Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents

Abstract

The 55-kilodalton (kDa) protein from the E1B-region of adenovirus binds to and inactivates the p53 gene, which is mutated in half of human cancers. We have previously shown that the replication and cytopathogenicity of an E1B, 55-kDa gene-attenuated adenovirus, ONYX-015, is blocked by functional p53 in RKO and U2OS carcinoma lines. We now report that normal human cells were highly resistant to ONYX-015-mediated, replication-dependent cytolysis. In contrast, a wide range of human tumor cells, including numerous carcinoma lines with either mutant or normal p53 gene sequences (exons 5–9), were efficiently destroyed. Antitumoral efficacy was documented following intratumoral or intravenous administration of ONYX-015 to nude mousehuman tumor xenografts; efficacy with ONYX-015 plus chemotherapy (cisplatin, 5-fluorouracil) was significantly greater than with either agent alone.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lowe, S.W., Ruley, H.E., Jacks, T. & Housman, D.E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 74, 957–967 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Fujiwara, T. et al. Induction of chemosensitivity in human lung cancer cells in vivo by adenovirus-mediated transfer of the wild-type p53 gene. Cancer Res. 54, 2287–2291 (1994).

    CAS  PubMed  Google Scholar 

  3. Lowe, S.W. et al. p53 status and the efficacy of cancer therapy in vivo. Science 266, 807–810 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Fearon, E.R., Hamilton, S.R. & Vogelstein, B. Clonal analysis of human colorectal tumors. Science 238, 193–197 (1990).

    Article  Google Scholar 

  5. Brennan, J.A. et al. Molecular assessment of histopathological staging in squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 332, 429–435 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Chang, F., Syrjanen, S. & Syrjanen, K. Implications of the p53 tumor-suppressor gene in clinical oncology. J. clin. Oncol. 13, 1009–1022 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Bergh, J., Norberg, T., Sjögren, S., Lindgren, A. & Holmberg, L. Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nature Med. 1, 1029–1034 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Eliopoulos, A.G. et al. The control of apoptosis and drug resistance in ovarian cancer: Influence of p53 and Bcl-2. Oncogene 11, 1217–1228 (1995).

    CAS  PubMed  Google Scholar 

  9. Debbas, M. & White, E. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev. 7, 546–554 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Grand, R.J., Grant, M.L. & Gallimore, P.H. Enhanced expression of p53 in human cells infected with mutant adenoviruses. Virology 203, 229–240 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Lowe, S.W., Ruley, H.E., Jacks, T. & Housman, D.E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Lechner, M.S. et al. Human papillomavirus E6 proteins bind p53 in vivo and abrogate p53-mediated repression of transcription. EMBO J. 11, 3045–3052 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gannon, J.V. & Lane, D.P. p53 and DNA polymerase alpha compete for binding to SV40 T antigen. Nature 329, 456–458 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Barker, D.D. & Berk, A.J. Adenovirus proteins from both El B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology 156, 107–121 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Slichenmeyer, W.J., Nelson, W.G., Slebos, R.J. & Kastan, M.B. Loss of a p53-associated G1 checkpoint does not decrease cell survival Cancer Res. 53 4164–4169 (1993

    Google Scholar 

  16. Bischoff, J.R. et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373–376 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. MacCallum, D. et al. The p53 response to ionizing radiation in adult and developing tissues. Oncogene 13, 2575–2587 (1996).

    CAS  PubMed  Google Scholar 

  18. Brown, B. et al. Increased accumulation of p53 protein in cisplatin-resistant ovarian cell lines. Int. J. Cancer 55, 678–684 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Li, C., Nagasawa, H., Dahlberg, W. & Little, J. Diminished capacity for p53 in mediating a radiation-induced G1 arrest in established human tumor cell lines. Oncogene 11, 1885–1892 (1995).

    CAS  PubMed  Google Scholar 

  20. Wills, K.N. et al. Development and characterization of recombinant adenoviruses encoding human p53 for gene therapy of cancer. Hum. Gene Ther. 5, 1079–88 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Clayman, G.L. et al. In vivo molecular therapy with p53 adenovirus for microscopic residual head and neck squamous carcinoma. Cancer Res. 55, 1–6 (1995).

    CAS  PubMed  Google Scholar 

  22. Roth, J. et al. p53 as a target for cancer vaccines: Recombinant canarypox virus vectors expressing p53 protect mice against lethal tumor cell challenge. Proc. Natl. Acad. Sci. USA 93, 4781–4786 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, D.H. Replicating oncolytic viruses: An overview. Expert Opin. Invest. Invest Drugs 5, 753–762 (1996).

    Article  Google Scholar 

  24. Sanchez-Prieto, R. et al. Carcinoma cells become sensitive to DNA-damaging agents by the expression of the adenovirus E1 A gene. Oncogene 13, 1083–1092 (1996).

    PubMed  Google Scholar 

  25. Debbas, M. & White, E. Wild-type p53 mediates apoptosis by El A, which is inhibited by E1 B. Genes Dev. 7, 546–554 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Engelhardt, J.F. et al. Direct gene transfer of human CFTR into human bronchial epithelia of xenografts with E1-deleted adenoviruses. Nature Genet. 4, 27–34 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Wilson, J.M., Engelhardt, J.F., Grossman, M., Simon, R.H. & Yang, Y. Gene therapy of cystic fibrosis lung disease using E1 deleted adenoviruses: A phase I trail. Hum. Gene Ther. 5, 501–519 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Fearon, E.R., Itaya, T., Hunt, B., Vogelstein, B. & Frost, P. Induction in a murine tumor of immunogenic tumor variants by transfection with a foreign gene. Cancer Res. 48, 2975–2980 (1988).

    CAS  PubMed  Google Scholar 

  29. Zinkernagel, R.M. Immunology taught by viruses. Science 271, 173–178 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Jain, R.K. Barriers to drug delivery in solid tumors. Sci. Am. 271, july, 58–65 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Dvorak, H.F., Nagy, J.A., Dvorak, J.T. & Dvorak, A.M. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am. J. Pathol. 133, 95–109 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ginsberg, H.S. & Prince, G.A. The molecular basis of adenovirus pathogenesis. Infect Agents Dis. 3, 1–8 (1994).

    CAS  PubMed  Google Scholar 

  33. Scheffner, M., Munger, K., Byrne, J.C. & Howley, P.M. The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc. Natl. Acad. Sci. USA 88, 5523–5527 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, N., To, H., Lee, W. & Lee, E. Tumor suppressor activity of Rb and p53 genes in human breast carcinoma cells. Oncogene 8, 279–288 (1993).

    CAS  PubMed  Google Scholar 

  35. Rodrigues, N.R. et al. p53 mutations in colorectal cancer. Proc. Natl. Acad. Sci. USA 87, 7555–7559 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Van Meir, E.G. et al. Analysis of the p53 gene and its expression in human glioblastoma cells. Cancer Res. 54, 649–652 (1994).

    CAS  PubMed  Google Scholar 

  37. Hsu, I.C. et al. p53 gene mutation and integrated hepatitis B viral DNA sequences in human liver cancer lines. Carcinogenesis 14, 987–992 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Yaginuma, Y. & Westphal, H. Abnormal structure and function of the p53 gene in human ovarian carcinoma cell lines. Cancer Res. 52, 4196–4199 (1992).

    CAS  PubMed  Google Scholar 

  39. Ruggeri, B. et al. Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor-suppressor genes. Oncogene 7, 1503–1511 (1992).

    CAS  PubMed  Google Scholar 

  40. Hsu, I.C. et al. p53 gene mutation and integrated hepatitis B viral DNA sequences in human liver cancer cell lines. Carcinogenesis 14, 987–992 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Waldman, T., Kinzler, K.W. & Vogelstein, B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 55, 5187–5190 (1995).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heise, C., Sampson-Johannes, A., Williams, A. et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 3, 639–645 (1997). https://doi.org/10.1038/nm0697-639

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0697-639

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing