-independent function and potential of dyskerin as a therapeutic target in neuroblastoma.

    Article  CAS  Google Scholar 

  155. Rocchi, L., Barbosa, A. J., Onofrillo, C., Del Rio, A. & Montanaro, L. Inhibition of human dyskerin as a new approach to target ribosome biogenesis. PLoS ONE 9, e101971 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Heiss, N. S. et al. Gene structure and expression of the mouse dyskeratosis congenita gene, Dkc1. Genomics 67, 153–163 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. He, J. et al. Targeted disruption of Dkc1, the gene mutated in X-linked dyskeratosis congenita, causes embryonic lethality in mice. Oncogene 21, 7740–7744 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Westin, E. R. et al. Telomere restoration and extension of proliferative lifespan in dyskeratosis congenita fibroblasts. Aging Cell 6, 383–394 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Knight, S. et al. Dyskeratosis Congenita (DC) Registry: identification of new features of DC. Br. J. Haematol. 103, 990–996 (1998).

    Article  CAS  PubMed  Google Scholar 

  160. Von Stedingk, K. et al. snoRNPs regulate telomerase activity in neuroblastoma and are associated with poor prognosis. Transl Oncol. 6, 447–457 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Alawi, F. & Lin, P. Loss of dyskerin reduces the accumulation of a subset of H/ACA snoRNA-derived miRNA. Cell Cycle 9, 2467–2469 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Montanaro, L. et al. Dyskerin expression influences the level of ribosomal RNA pseudo-uridylation and telomerase RNA component in human breast cancer. J. Pathol. 210, 10–18 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Sieron, P. et al. DKC1 overexpression associated with prostate cancer progression. Br. J. Cancer 101, 1410–1416 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kiss, T., Fayet-Lebaron, E. & Jady, B. E. Box H/ACA small ribonucleoproteins. Mol. Cell 37, 597–606 (2010). A review of the biogenesis, intracellular trafficking, structure and function of H/ACA RNPs.

    Article  PubMed  Google Scholar 

  165. Dez, C., Noaillac-Depeyre, J., Caizergues-Ferrer, M. & Henry, Y. Naf1p, an essential nucleoplasmic factor specifically required for accumulation of box H/ACA small nucleolar RNPs. Mol. Cell. Biol. 22, 7053–7065 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Darzacq, X. et al. Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. J. Cell Biol. 173, 207–218 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Fatica, A., Dlakic, M. & Tollervey, D. Naf1 p is a box H/ACA snoRNP assembly factor. RNA 8, 1502–1514 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Grozdanov, P. N., Roy, S., Kittur, N. & Meier, U. T. SHQ1 is required prior to NAF1 for assembly of H/ACA small nucleolar and telomerase RNPs. RNA 15, 1188–1197 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Holt, S. E. et al. Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev. 13, 817–826 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ivanov, A. A., Khuri, F. R. & Fu, H. Targeting protein–protein interactions as an anticancer strategy. Trends Pharmacol. Sci. 34, 393–400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Osterwald, S. et al. A three-dimensional colocalization RNA interference screening platform to elucidate the alternative lengthening of telomeres pathway. Biotechnol. J. 7, 103–116 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Stern, J. L., Zyner, K. G., Pickett, H. A., Cohen, S. B. & Bryan, T. M. Telomerase recruitment requires both TCAB1 and Cajal bodies independently. Mol. Cell. Biol. 32, 2384–2395 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cristofari, G. et al. Human telomerase RNA accumulation in Cajal bodies facilitates telomerase recruitment to telomeres and telomere elongation. Mol. Cell 27, 882–889 (2007). Demonstrates the functional importance of telomerase precursors localized in Cajal bodies.

    Article  CAS  PubMed  Google Scholar 

  174. Venteicher, A. S. et al. A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 323, 644–648 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Tang, M. et al. Disease mutant analysis identifies a new function of DAXX in telomerase regulation and telomere maintenance. J. Cell Sci. 128, 331–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Soohoo, C. Y. et al. Telomerase inhibitor PinX1 provides a link between TRF1 and telomerase to prevent telomere elongation. J. Biol. Chem. 286, 3894–3906 (2011).

    Article  CAS  PubMed  Google Scholar 

  177. Zhou, X. Z. & Lu, K. P. The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell 107, 347–359 (2001).

    Article  CAS  PubMed  Google Scholar 

  178. Yoo, J. E., Park, Y. N. & Oh, B. K. PinX1, a telomere repeat-binding factor 1 (TRF1)-interacting protein, maintains telomere integrity by modulating TRF1 homeostasis, the process in which human telomerase reverse transcriptase (hTERT) plays dual roles. J. Biol. Chem. 289, 6886–6898 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Banik, S. S. & Counter, C. M. Characterization of interactions between PinX1 and human telomerase subunits hTERT and hTR. J. Biol. Chem. 279, 51745–51748 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Zhong, F. L. et al. TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends. Cell 150, 481–494 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Abreu, E. et al. TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo. Mol. Cell. Biol. 30, 2971–2982 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Chen, L. Y., Redon, S. & Lingner, J. The human CST complex is a terminator of telomerase activity. Nature 488, 540–544 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Brenke, R. et al. Fragment-based identification of druggable 'hot spots' of proteins using Fourier domain correlation techniques. Bioinformatics 25, 621–627 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Bilsland, A. E., Cairney, C. J. & Keith, W. N. Targeting the telomere and shelterin complex for cancer therapy: current views and future perspectives. J. Cell. Mol. Med. 15, 179–186 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Sfeir, A. & de Lange, T. Removal of shelterin reveals the telomere end-protection problem. Science 336, 593–597 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Bywater, M. J. et al. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell 22, 51–65 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Quin, J. E. et al. Targeting the nucleolus for cancer intervention. Biochim. Biophys. Acta 1842, 802–816 (2014).

    Article  CAS  PubMed  Google Scholar 

  188. Engelhardt, M. et al. Telomerase regulation, cell cycle, and telomere stability in primitive hematopoietic cells. Blood 90, 182–193 (1997).

    CAS  PubMed  Google Scholar 

  189. Wright, W. E., Piatyszek, M. A., Rainey, W. E., Byrd, W. & Shay, J. W. Telomerase activity in human germline and embryonic tissues and cells. Dev. Genet. 18, 173–179 (1996).

    Article  CAS  PubMed  Google Scholar 

  190. Samper, E. et al. Long-term repopulating ability of telomerase-deficient murine hematopoietic stem cells. Blood 99, 2767–2775 (2002).

    Article  CAS  PubMed  Google Scholar 

  191. Imamura, S. et al. A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis. PLoS ONE 3, e3364 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Sarin, K. Y. et al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 436, 1048–1052 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Drygin, D., O'Brien, S. E., Hannan, R. D., McArthur, G. A. & Von Hoff, D. D. Targeting the nucleolus for cancer-specific activation of p53. Drug Discov. Today 19, 259–265 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. Henras, A. et al. Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO J. 17, 7078–7090 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Pogacic, V. D., F. & Filipowicz, W. Human H/ACA small nucleolar RNPs and telomerase share evolutionarily conserved proteins NHP2 and NOP10. Mol. Cell. Biol. 20, 9028–9040 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Girard, J. P. et al. GAR1 is an essential small nucleolar RNP protein required for pre-rRNA processing in yeast. EMBO J. 11, 673–682 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Liu, D. et al. PTOP interacts with POT1 and regulates its localization to telomeres. Nat. Cell Biol. 6, 673–680 (2004).

    Article  CAS  PubMed  Google Scholar 

  198. Xin, H. et al. TPP1 is a homologue of ciliate TEBP-β and interacts with POT1 to recruit telomerase. Nature 445, 559–562 (2007).

    Article  CAS  PubMed  Google Scholar 

  199. Nandakumar, J. et al. The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature 492, 285–289 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Tang, J. et al. Critical role for Daxx in regulating Mdm2. Nat. Cell Biol. 8, 855–862 (2006).

    Article  CAS  PubMed  Google Scholar 

  201. Hollenbach, A. D., McPherson, C. J., Mientjes, E. J., Iyengar, R. & Grosveld, G. Daxx and histone deacetylase II associate with chromatin through an interaction with core histones and the chromatin-associated protein Dek. J. Cell Sci. 115, 3319–3330 (2002).

    CAS  PubMed  Google Scholar 

  202. Forsythe, H. L., Jarvis, J. L., Turner, J. W., Elmore, L. W. & Holt, S. E. Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. J. Biol. Chem. 276, 15571–15574 (2001).

    Article  CAS  PubMed  Google Scholar 

  203. Isaac, C., Yang, Y. & Meier, U. T. Nopp140 functions as a molecular link between the nucleolus and the coiled bodies. J. Cell Biol. 142, 319–329 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Yang, Y. et al. Conserved composition of mammalian box H/ACA and box C/D small nucleolar ribonucleoprotein particles and their interaction with the common factor Nopp140. Mol. Biol. Cell 11, 567–577 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Renvoise, B. et al. The loss of the snoRNP chaperone Nopp140 from Cajal bodies of patient fibroblasts correlates with the severity of spinal muscular atrophy. Hum. Mol. Genet. 18, 1181–1189 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Gallant, P. Control of transcription by Pontin and Reptin. Trends Cell Biol. 17, 187–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  207. Zhu, Q. et al. GNL3L stabilizes the TRF1 complex and promotes mitotic transition. J. Cell Biol. 185, 827–839 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Du, X. et al. The homologous putative GTPases Grn1p from fission yeast and the human GNL3L are required for growth and play a role in processing of nucleolar pre-rRNA. Mol. Biol. Cell 17, 460–474 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Sexton, A. N. & Collins, K. The 5′ guanosine tracts of human telomerase RNA are recognized by the G-quadruplex binding domain of the RNA helicase DHX36 and function to increase RNA accumulation. Mol. Cell. Biol. 31, 736–743 (2011).

    Article  CAS  PubMed  Google Scholar 

  210. Snow, B. E. et al. Functional conservation of the telomerase protein Est1p in humans. Curr. Biol. 13, 698–704 (2003).

    Article  CAS  PubMed  Google Scholar 

  211. Reichenbach, P. et al. A human homolog of yeast Est1 associates with telomerase and uncaps chromosome ends when overexpressed. Curr. Biol. 13, 568–574 (2003).

    Article  CAS  PubMed  Google Scholar 

  212. Page, M. F., Carr, B., Anders, K. R., Grimson, A. & Anderson, P. SMG-2 is a phosphorylated protein required for mRNA surveillance in Caenorhabditis elegans and related to Upf1p of yeast. Mol. Cell. Biol. 19, 5943–5951 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Chawla, R. et al. Human UPF1 interacts with TPP1 and telomerase and sustains telomere leading-strand replication. EMBO J. 30, 4047–4058 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Fu, W., Lu, C. & Mattson, M. P. Telomerase mediates the cell survival-promoting actions of brain-derived neurotrophic factor and secreted amyloid precursor protein in developing hippocampal neurons. J. Neurosci. 22, 10710–10719 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Zhu, J., Wang, H., Bishop, J. M. & Blackburn, E. H. Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening. Proc. Natl Acad. Sci. USA 96, 3723–3728 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Li, S., Ferguson, M. J., Hawkins, C. J., Smith, C. & Elwood, N. J. Human telomerase reverse transcriptase protects hematopoietic progenitor TF-1 cells from death and quiescence induced by cytokine withdrawal. Leukemia 20, 1270–1278 (2006).

    Article  CAS  PubMed  Google Scholar 

  217. Nitta, E. et al. Telomerase reverse transcriptase protects ATM-deficient hematopoietic stem cells from ROS-induced apoptosis through a telomere-independent mechanism. Blood 117, 4169–4180 (2011).

    Article  CAS  PubMed  Google Scholar 

  218. Gomez, D. E., Armando, R. G. & Alonso, D. F. AZT as a telomerase inhibitor. Front. Oncol. 2, 113 (2012).

    PubMed  PubMed Central  Google Scholar 

  219. Hukezalie, K. R., Thumati, N. R., Cote, H. C. & Wong, J. M. In vitro and ex vivo inhibition of human telomerase by anti-HIV nucleoside reverse transcriptase inhibitors (NRTIs) but not by non-NRTIs. PLoS ONE 7, e47505 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. El-Daly, H. et al. Selective cytotoxicity and telomere damage in leukemia cells using the telomerase inhibitor BIBR1532. Blood 105, 1742–1749 (2005).

    Article  CAS  PubMed  Google Scholar 

  221. Naasani, I., Seimiya, H. & Tsuruo, T. Telomerase inhibition, telomere shortening, and senescence of cancer cells by tea catechins. Biochem. Biophys. Res. Commun. 249, 391–396 (1998).

    Article  CAS  PubMed  Google Scholar 

  222. Gowan, S. M., Heald, R., Stevens, M. F. & Kelland, L. R. Potent inhibition of telomerase by small-molecule pentacyclic acridines capable of interacting with G-quadruplexes. Mol. Pharmacol. 60, 981–988 (2001).

    Article  CAS  PubMed  Google Scholar 

  223. Villa, R. et al. Inhibition of telomerase activity by geldanamycin and 17-allylamino, 17-demethoxygeldanamycin in human melanoma cells. Carcinogenesis 24, 851–859 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Children's Cancer Institute Australia is affiliated with University of New South Wales, Australia, and the Sydney Children's Hospitals Network. The authors acknowledge financial support from the Cancer Council New South Wales (RG 15-16), the Australian Cancer Research Foundation, the Cancer Institute New South Wales (15/RIG/1-01), Therapeutic Innovation Australia (NCRIS 2015) and Cancer Therapeutics CRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen L. MacKenzie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Alternative lengthening of telomeres

A recombination-based mechanism of telomere lengthening that operates in cancer cells in the absence of telomerase.

High-content imaging

Automated imaging of fluorescent stains or tags used to quantify changes in specific cellular processes, phenotypes or subcellular components.

G-quadruplex

A nucleic acid secondary structure that forms in guanine-rich regions involving the stacking of square planar structures each formed by four guanines.

Essential thrombocythaemia

A rare blood disorder characterized by the overproduction of platelets by megakaryocytes in the bone marrow.

Myelofibrosis

A rare clonal bone marrow disorder in which haematopoiesis is overtaken by the production of fibrous tissue.

Thrombocytopenia

A disorder featuring abnormally low platelet counts.

Megakaryocyte

A bone marrow cell that produces small cell bodies called platelets that are involved in blood clotting.

Nucleotide excision repair

A multistep DNA repair mechanism that removes and repairs DNA damage caused by radiation and chemicals.

Terminal transferase

A template-independent polymerase that adds deoxynucleotides to the 3′ hydroxyl terminus of DNA.

AlphaScreen technology

(amplified luminescent proximity homogeneous assay screen). A homogeneous bead-based proximity assay used to measure the interaction between two biological molecules.

Small nucleolar RNAs

(snoRNAs). A class of small RNA molecules localized in nucleoli that guide chemical modifications of other RNAs, such as rRNAs and tRNAs.

Small Cajol body-specific RNAs

(scaRNAs). Small RNAs that specifically localize to Cajal bodies and function to guide the modification (methylation and pseudouridinylation) of spliceosomal RNAs.

Cajal bodies

Nuclear organelles adjacent to nucleoli in proliferating cells that are involved in the biogenesis of small nuclear ribonucleoproteins.

Solution-based two-dimensional combinatorial screening

An array-based method for identifying interactions between specific RNA motifs and small molecules.

Dyskeratosis congenita

A rare inherited disorder caused by mutation in the DKC1 gene (which encodes dyskerin) and characterized by multiple organ failure.

Structure-based design

A form of rational drug design that relies on the three-dimensional structure of a specific biomolecular target.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arndt, G., MacKenzie, K. New prospects for targeting telomerase beyond the telomere. Nat Rev Cancer 16, 508–524 (2016). https://doi.org/10.1038/nrc.2016.55

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.55

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer