Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Genome-wide association studies: the key to unlocking neurodegeneration?

Abstract

The successful discovery of genes that cause rare monogenic disorders has dominated our understanding of the genetic basis of neurodegenerative disease. The emergence of robust genome-wide association methodologies promises to explain the genetic etiology of the common sporadic forms of complex diseases. In addition to revealing the genetic susceptibility of neurodegenerative disease, genome-wide association studies (GWASs) should also be an unbiased generator of molecules that are relevant in disease pathogenesis. Despite this exciting potential, GWAS results have varied in their consistency and their ability to deliver these aims. The largest challenge that faces neuroscientists is the interpretation of the results of GWASs and the translation of the genetic findings into functional mechanisms that are biologically important in disease pathogenesis and, ultimately, treatment design. We examine recent results from GWASs of Alzheimer's disease and Parkinson's disease and explore their use and limitations. We further reflect on how these results may expedite progress in understanding and influencing the molecular pathogenesis of neurodegeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schork, N.J., Murray, S.S., Frazer, K.A. & Topol, E.J. Common vs. rare allele hypotheses for complex diseases. Curr. Opin. Genet. Dev. 19, 212–219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tsai, M.S. et al. Apolipoprotein E: a risk factor for Alzheimer's disease. Am. J. Hum. Genet. 54, 643–649 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Frazer, K.A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  5. McCarthy, M.I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9, 356–369 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, W.Y., Barratt, B.J., Clayton, D.G. & Todd, J.A. Genome-wide association studies: theoretical and practical concerns. Nat. Rev. Genet. 6, 109–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Simón-Sánchez, J. & Singleton, A. Genome-wide association studies in neurological disorders. Lancet Neurol. 7, 1067–1072 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Frazer, K.A., Murray, S.S., Schork, N.J. & Topol, E.J. Human genetic variation and its contribution to complex traits. Nat. Rev. Genet. 10, 241–251 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Simón-Sánchez, J. et al. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat. Genet. 41, 1308–1312 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Satake, W. et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat. Genet. 41, 1303–1307 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Edwards, T.L. et al. Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann. Hum. Genet. 74, 97–109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pittman, A.M., Fung, H.C., & de Silva, R. Untangling the tau gene association with neurodegenerative disorders. Hum. Mol. Genet. 15, R188–R195 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Hardy, J. A hundred years of Alzheimer's disease research. Neuron 52, 3–13 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Small, S.A. & Duff, K. Linking Abeta and tau in late-onset Alzheimer's disease: a dual pathway hypothesis. Neuron 60, 534–542 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, H.C. Multiplicity of Ca2+ messengers and Ca2+ stores: a perspective from cyclic ADP-ribose and NAADP. Curr. Mol. Med. 4, 227–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Surmeier, D.J., Guzman, J.N. & Sanchez-Padilla, J. Calcium, cellular aging, and selective neuronal vulnerability in Parkinson's disease. Cell Calcium 47, 175–182 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nuutinen, T., Suuronen, T., Kauppinen, A. & Salminen, A. Clusterin: a forgotten player in Alzheimer's disease. Brain Res. Brain Res. Rev. 61, 89–104 (2009).

    Article  CAS  Google Scholar 

  18. Michel, D., Chatelain, G., North, S. & Brun, G. Stress-induced transcription of the clusterin/apoJ gene. Biochem. J. 328, 45–50 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McGeer, P.L., Kawamata, T. & Walker, D.G. Distribution of clusterin in Alzheimer brain tissue. Brain Res. 579, 337–341 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. DeMattos, R.B. et al. Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. USA 99, 10843–10848 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bell, R.D. et al. Transport pathways for clearance of human Alzheimer's amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J. Cereb. Blood Flow Metab. 27, 909–918 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Harel, A., Wu, F., Mattson, M.P., Morris, C.M. & Yao, P.J. Evidence for CALM in directing VAMP2 trafficking. Traffic 9, 417–429 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Nordstedt, C., Caporaso, G.L., Thyberg, J., Gandy, S.E. & Greengard, P. Identification of the Alzheimer beta/A4 amyloid precursor protein in clathrin-coated vesicles purified from PC12 cells. J. Biol. Chem. 268, 608–612 (1993).

    CAS  PubMed  Google Scholar 

  24. Carey, R.M., Balcz, B.A., Lopez-Coviella, I. & Slack, B.E. Inhibition of dynamin-dependent endocytosis increases shedding of the amyloid precursor protein ectodomain and reduces generation of amyloid beta protein. BMC Cell Biol. 6, 30 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhou, J., Fonseca, M.I., Pisalyaput, K. & Tenner, A.J. Complement C3 and C4 expression in C1q sufficient and deficient mouse models of Alzheimer's disease. J. Neurochem. 106, 2080–2092 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Webster, S., Bradt, B., Rogers, J. & Cooper, N. Aggregation state-dependent activation of the classical complement pathway by the amyloid beta peptide. J. Neurochem. 69, 388–398 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Rogers, J. et al. Peripheral clearance of amyloid beta peptide by complement C3-dependent adherence to erythrocytes. Neurobiol. Aging 27, 1733–1739 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Hunter, D.J. & Kraft, P. Drinking from the fire hose—statistical issues in genomewide association studies. N. Engl. J. Med. 357, 436–439 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Ng, P.C. et al. Genetic variation in an individual human exome. PLoS Genet. 4, e1000160 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dickson, S.P., Wang, K., Krantz, I., Hakonarson, H. & Goldstein, D.B. Rare variants create synthetic genome-wide associations. PLoS Biol. 8, e1000294 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lambert, J.C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat. Genet. 41, 1094–1099 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat. Genet. 41, 1088–1093 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brouwers, N., Sleegers, K. & Van, B.C. Molecular genetics of Alzheimer's disease: an update. Ann. Med. 40, 562–583 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Rogaev, E.I. et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376, 775–778 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754–760 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Holmes, C. et al. Long-term effects of Abeta42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372, 216–223 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Bales, K.R. et al. Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat. Genet. 17, 263–264 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Lesage, S. & Brice, A. Parkinson's disease: from monogenic forms to genetic susceptibility factors. Hum. Mol. Genet. 18, R48–R59 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Polymeropoulos, M.H. et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Singleton, A.B. et al. alpha-Synuclein locus triplication causes Parkinson's disease. Science 302, 841 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Paisán-Ruíz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595–600 (2004).

    Article  PubMed  Google Scholar 

  43. Gilks, W.P. et al. A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet 365, 415–416 (2005).

    CAS  PubMed  Google Scholar 

  44. Healy, D.G. et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. Lancet Neurol. 7, 583–590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lesage, S. et al. LRRK2 G2019S as a cause of Parkinson's disease in North African Arabs. N. Engl. J. Med. 354, 422–423 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Valente, E.M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Neumann, J. et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease. Brain 132, 1783–1794 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Wellcome Trust, the Medical Research Council (Neurodegeneration strategic award) and Parkinson's UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas W Wood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandhi, S., Wood, N. Genome-wide association studies: the key to unlocking neurodegeneration?. Nat Neurosci 13, 789–794 (2010). https://doi.org/10.1038/nn.2584

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2584

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing