Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DNA damage and the balance between survival and death in cancer biology

Key Points

  • The constant deleterious modification of DNA by reactive molecules, endogenously or exogenously generated, is offset by protective processes that are initiated by the DNA damage response.

  • The interplay of the diverse signalling cascades (DNA damage response) that originate from the interference of DNA lesions with replication and the transcriptome leads to the activation of DNA repair, autophagy, senescence, apoptosis and necroptosis.

  • Aspects of how post-translational modifications of the tumour suppressor p53 determine the switch between these end points are discussed.

  • The crosstalk between autophagy, senescence, apoptosis and regulated necrosis is also discussed, focusing on the importance of thresholds for deciding cell fate.

  • Throughout this Review, emphasis is placed on how DNA damage and DNA repair fit within the complex cellular context.

Abstract

DNA is vulnerable to damage resulting from endogenous metabolites, environmental and dietary carcinogens, some anti-inflammatory drugs, and genotoxic cancer therapeutics. Cells respond to DNA damage by activating complex signalling networks that decide cell fate, promoting not only DNA repair and survival but also cell death. The decision between cell survival and death following DNA damage rests on factors that are involved in DNA damage recognition, and DNA repair and damage tolerance, as well as on factors involved in the activation of apoptosis, necrosis, autophagy and senescence. The pathways that dictate cell fate are entwined and have key roles in cancer initiation and progression. Furthermore, they determine the outcome of cancer therapy with genotoxic drugs. Understanding the molecular basis of these pathways is important not only for gaining insight into carcinogenesis, but also in promoting successful cancer therapy. In this Review, we describe key decision-making nodes in the complex interplay between cell survival and death following DNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular consequences of DNA damage.
Figure 2: DNA damage-dependent apoptosis.
Figure 3: The DNA damage response activates both pro-survival and pro-death signalling.
Figure 4: DNA damage-dependent senescence.
Figure 5: DNA damage-dependent autophagy.

Similar content being viewed by others

References

  1. Voulgaridou, G. P., Anestopoulos, I., Franco, R., Panayiotidis, M. I. & Pappa, A. DNA damage induced by endogenous aldehydes: current state of knowledge. Mutat. Res. 711, 13–27 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Fialkow, L., Wang, Y. & Downey, G. P. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic. Biol. Med. 42, 153–164 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Kielbassa, C., Roza, L. & Epe, B. Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis 18, 811–816 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Cadet, J., Ravanat, J. L., TavernaPorro, M., Menoni, H. & Angelov, D. Oxidatively generated complex DNA damage: tandem and clustered lesions. Cancer Lett. 327, 5–15 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Roos, W. P. & Kaina, B. DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett. 332, 237–248 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Dipple, A. DNA adducts of chemical carcinogens. Carcinogenesis 16, 437–441 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Miller, E. C. & Miller, J. A. Mechanisms of chemical carcinogenesis. Cancer 47, 1055–1064 (1981).

    Article  CAS  PubMed  Google Scholar 

  8. Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Roos, W. P. & Kaina, B. DNA damage-induced cell death by apoptosis. Trends Mol. Med. 12, 440–450 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Lowe, S. W. & Lin, A. W. Apoptosis in cancer. Carcinogenesis 21, 485–495 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Fulda, S. Cell death and survival signaling in oncogenesis. Klin. Padiatr. 222, 340–344 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Helleday, T., Petermann, E., Lundin, C., Hodgson, B. & Sharma, R. A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 8, 193–204 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Fu, D., Calvo, J. A. & Samson, L. D. Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat. Rev. Cancer 12, 104–120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaina, B., Christmann, M., Naumann, S. & Roos, W. P. MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst.) 6, 1079–1099 (2007).

    Article  CAS  Google Scholar 

  15. Ensminger, M. et al. DNA breaks and chromosomal aberrations arise when replication meets base excision repair. J. Cell Biol. 206, 29–43 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zeman, M. K. & Cimprich, K. A. Causes and consequences of replication stress. Nat. Cell Biol. 16, 2–9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352–1355 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Ando, K. et al. PIDD death-domain phosphorylation by ATM controls prodeath versus prosurvival PIDDosome signaling. Mol. Cell 47, 681–693 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lips, J. & Kaina, B. DNA double-strand breaks trigger apoptosis in p53-deficient fibroblasts. Carcinogenesis 22, 579–585 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Virag, L., Robaszkiewicz, A., Rodriguez-Vargas, J. M. & Oliver, F. J. Poly(ADP-ribose) signaling in cell death. Mol. Aspects Med. 34, 1153–1167 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Chiu, L. Y., Ho, F. M., Shiah, S. G., Chang, Y. & Lin, W. W. Oxidative stress initiates DNA damager MNNG-induced poly(ADP-ribose)polymerase-1-dependent parthanatos cell death. Biochem. Pharmacol. 81, 459–470 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Zhou, Z. D., Chan, C. H., Xiao, Z. C. & Tan, E. K. Ring finger protein 146/Iduna is a poly(ADP-ribose) polymer binding and PARsylation dependent E3 ubiquitin ligase. Cell Adh. Migr. 5, 463–471 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Roos, W. P. et al. The translesion polymerase Rev3L in the tolerance of alkylating anticancer drugs. Mol. Pharmacol. 76, 927–934 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Ashour, M. E., Atteya, R. & El-Khamisy, S. F. Topoisomerase-mediated chromosomal break repair: an emerging player in many games. Nat. Rev. Cancer 15, 137–151 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Stingele, J., Habermann, B. & Jentsch, S. DNA–protein crosslink repair: proteases as DNA repair enzymes. Trends Biochem. Sci. 40, 67–71 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998). Identification of a specific marker of DSBs, namely, the phosphorylated form of H2AX ( γ H2AX), greatly stimulated research on DNA damage. γ H2AX is currently the most sensitive marker for DSBs and blocked replication forks.

    Article  CAS  PubMed  Google Scholar 

  27. Eich, M., Roos, W. P., Nikolova, T. & Kaina, B. Contribution of ATM and ATR to the resistance of glioblastoma and malignant melanoma cells to the methylating anticancer drug temozolomide. Mol. Cancer Ther. 12, 2529–2540 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Stankovic, T. et al. ATM mutations in sporadic lymphoid tumours. Leuk. Lymphoma 43, 1563–1571 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Kim, H. et al. Having pancreatic cancer with tumoral loss of ATM and normal TP53 protein expression is associated with a poorer prognosis. Clin. Cancer Res. 20, 1865–1872 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pusapati, R. V. et al. ATM promotes apoptosis and suppresses tumorigenesis in response to Myc. Proc. Natl Acad. Sci. USA 103, 1446–1451 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bitomsky, N. & Hofmann, T. G. Apoptosis and autophagy: regulation of apoptosis by DNA damage signalling — roles of p53, 73 and HIPK2. FEBS J. 276, 6074–6083 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Dahal, G. R. et al. Caspase-2 cleaves DNA fragmentation factor (DFF45)/inhibitor of caspase-activated DNase (ICAD). Arch. Biochem. Biophys. 468, 134–139 (2007). Here, the authors demonstrated a direct link between nuclear caspase 2 and the apoptosis-triggering nuclease CAD.

    Article  CAS  PubMed  Google Scholar 

  33. Bernstein, C., Bernstein, H., Payne, C. M. & Garewal, H. DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat. Res. 511, 145–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Xu, Y. & Baltimore, D. Dual roles of ATM in the cellular response to radiation and in cell growth control. Genes Dev. 10, 2401–2410 (1996). In this paper it is shown, using Atm -knockout mice, that ATM plays a role in the DDR to ionizing radiation.

    Article  CAS  PubMed  Google Scholar 

  35. Swift, M., Morrell, D., Massey, R. B. & Chase, C. L. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N. Engl. J. Med. 325, 1831–1836 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Thompson, D. et al. Cancer risks and mortality in heterozygous ATM mutation carriers. J. Natl Cancer Inst. 97, 813–822 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Tanaka, A. et al. Germline mutation in ATR in autosomal- dominant oropharyngeal cancer syndrome. Am. J. Hum. Genet. 90, 511–517 (2012). In references 35–37, evidence is provided that mutations in ATM and ATR can predispose to cancer development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khanna, K. K. Cancer risk and the ATM gene: a continuing debate. J. Natl Cancer Inst. 92, 795–802 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Galluzzi, L., Vitale, I., Vacchelli, E. & Kroemer, G. Cell death signaling and anticancer therapy. Front. Oncol. 1, 5 (2011).

    PubMed  PubMed Central  Google Scholar 

  40. Helleday, T. Homologous recombination in cancer development, treatment and development of drug resistance. Carcinogenesis 31, 955–960 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Sale, J. E. Competition, collaboration and coordination—determining how cells bypass DNA damage. J. Cell Sci. 125, 1633–1643 (2012).

    CAS  PubMed  Google Scholar 

  42. Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. & Kroemer, G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 11, 700–714 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Bartek, J. & Lukas, J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol. 19, 238–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Vakifahmetoglu, H., Olsson, M. & Zhivotovsky, B. Death through a tragedy: mitotic catastrophe. Cell Death Differ. 15, 1153–1162 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Lahav, G. et al. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat. Genet. 36, 147–150 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, X. P., Liu, F., Cheng, Z. & Wang, W. Cell fate decision mediated by p53 pulses. Proc. Natl Acad. Sci. USA 106, 12245–12250 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tian, X. J., Liu, F., Zhang, X. P., Li, J. & Wang, W. A two-step mechanism for cell fate decision by coordination of nuclear and mitochondrial p53 activities. PLoS ONE 7, e38164 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Inga, A., Storici, F., Darden, T. A. & Resnick, M. A. Differential transactivation by the p53 transcription factor is highly dependent on p53 level and promoter target sequence. Mol. Cell. Biol. 22, 8612–8625 (2002). The differential binding affinity of p53 for target promoters and its contribution to the different functions of p53 was demonstrated in this work.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nicol, S. M. et al. The RNA helicase p68 (DDX5) is selectively required for the induction of p53-dependent p21 expression and cell-cycle arrest after DNA damage. Oncogene 32, 3461–3469 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Tanaka, T. Ohkubo, S., Tatsuno, I. & Prives, C. hCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes. Cell 130, 638–650 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Sullivan, A. & Lu, X. ASPP: a new family of oncogenes and tumour suppressor genes. Br. J. Cancer 96, 196–200 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lettre, G. et al. Genome-wide RNAi identifies p53-dependent and -independent regulators of germ cell apoptosis in C. elegans. Cell Death Differ. 11, 1198–1203 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Loughery, J., Cox, M., Smith, L. M. & Meek, D. W. Critical role for p53-serine 15 phosphorylation in stimulating transactivation at p53-responsive promoters. Nucleic Acids Res. 42, 7666–7680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jabbur, J. R., Huang, P. & Zhang, W. DNA damage-induced phosphorylation of p53 at serine 20 correlates with p21 and Mdm-2 induction in vivo. Oncogene 19, 6203–6208 (2000). References 53 and 54 show that p53 phosphorylated at Ser15 and Ser20 displays different roles in auto-regulation and cell cycle checkpoint activation.

    Article  CAS  PubMed  Google Scholar 

  55. Pietsch, E. C., Sykes, S. M., McMahon, S. B. & Murphy, M. E. The p53 family and programmed cell death. Oncogene 27, 6507–6521 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ichwan, S. J. et al. Defect in serine 46 phosphorylation of p53 contributes to acquisition of p53 resistance in oral squamous cell carcinoma cells. Oncogene 25, 1216–1224 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Mayo, L. D. et al. Phosphorylation of human p53 at serine 46 determines promoter selection and whether apoptosis is attenuated or amplified. J. Biol. Chem. 280, 25953–25959 (2005). In this paper it is shown that p53 phosphorylated at Ser46 specifically activates pro-apoptotic genes.

    Article  CAS  PubMed  Google Scholar 

  58. Oda, K. et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849–862 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Hofmann, T. G. et al. Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat. Cell Biol. 4, 1–10 (2002). In this paper, it is shown for the first time that HIPK2 is responsible for phosphorylating p53 at Ser46 in response to DNA damage.

    Article  CAS  PubMed  Google Scholar 

  60. Bulavin, D. V. et al. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J. 18, 6845–6854 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yoshida, K., Liu, H. & Miki, Y. Protein kinase Cδ regulates Ser46 phosphorylation of p53 tumor suppressor in the apoptotic response to DNA damage. J. Biol. Chem. 281, 5734–5740 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Okamura, S. et al. p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis. Mol. Cell 8, 85–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Taira, N., Nihira, K., Yamaguchi, T., Miki, Y. & Yoshida, K. DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Mol. Cell 25, 725–738 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Lee, M. G. et al. XAF1 directs apoptotic switch of p53 signaling through activation of HIPK2 and ZNF313. Proc. Natl Acad. Sci. USA 111, 15532–15537 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Winter, M. et al. Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR. Nat. Cell Biol. 10, 812–824 (2008). This paper shows that HIPK2 is part of the DDR.

    Article  CAS  PubMed  Google Scholar 

  66. Guo, A. et al. The function of PML in p53-dependent apoptosis. Nat. Cell Biol. 2, 730–736 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Takekawa, M. et al. p53-inducible Wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J. 19, 6517–6526 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakayama, K., Qi, J. & Ronai, Z. The ubiquitin ligase Siah2 and the hypoxia response. Mol. Cancer Res. 7, 443–451 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao, S. et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1α. Science 324, 261–265 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bulavin, D. V. et al. Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat. Genet. 31, 210–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Yip, K. W. & Reed, J. C. Bcl-2 family proteins and cancer. Oncogene 27, 6398–6406 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Tamm, I. et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res. 58, 5315–5320 (1998).

    CAS  PubMed  Google Scholar 

  73. Ambrosini, G., Adida, C. & Altieri, D. C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat. Med. 3, 917–921 (1997). Here, it was demonstrated that survivin, which was thought to only have a role during fetal development, is overexpressed in tumours, having a role in apoptosis regulation.

    Article  CAS  PubMed  Google Scholar 

  74. Knauer, S. K., Mahendrarajah, N., Roos, W. P. & Kramer, O. H. The inducible E3 ubiquitin ligases SIAH1 and SIAH2 perform critical roles in breast and prostate cancers. Cytokine Growth Factor Rev. 26, 405–413 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Andera, L. & Wasylyk, B. Transcription abnormalities potentiate apoptosis of normal human fibroblasts. Mol. Med. 3, 852–863 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. De Carvalho, D. D. et al. DNA methylation screening identifies driver epigenetic events of cancer cell survival. Cancer Cell 21, 655–667 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ljungman, M. & Lane, D. P. Transcription — guarding the genome by sensing DNA damage. Nat. Rev. Cancer 4, 727–737 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Derheimer, F. A. et al. RPA and ATR link transcriptional stress to p53. Proc. Natl Acad. Sci. USA 104, 12778–12783 (2007). This paper showed convincingly that DNA lesions blocking transcription activate ATR and consequently the DDR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Conforti, G., Nardo, T., D'Incalci, M. & Stefanini, M. Proneness to UV-induced apoptosis in human fibroblasts defective in transcription coupled repair is associated with the lack of Mdm2 transactivation. Oncogene 19, 2714–2720 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Hwang, B. J., Ford, J. M., Hanawalt, P. C. & Chu, G. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc. Natl Acad. Sci. USA 96, 424–428 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Barckhausen, C., Roos, W. P., Naumann, S. C. & Kaina, B. Malignant melanoma cells acquire resistance to DNA interstrand cross-linking chemotherapeutics by p53-triggered upregulation of DDB2/XPC-mediated DNA repair. Oncogene 33, 1964–1974 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Batista, L. F., Roos, W. P., Christmann, M., Menck, C. F. & Kaina, B. Differential sensitivity of malignant glioma cells to methylating and chloroethylating anticancer drugs: 53 determines the switch by regulating xpc, ddb2, and DNA double-strand breaks. Cancer Res. 67, 11886–11895 (2007). Here, the dependence on the anticancer drug to activate the dual function of p53 in regulating apoptosis or DNA repair is demonstrated.

    Article  CAS  PubMed  Google Scholar 

  83. Proietti De Santis, L. et al. Transcription coupled repair efficiency determines the cell cycle progression and apoptosis after UV exposure in hamster cells. DNA Repair (Amst.) 1, 209–223 (2002).

    Article  Google Scholar 

  84. Ljungman, M., O'Hagan, H. M. & Paulsen, M. T. Induction of ser15 and lys382 modifications of p53 by blockage of transcription elongation. Oncogene 20, 5964–5971 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Herrlich, P. et al. The mammalian UV response: mechanism of DNA damage induced gene expression. Adv. Enzyme Regul. 34, 381–395 (1994).

    Article  CAS  PubMed  Google Scholar 

  86. Tomicic, M. T. et al. Delayed c-Fos activation in human cells triggers XPF induction and an adaptive response to UVC-induced DNA damage and cytotoxicity. Cell. Mol. Life Sci. 68, 1785–1798 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Haas, S. & Kaina, B. c-Fos is involved in the cellular defence against the genotoxic effect of UV radiation. Carcinogenesis 16, 985–991 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Kaina, B., Haas, S. & Kappes, H. A general role for c-Fos in cellular protection against DNA-damaging carcinogens and cytostatic drugs. Cancer Res. 57, 2721–2731 (1997).

    CAS  PubMed  Google Scholar 

  89. Christmann, M., Tomicic, M. T., Origer, J., Aasland, D. & Kaina, B. c-Fos is required for excision repair of UV-light induced DNA lesions by triggering the re-synthesis of XPF. Nucleic Acids Res. 34, 6530–6539 (2006). In references 86–89, evidence is provided that FOS has a dual role in regulating DNA repair and, if repair is saturated, apoptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Christmann, M. & Kaina, B. Transcriptional regulation of human DNA repair genes following genotoxic stress: trigger mechanisms, inducible responses and genotoxic adaptation. Nucleic Acids Res. 41, 8403–8420 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Marteijn, J. A., Lans, H., Vermeulen, W. & Hoeijmakers, J. H. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15, 465–481 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Hamdi, M. et al. DNA damage in transcribed genes induces apoptosis via the JNK pathway and the JNK-phosphatase MKP-1. Oncogene 24, 7135–7144 (2005). The fundamental relationship between NER, JNK, MKP1 and apoptosis was elucidated in this article.

    Article  CAS  PubMed  Google Scholar 

  93. Brozovic, A. et al. Long-term activation of SAPK/JNK, 38 kinase and fas-L expression by cisplatin is attenuated in human carcinoma cells that acquired drug resistance. Int. J. Cancer 112, 974–985 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Hirsch, D. D. & Stork, P. J. Mitogen-activated protein kinase phosphatases inactivate stress-activated protein kinase pathways in vivo. J. Biol. Chem. 272, 4568–4575 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Christmann, M., Tomicic, M. T., Aasland, D. & Kaina, B. A role for UV-light-induced c-Fos: stimulation of nucleotide excision repair and protection against sustained JNK activation and apoptosis. Carcinogenesis 28, 183–190 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Roos, W. P. et al. Intrinsic anticancer drug resistance of malignant melanoma cells is abrogated by IFN-β and valproic acid. Cancer Res. 71, 4150–4160 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Christmann, M., Verbeek, B., Roos, W. P. & Kaina, B. O6-Methylguanine-DNA methyltransferase (MGMT) in normal tissues and tumors: enzyme activity, promoter methylation and immunohistochemistry. Biochim. Biophys. Acta 1816, 179–190 (2011).

    CAS  PubMed  Google Scholar 

  98. Weller, M. et al. MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat. Rev. Neurol. 6, 39–51 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Smith, J. Human Sir2 and the 'silencing' of p53 activity. Trends Cell Biol. 12, 404–406 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Chen, W. Y. et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 123, 437–448 (2005). In this paper, the feedback loop between p53, HIC1 and the deacetylase SIRT1 was described.

    Article  CAS  PubMed  Google Scholar 

  101. Soengas, M. S. et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. von Zglinicki, T., Saretzki, G., Ladhoff, J., d' Adda di Fagagna, F. & Jackson, S. P. Human cell senescence as a DNA damage response. Mech. Ageing Dev. 126, 111–117 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Stevenson, A. F. & Cremer, T. Senescence in vitro and ionising radiations—the human diploid fibroblast model. Mech. Ageing Dev. 15, 51–63 (1981).

    Article  CAS  PubMed  Google Scholar 

  104. Rodier, F. et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 11, 973–979 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mirzayans, R., Andrais, B., Hansen, G. & Murray, D. Role of p16INK4A in replicative senescence and DNA damage-induced premature senescence in p53-deficient human cells. Biochem. Res. Int. 2012, 951574 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Broccoli, D., Smogorzewska, A., Chong, L. & de Lange, T. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat. Genet. 17, 231–235 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. Fumagalli, M. et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat. Cell Biol. 14, 355–365 (2012). The authors demonstrated that the shelterin protein TRF2 prevents the completion of DSB repair by NHEJ in telomeres by inhibiting ligase IV, thereby causing persistent ATM-mediated DDR signalling, leading to senescence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Brunori, M. et al. TRF2 inhibition promotes anchorage-independent growth of telomerase-positive human fibroblasts. Oncogene 25, 990–997 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Hundley, J. E. et al. Increased tumor proliferation and genomic instability without decreased apoptosis in MMTV-ras mice deficient in p53. Mol. Cell. Biol. 17, 723–731 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Knizhnik, A. V. et al. Survival and death strategies in glioma cells: autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage. PLoS ONE 8, e55665 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Stambolic, V. et al. Regulation of PTEN transcription by p53. Mol. Cell 8, 317–325 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121–134 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Ravikumar, B. et al. Raised intracellular glucose concentrations reduce aggregation and cell death caused by mutant Huntingtin exon 1 by decreasing mTOR phosphorylation and inducing autophagy. Hum. Mol. Genet. 12, 985–994 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Cao, C. et al. Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Res. 66, 10040–10047 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Mah, L. Y., O'Prey, J., Baudot, A. D., Hoekstra, A. & Ryan, K. M. DRAM-1 encodes multiple isoforms that regulate autophagy. Autophagy 8, 18–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. de Murcia, J. M. et al. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc. Natl Acad. Sci. USA 94, 7303–7307 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Olson, R. D., Boerth, R. C., Gerber, J. G. & Nies, A. S. Mechanism of adriamycin cardiotoxicity: evidence for oxidative stress. Life Sci. 29, 1393–1401 (1981).

    Article  CAS  PubMed  Google Scholar 

  119. Munoz-Gamez, J. A. et al. PARP-1 is involved in autophagy induced by DNA damage. Autophagy 5, 61–74 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Rodriguez-Vargas, J. M. et al. ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Res. 22, 1181–1198 (2012). References 117, 119 and 120 describe the fundamental role of PARP1 for survival and regulation of autophagy following DNA damage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li, L., Ishdorj, G. & Gibson, S. B. Reactive oxygen species regulation of autophagy in cancer: implications for cancer treatment. Free Radic. Biol. Med. 53, 1499–1410 (2012).

    Google Scholar 

  122. Lamore, S. D. & Wondrak, G. T. Autophagic-lysosomal dysregulation downstream of cathepsin B inactivation in human skin fibroblasts exposed to UVA. Photochem. Photobiol. Sci. 11, 163–172 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Suzuki, A. et al. IGF-1 phosphorylates AMPK-α subunit in ATM-dependent and LKB1-independent manner. Biochem. Biophys. Res. Commun. 324, 986–992 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Ochs, K. & Kaina, B. Apoptosis induced by DNA damage O6-methylguanine is Bcl-2 and caspase-9/3 regulated and Fas/caspase-8 independent. Cancer Res. 60, 5815–5824 (2000).

    CAS  PubMed  Google Scholar 

  125. Caporali, S. et al. DNA damage induced by temozolomide signals to both ATM and ATR: role of the mismatch repair system. Mol. Pharmacol. 66, 478–491 (2004).

    CAS  PubMed  Google Scholar 

  126. Alexander, A., Kim, J. & Walker, C. L. ATM engages the TSC2/mTORC1 signaling node to regulate autophagy. Autophagy 6, 672–673 (2010).

    Article  PubMed  Google Scholar 

  127. Alexander, A. et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl Acad. Sci. USA 107, 4153–4158 (2010). This paper describes the link between ATM and mTOR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Park, C., Suh, Y. & Cuervo, A. M. Regulated degradation of Chk1 by chaperone-mediated autophagy in response to DNA damage. Nat. Commun. 6, 6823 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Pattingre, S. et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–939 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Wei, Y., Sinha, S. & Levine, B. Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy 4, 949–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Tsujimoto, Y. & Shimizu, S. Another way to die: autophagic programmed cell death. Cell Death Differ. 12 (Suppl. 2), 1528–1534 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Tsai, W. B., Chung, Y. M., Takahashi, Y., Xu, Z. & Hu, M. C. Functional interaction between FOXO3a and ATM regulates DNA damage response. Nat. Cell Biol. 10, 460–467 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kanzawa, T., Kondo, Y., Ito, H., Kondo, S. & Germano, I. Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res. 63, 2103–2108 (2003).

    CAS  PubMed  Google Scholar 

  134. Isakson, P., Bjoras, M., Boe, S. O. & Simonsen, A. Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein. Blood 116, 2324–2331 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Rez, G., Toth, S. & Palfia, Z. Cellular autophagic capacity is highly increased in azaserine-induced premalignant atypical acinar nodule cells. Carcinogenesis 20, 1893–1898 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. Yang, P. M. & Chen, C. C. Life or death? Autophagy in anticancer therapies with statins and histone deacetylase inhibitors. Autophagy 7, 107–108 (2011).

    Article  PubMed  Google Scholar 

  137. Gozuacik, D. & Kimchi, A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23, 2891–2906 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Roos, W. P. et al. Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene 26, 186–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Altieri, D. C. Survivin and IAP proteins in cell-death mechanisms. Biochem. J. 430, 199–205 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Adida, C. et al. Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am. J. Pathol. 152, 43–49 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Santa Cruz Guindalini, R., Mathias Machado, M. C. & Garicochea, B. Monitoring survivin expression in cancer: implications for prognosis and therapy. Mol. Diagn. Ther. 17, 331–342 (2013).

    Article  PubMed  CAS  Google Scholar 

  142. Greve, B. et al. Survivin, a target to modulate the radiosensitivity of Ewing's sarcoma. Strahlenther. Onkol. 188, 1038–1047 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Wallace, M. D., Southard, T. L., Schimenti, K. J. & Schimenti, J. C. Role of DNA damage response pathways in preventing carcinogenesis caused by intrinsic replication stress. Oncogene 33, 3688–3695 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Wu, Y. K. et al. Nuclear survivin expression: a prognostic factor for the response to taxane-platinum chemotherapy in patients with advanced non-small cell lung cancer. Med. Oncol. 31, 79 (2014).

    Article  PubMed  CAS  Google Scholar 

  145. Sedlak, T. W. et al. Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc. Natl Acad. Sci. USA 92, 7834–7838 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Boehme, K. A., Kulikov, R. & Blattner, C. p53 stabilization in response to DNA damage requires Akt/PKB and DNA-PK. Proc. Natl Acad. Sci. USA 105, 7785–7790 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Li, Y., Xiong, H. & Yang, D. Q. Functional switching of ATM: sensor of DNA damage in proliferating cells and mediator of Akt survival signal in post-mitotic human neuron-like cells. Chin. J. Cancer 31, 364–372 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Caporali, S. et al. AKT is activated in an ataxia-telangiectasia and Rad3-related-dependent manner in response to temozolomide and confers protection against drug-induced cell growth inhibition. Mol. Pharmacol. 74, 173–183 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Fraser, M. et al. MRE11 promotes AKT phosphorylation in direct response to DNA double-strand breaks. Cell Cycle 10, 2218–2232 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).

    Article  CAS  PubMed  Google Scholar 

  151. Kim, A. H., Khursigara, G., Sun, X., Franke, T. F. & Chao, M. V. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol. Cell. Biol. 21, 893–901 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cardone, M. H. et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 1318–1321 (1998).

    Article  CAS  PubMed  Google Scholar 

  153. Mayo, L. D. & Donner, D. B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl Acad. Sci. USA 98, 11598–11603 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wirawan, E. et al. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis. 1, e18 (2010). The importance of caspase cleavage of Beclin 1 in the switch between autophagy and apoptosis is demonstrated in this paper.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Trichonas, G. et al. Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis. Proc. Natl Acad. Sci. USA 107, 21695–21700 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Osborn, S. L. et al. Fas-associated death domain (FADD) is a negative regulator of T-cell receptor-mediated necroptosis. Proc. Natl Acad. Sci. USA 107, 13034–13039 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Vanlangenakker, N., Bertrand, M. J., Bogaert, P., Vandenabeele, P. & Vanden Berghe, T. TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death Dis. 2, e230 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Chan, F. K. et al. A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J. Biol. Chem. 278, 51613–51621 (2003).

    Article  CAS  PubMed  Google Scholar 

  159. Hu, X., Han, W. & Li, L. Targeting the weak point of cancer by induction of necroptosis. Autophagy 3, 490–492 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Skulachev, V. P. Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis 11, 473–485 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Los, M. et al. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol. Biol. Cell 13, 978–988 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Newton, K. et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343, 1357–1360 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Duprez, L. et al. Intermediate domain of receptor-interacting protein kinase 1 (RIPK1) determines switch between necroptosis and RIPK1 kinase-dependent apoptosis. J. Biol. Chem. 287, 14863–14872 (2012). In references 161–163, the role of PARP1 and RIPK3–RIPK1 was demonstrated in the switch between necroptosis and apoptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Upton, J. W., Kaiser, W. J. & Mocarski, E. S. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11, 290–297 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kaiser, W. J. & Offermann, M. K. Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif. J. Immunol. 174, 4942–4952 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. O'Donnell, M. A. et al. Caspase 8 inhibits programmed necrosis by processing CYLD. Nat. Cell Biol. 13, 1437–1442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. He, M. X. & He, Y. W. A role for c-FLIP(L) in the regulation of apoptosis, autophagy, and necroptosis in T lymphocytes. Cell Death Differ. 20, 188–197 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. McComb, S. et al. cIAP1 and cIAP2 limit macrophage necroptosis by inhibiting Rip1 and Rip3 activation. Cell Death Differ. 19, 1791–1801 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Cai, Z. et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat. Cell Biol. 16, 55–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Andrabi, S. A., Dawson, T. M. & Dawson, V. L. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann. NY Acad. Sci. 1147, 233–241 (2008).

    Article  CAS  PubMed  Google Scholar 

  171. Burkle, A. Poly(ADP-ribose). The most elaborate metabolite of NAD+. FEBS J. 272, 4576–4589 (2005).

    Article  PubMed  CAS  Google Scholar 

  172. Szabo, C. & Dawson, V. L. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol. Sci. 19, 287–298 (1998).

    Article  CAS  PubMed  Google Scholar 

  173. Ying, W., Garnier, P. & Swanson, R. A. NAD+ repletion prevents PARP-1-induced glycolytic blockade and cell death in cultured mouse astrocytes. Biochem. Biophys. Res. Commun. 308, 809–813 (2003).

    Article  CAS  PubMed  Google Scholar 

  174. Osato, K. et al. Apoptosis-inducing factor deficiency decreases the proliferation rate and protects the subventricular zone against ionizing radiation. Cell Death Dis. 1, e84 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Leist, M., Single, B., Castoldi, A. F., Kuhnle, S. & Nicotera, P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J. Exp. Med. 185, 1481–1486 (1997). This paper shows for the first time that the ATP level determines the switch between apoptosis and necrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Huang, C. T., Huang, D. Y., Hu, C. J., Wu, D. & Lin, W. W. Energy adaptive response during parthanatos is enhanced by PD98059 and involves mitochondrial function but not autophagy induction. Biochim. Biophys. Acta 1843, 531–543 (2013).

    Article  CAS  Google Scholar 

  177. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972). These authors described for the first time that apoptosis is an important cell death mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kroemer, G. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 16, 3–11 (2009).

    Article  CAS  PubMed  Google Scholar 

  179. Tang, H. L., Yuen, K. L., Tang, H. M. & Fung, M. C. Reversibility of apoptosis in cancer cells. Br. J. Cancer 100, 118–122 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Maynard, S. et al. Human embryonic stem cells have enhanced repair of multiple forms of DNA damage. Stem Cells 26, 2266–2274 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Bauer, M. et al. Human monocytes are severely impaired in base and DNA double-strand break repair that renders them vulnerable to oxidative stress. Proc. Natl Acad. Sci. USA 108, 21105–21110 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Narciso, L. et al. Terminally differentiated muscle cells are defective in base excision DNA repair and hypersensitive to oxygen injury. Proc. Natl Acad. Sci. USA 104, 17010–17015 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kauffmann, A. et al. High expression of DNA repair pathways is associated with metastasis in melanoma patients. Oncogene 27, 565–573 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Tomicic, M. T. et al. Translesion polymerase eta is upregulated by cancer therapeutics and confers anticancer drug resistance. Cancer Res. 74, 5585–5596 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. Roos, W. P., Christmann, M., Fraser, S. T. & Kaina, B. Mouse embryonic stem cells are hypersensitive to apoptosis triggered by the DNA damage O6-methylguanine due to high E2F1 regulated mismatch repair. Cell Death Differ. 14, 1422–1432 (2007).

    Article  CAS  PubMed  Google Scholar 

  186. Volcic, M. et al. NF-κB regulates DNA double-strand break repair in conjunction with BRCA1-CtIP complexes. Nucleic Acids Res. 40, 181–195 (2012).

    Article  CAS  PubMed  Google Scholar 

  187. Huang, T. T., Wuerzberger-Davis, S. M., Wu, Z. H. & Miyamoto, S. Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell 115, 565–576 (2003).

    Article  CAS  PubMed  Google Scholar 

  188. Cai, Q. & Robertson, E. S. Ubiquitin/SUMO modification regulates VHL protein stability and nucleocytoplasmic localization. PLoS ONE 5, e12636 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Hur, G. M. et al. The death domain kinase RIP has an essential role in DNA damage-induced NF-κB activation. Genes Dev. 17, 873–882 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Brzoska, K. & Szumiel, I. Signalling loops and linear pathways: NF-κB activation in response to genotoxic stress. Mutagenesis 24, 1–8 (2009).

    Article  CAS  PubMed  Google Scholar 

  191. Lee, H. H., Dadgostar, H., Cheng, Q., Shu, J. & Cheng, G. NF-κB-mediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc. Natl Acad. Sci. USA 96, 9136–9141 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Chu, Z. L. et al. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc. Natl Acad. Sci. USA 94, 10057–10062 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V. & Baldwin, A. S. Jr. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680–1683 (1998).

    Article  CAS  PubMed  Google Scholar 

  194. Zhou, A., Scoggin, S., Gaynor, R. B. & Williams, N. S. Identification of NF-κB-regulated genes induced by TNFα utilizing expression profiling and RNA interference. Oncogene 22, 2054–2064 (2003).

    Article  CAS  PubMed  Google Scholar 

  195. Cusack, J. C. Jr et al. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-κB inhibition. Cancer Res. 61, 3535–3540 (2001).

    CAS  PubMed  Google Scholar 

  196. Yao, R. & Cooper, G. M. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267, 2003–2006 (1995).

    Article  CAS  PubMed  Google Scholar 

  197. Wendel, H. G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332–337 (2004).

    Article  CAS  PubMed  Google Scholar 

  198. Toulany, M. et al. Akt promotes post-irradiation survival of human tumor cells through initiation, progression, and termination of DNA-PKcs-dependent DNA double-strand break repair. Mol. Cancer Res. 10, 945–957 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by Deutsche Forschungsgemeinschaft (DFG KA724 and RO3617) and Deutsche Krebshilfe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Kaina.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

41568_2016_BFnrc20152_MOESM179_ESM.pdf

Supplementary information S1 (table) | A non-exhaustive list of clinically relevant strategies for targeting key enzymes in the pro-survival pathways, activated following DNA damage and some examples of their effects and stages of clinical assessment. (PDF 177 kb)

PowerPoint slides

Glossary

Ataxia telangiectasia

A heritable disorder caused by mutated ATM. Patients suffering from this disease are predisposed to cancer and are very sensitive to ionizing radiation.

Necroptosis

A form of regulated necrosis that the cell uses when apoptosis cannot be initiated. During necroptosis the content of the cell is released into the extracellular space and causes inflammation.

Ferroptosis

A regulated, non-apoptotic form of cell death that is dependent on iron.

PML bodies

Heterogeneous nuclear structures that range in size from 0.2 to 1 micrometre. They are found in most mammalian cell nuclei and have been ascribed functions in tumour suppression and transcription regulation, among others.

End-to-end fusion

The ends of linear DNA are protected by telomeres. When double-strand breaks (DSBs) occur in telomeres and telomeres are partially lost, DSB repair can fuse two broken telomeric ends. This can be seen in mitosis as two chromosomes connected at their ends.

Jasplakinolide

A drug originally isolated from a sponge used for the stabilization and polymerization of the actin filament. It triggers apoptosis in a DNA damage-independent manner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roos, W., Thomas, A. & Kaina, B. DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer 16, 20–33 (2016). https://doi.org/10.1038/nrc.2015.2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2015.2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing